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RESCALED ENTROPY OF CELLULAR AUTOMATA

DAVID BURGUET

Abstract. For a d-dimensional cellular automaton with d ≥ 1 we introduce a rescaled

entropy which estimates the growth rate of the entropy at small scales by generalizing pre-
vious approaches [1, 9]. We also define a notion of Lyapunov exponent and proves a Ruelle

inequality as already established for d = 1 in [16, 15]. Finally we generalize the entropy

formula for 1-dimensional permutative cellular automata [18] to the rescaled entropy in
higher dimensions. This last result extends recent works [17] of Shinoda and Tsukamoto

dealing with the metric mean dimensions of two-dimensional symbolic dynamics.

1. Introduction

In this paper we estimate the dynamical complexity of multidimensional cellular automata.
In the following the main results will be stated in a more general setting, but let us focus in

this introduction on the following algebraic cellular automaton on (Fp)Z
d

with p prime given
for some finite family (ai)i∈I in F∗p by

∀(xj)j ∈ (Fp)Z
d

, f((xj)j) =

(∑
i∈I

aixi+j

)
j

.

Let I ′ = I ∪{0}. For d = 1 the topological entropy of f is finite and equal to diam(I ′) log p
where diam(I ′) denotes the diameter of I ′ for the usual distance on R [18]. However in higher
dimensions the topological entropy of f is always infinite unless f is the identity map [13, 10].
Moreover the topological entropy of the Zd+1-action given by f and the shift vanishes. In
this paper we investigate the growth rate of (htop(f,PJn))n for nondecreasing sequences (Jn)

of convex subsets of Rd where (PJn)n denotes the clopen partitions into Jn-coordinates with

Jn := Jn ∩ Zd. This sequence appears to increase as the perimeter p(Jn) of Jn. We define

the rescaled entropy hdtop(f) of f as lim supJn
htop(f,PJn )

p(Jn)
. In [9] another renormalization is

used, whereas in [1] the authors only investigate the case of squares Jn = [−n, n]2, n ∈ N.

For d = 1 we get h1top(f) =
htop(f)

2 . We generalize the entropy formula for algebraic cellular
automata as follows :

Theorem 1. Let f be an algebraic cellular automaton on (Fp)Z
d

as above, then

hdtop(f) = RI′ log p,

where RI′ denotes the radius of the smallest bounding sphere containing I ′.

In fact we establish such a formula for any permutative cellular automaton (see Section 7).
In [17] the authors compute, inter alia, the metric mean dimension of the horizontal shift in
Z2 for some standard distances. These dimensions may be interpreted as the rescaled entropy
with respect to some particular sequence of convex sets (Jn)n. In particular we extend these
results in higher dimensions for general permutative cellular automata.
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We also consider a measure theoretical analogous quantity of the rescaled entropy. In
dimension one, a notion of Lyapunov exponent has been defined in [15]. Then Tisseur [16]
proved in this case a Ruelle inequality relating this exponent with the Kolmogorov-Sinai
entropy. In this paper we also introduce a notion of Lyapunov exponent in higher dimensions,
which bounds from above the rescaled entropy of measures.

The paper is organized as follows. In Section 2 we state some measure geometrical proper-
ties of convex sets in Rd. We recall the dynamical background of cellular automata in Section
4 and we introduce then a Lyapunov exponent for multidimensional cellular automata. In
Section 5 we define and study the topological and measure theoretical rescaled entropy. We
prove the Ruelle type inequality in Section 6. The last section is devoted to the proof of the
entropy formula for permutative cellular automata.

2. Background on convex geometry

2.1. Convex bodies, domains and polytopes. For a fixed positive integer d we endow the
vector space Rd with its usual Euclidean structure. The associated scalar product is simply
denoted by · and we let Sd be the unit sphere. For a subset F of Rd we let F , Int(F ) and
∂F be respectively its closure, interior set and boundary. We denote by F the set of integer
points in F , i.e. F = F ∩ Zd. We also denote by V (F ) the d-Lebesgue measure of F (also
called the volume of F ) when the set F is Borel.

The extremal set of a convex set J is denoted by ex(J) and the convex hull of F ⊂ Rd
by cv(F ). A convex body is a compact convex set of Rd. A convex body containing the
origin 0 ∈ Rd in its interior set is said to be a convex domain. The set of convex bodies
endowed with the Hausdorff topology is a locally compact metrizable space. In the following
we denote by D, resp. D1, the set of convex domains, resp. with unit perimeter, endowed
with the Hausdorff topology. A convex polytope (resp. k-polytope with k ≤ d) in Rd is a
convex body given by the convex hull of a finite set (resp. with topological dimension equal
to k). When this finite set lies inside the lattice Zd, the convex polytope is said integral.
We let F(P ) be the set of faces of a convex polytope P . For a convex body J we denote by
J the integral polytope given by the convex hull of integer points in J , i.e. J = cv(J).

A convex domain J has Lipshitz boundary and finite perimeter p(J). For convex domains
the perimeter in the distributional sense of De Giorgi coincides with the (d − 1)-Hausdorff
measure Hd−1 of the boundary. For J ∈ D we let ∂′J be the subset of points x ∈ ∂J ,
where the tangent space TxJ is well defined. The set ∂′J has full Hd−1-measure in ∂J . We
let NJ(x) ∈ Sd be the unit J-external normal vector at x ∈ ∂′J . For any x ∈ ∂′J we let
T+
x J (resp. T−x J) be the open external (resp. closed internal) semi-space with boundary
TxJ . With these notations we have J =

⋂
x∈∂′J T

−
x J . For ε ∈ R we denote by T±x J(ε) the

semi-planes T±x J(ε) = T±x J + εNJ(x). When J is a convex polytope and F ∈ F(J), we write
TF to denote the tangent affine space supporting F , T±F for the associated semi-spaces and
NF for the unit external normal to F .

The support function of a convex body I is the real continuous function hI on Sd :

∀x ∈ Sd, hI(x) = max
u∈I

u · x.

The support function completely characterizes the convex body I. The area measure σJ of
a convex domain J is the Borel measure on Sd given by NJ

∗ Hd−1 :

∀B Borel of Sd, σJ(B) = Hd−1
(
(NJ)−1B

)
.

If a sequence (Jn)n in D is converging to J∞ ∈ D (for the Hausdorff topology), then σJn is
converging weakly to σJ∞ , in particular the perimeter of Jn goes to the perimeter of J∞ (see
Proposition 10.2 in [7]).
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2.2. Convex exhaustions. We consider sequences J = (Jn)n∈N of convex domains with

p(Jn)
n−→ +∞, such that the sets J̃n = p (Jn)

− 1
d−1 Jn ∈ D1 are converging to a limit J∞ ∈ D

in the Hausdorff topology. In particular
⋃
n Jn = Rd. Moreover the limit J∞ has unit

perimeter. The sequences J = (Jn)n satisfying the above properties are said to be convex
exhaustions. For O ∈ D1 we denote by E(O) the set of convex exhaustions J = (Jn)n with

J∞ = O. Moreover for O ∈ D we let JO ∈ E
(
p(O)−

1
d−1O

)
be the convex exhaustion given

by JO := (nO)n. A convex exhaustion (Jn)n is said integral when Jn is an integral polytope
for all n.

The inner radius r(E) of a subset E of Rd is the largest a ≥ 0 such that E contains a
Euclidean ball of radius a. For two subsets E and F of Rd we denote E∆F the symmetric
difference of E and F given by E∆F := (E \ F ) ∪ (F \ E).

Lemma 1. Let O ∈ D and J = (Jn)n ∈ E(O). Then any sequence of convex bodies K =
(Kn)n with r (Kn∆Jn) = o (p(Jn)) belongs to E(O) and p(Kn) ∼n p(Jn).

Proof. We claim that p (Jn)
− 1
d−1 Kn is converging to J∞ in the Hausdorff topology. Then

by taking the perimeter in this limit we get limn
p(Kn)
p(Jn)

= p(J∞) = 1 and therefore K̃n =

p (Kn)
− 1
d−1 Kn also goes to J∞ = O. Let us prove now the claim. Fix a Euclidean ball B

with J∞ ⊂ IntB. It is enough to show that p (Jn)
− 1
d−1 Kn ∩ B is converging to J∞. Indeed

as Kn is convex, this will imply that p (Jn)
− 1
d−1 Kn ⊂ B lies in B for n large enough (if

not p (Jn)
− 1
d−1 Kn ∩ ∂B is non empty for infinitely many n and therefore we should have

J∞ ∩∂B 6= ∅). By extracting a subsequence we may assume p (Jn)
− 1
d−1 Kn ∩B is converging

to a convex body K∞ and we need to prove K∞ = J∞. We argue by contradiction. As J∞ is
a convex domain, we have either Int(J∞) \K∞ 6= ∅ or Int(K∞) \ J∞ 6= ∅. But for x in one of
these sets, there is s > 0 such that the balls p(Jn)B(x, s) are contained in Kn∆Jn, therefore
r (Kn∆Jn) ≥ sp(Jn), for n large enough. �

Remark 2. If ]Kn∆Jn = o
(
p(Jn)

d
d−1

)
then the condition on the inner radius in Lemma 1

holds and therefore K belongs to E(O). In particular (Jn)n is a convex exhaustion in E(O).

2.3. Internal and external morphological boundary. We recall some terminology of
mathematical morphology used in image processing. For two subsets I and J of Rd, the
dilation (also known as the Minkowski sum) J ⊕ I and the erosion J 	 I of J by I are
defined as follows

J ⊕ I = {i+ j | i ∈ I and j ∈ J},

J 	 I = {j ∈ Rd | ∀i ∈ I, i+ j ∈ J}.

When the origin 0 belongs to I then we have J ⊂ J⊕I and J	I ⊂ J . When J is a convex
body then J 	 I is a convex body. Assume now that I is also a convex body. The dilation
J ⊕ I is then also a convex body with ex(J ⊕ I) ⊂ ex(I)⊕ ex(J). In particular, when I and J
are moreover convex polytopes, then so is J⊕I. We have J	I =

⋂
x∈∂′J T

−
x J

(
hI(−NJ(x))

)
(also J ⊕ I ⊂

⋂
x∈∂′J T

−
x J

(
hI(N

J(x))
)
, but this last inclusion may be strict). When J is a

convex polytope, the above intersection is finite, thus J 	 I is also a convex polytope. The
convex bodies given by the erosion J 	 I and the dilation J ⊕ I are also known as the inner
and outer parallel bodies of J relative to I. We recall that hJ⊕I = hJ + hI . In particular
when I = {i} is a singleton, we get hJ+i(x) = hJ(x) + i · x for all x ∈ Sd. In general we only
have hJ	I ≤ hJ − hI .
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The internal and external (morphological) boundaries of J relative to I denoted
respectively by ∂−I J and ∂+I J are given by

∂+I J = (I ⊕ J) \ J,
∂−I J = J \ (J 	 I).

Clearly we have ∂±I J = ∂±I′J with I ′ = I ∪ {0}. When J is a convex domain then we have

∂−I J = ∂−cv(I)J and ∂+I J ⊂ ∂+cv(I)J . In the following the set I will be fixed so that we omit

the index I in the above definitions when there is no confusion.
Finally we observe that r (Jn∆(Jn ⊕ I)) , r (Jn∆(Jn 	 I)) ≤ diam(I ′). Therefore it follows

from Lemma 1, that if (Jn)n is a convex exhaustion and I a convex body then (Jn	 I)n and
(Jn ⊕ I)n define convex exhaustions with the same limit as (Jn)n.

3. Counting integer points in morphological boundary of large convex sets

For a large convex domain J and a fixed integral polytope I we estimate the cardinality of
the integer points in the morphological boundaries of J relative to I. We first compare the
cardinality of integer points in the internal and external boundaries of J and J. Recall that
F denotes the set of integer points in a subset set F of Rd and J = cv(J).

Lemma 2. With the above notations we have

∂−J = ∂−J

and

∂+J ⊂ ∂+J.

In general the last inclusion is strict.

Proof. For any convex domain J , a point u of J belongs to ∂−J if and only if there is v
in ex(I) such that u + v does not lie in J . As J ∩ Zd = J ∩ Zd and ex(I) ⊂ Zd, we get
∂−J = ∂−J. Similarly if a point u ∈ ∂+J is an integer, then u ∈ J ⊕ I but u /∈ J . Therefore
we get ∂+J ⊂ ∂+J . �

Lemma 3. Let J be a convex polytope.

]∂−J ≤ ]∂+J.

Proof. We have ∂−J ⊂
⋃
F∈F(J) T

+
F J(−hI(NF )). For F ∈ F(J) there exists uF ∈ ex(I) with

hI(N
F ) = uF ·NF . Let F1, · · ·FN be an enumeration of F(J). Let φ : ∂−J → ∂+J be the

function defined by φ(x) = x+uF1 for x ∈ S1 := ∂−J ∩T+
F1
J(−hI(NF1)) and φ(x) = x+uFl

for x ∈ Sl := ∂−J ∩ T+
Fl
J(−hI(NFl)) \

⋃
k<l T

+
Fk
J(−hI(NFk)) by induction on l.

This map is injective : indeed if φ(x) = φ(y) either x and y lie in the same Sl and then
φ(x) = x+ uFl = y + uFl = φ(y) clearly implies x = y or x ∈ Sk, y ∈ Sl with k 6= l. We may
assume k < l without loss of generality. Then y + uFl ∈ T−FkJ whereas x + uFk ∈ T+

Fk
J and

we get thus a contradiction. Finally the map φ preserves the integer points since we have
ex(I) ⊂ Zd. �

3.1. First relative quermass integral. Let O be a convex domain and let I be a convex
body. For ρ ∈ R we let

Oρ =

{
O ⊕ ρI when ρ ≥ 0,
O 	 ρI when ρ < 0.

Proposition 3.

lim
ρ→0

V (Oρ)− V (O)

ρ
=

∫
Sd
hI dσO.
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For ρ > 0 the formula follows from Minkowski’s formula on mixed volume (see Theorem
6.5 and Corollary 10.1 in [7]). For ρ < 0 we refer to [12] (see also Lemma 2 in [4] for the
2-dimensional case).

The quantity d
∫
Sd hI dσO is known as the first I-relative quermass integral of J . In the

following we denote by VI(O) the integral
∫
Sd hI dσO. For convex bodies I ⊂ H and k ∈ N, we

have VI(O) ≤ VH(O) and VkI(O) = kVI(O) for any convex domain O. The support function
hI being continuous, the first I-relative quermass integral of O is continuous with respect to
the Hausdorff topology, i.e. if (On)n is a sequence of convex domains converging to a convex
domain O∞ in the Hausdorff topology, then we have

VI(On)
n→+∞−−−−−→ VI(O∞).

We deduce now from Proposition 3 an estimate on the volume of the morphological bound-
ary for large convex sets.

Corollary 4. Let I be a convex body containing 0 and let O ∈ D. Then

V
(
∂±I nO

)
∼ nd−1

∫
Sd
hI dσO.

Proof. We only consider the case of the external boundary as one may argue similarly for the
internal boundary. For all n we have

V
(
∂+I nO

)
= V (nO ⊕ I)− V (nO) ,

= nd
(
V (O ⊕ n−1I)− V (O)

)
According to Proposition 3 we conclude that

V
(
∂+I nO

)
∼ nd−1

∫
Sd
hI dσO.

�

3.2. Counting integer points in large convex sets. Since Gauss circle problem counting
lattice points in convex sets has been extensively investigated. Let C = [0, 1]d. Clearly for
any Borel subset K of Rd we have always

(3.1) ]K ≤ V (K ⊕ C).

In the other hand, Bokowski, Hadwiger and Wills have proved the following general (sharp)
inequality for any convex domain O [2] :

(3.2) V (O)− p(O)

2
≤ ]O.

There exist precise asymptotic estimates of ]xO for large x > 0 for convex smooth domains
O having positive curvature, in particular we have in this case ]xO = V (xO) + o(xd−1) [8].

3.3. First rough estimate for ]∂±I nO ∩ Zd with O ∈ D. For a real sequence (an)n and
two numbers l and C > 0 we write an ∼C l when the accumulation points of (an)n lie in
[l − C, l + C].

Lemma 4. There exists a constant C depending only on d such that we have for any convex
domain O ∈ D and any convex body I of Rd with 0 ∈ I :

]∂±I nO

p(nO)
∼C VI (O)

p(O)
.
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Proof. We only argue for ∂+I O, the other case being similar. We have ]∂+I nO = ]nO ⊕ I−]nO,

and then by combining Equation (3.1) and (3.2) we get :

V (nO ⊕ I)− p(nO ⊕ I)

2
− V (nO + C) ≤ ]∂±I nO ≤ V (nO ⊕ I ⊕ C)− V (nO) +

p(nO)

2
,

After dividing by nd−1, the right (resp. left) hand side term is going to
∫
Sd(hI − hC −

1/2) dσO (resp.
∫
Sd(hI + hC + 1/2) dσO ) according to Corollary 4. �

3.4. Upperbound of ∂−Jn for general convex exhaustions. For a subset E of Rd and
for r > 0 we let E(r) := {x ∈ E, d(x, ∂E) ≤ r} with d being the Euclidean distance. With
the previous notations we may also write E(r) = ∂−BrE where Br denotes the Euclidean ball
centered at 0 with radius r.

Lemma 5. For any convex body J in Rd, we have

V (J(r)) ≤ rp(J).

Proof. We first assume that J is a convex polytope. Let x ∈ J(r). There is F ∈ F(J) with
‖x − xF ‖ ≤ d(x, F ) = d(x, ∂J) ≤ r, where xF denotes the orthogonal projection of x onto
TF . Observe that xF belongs to F : if not the segment line [x, xF ] would have a non empty
intersection with ∂J and the intersection point y ∈ ∂J would satisfy ‖x − y‖ < ‖x − xF ‖ ≤
d(x, ∂J). Therefore J(r) ⊂

⋃
F∈F(J)RF (r) with RF (r) := {x−tNF (x), x ∈ F and t ∈ [0, r]}.

Finally we get

V (J(r)) ≤
∑

F∈F(J)

V (RF (r)) ,

≤ rp(J).

For a general convex body, there is a nondecreasing sequence (Jp)p of convex polytopes
contained in J converging to J in the Hausdorff topology. Then the characteristic function of

Jp(r) is converging pointwisely to the characteristic function of J(r), in particular V (Jp(r))
p−→

V (J(r)). Moreover p(Jp) goes to p(J), so that the desired inequality is obtained by taking
the limit in the inequalities for the convex polytopes Jp. �

Proposition 5. For any convex exhaustion (Jn)n in Rd, we have

lim sup
n

]∂−I Jn

p (Jn)
≤ diam(I ′) +

√
d.

Proof. As already observed, we have ]∂−Jn ≤ V (∂−Jn⊕C) with C = [0, 1]d. Let (J ′n)n be the
sequence given by J ′n = Jn ⊕ C for all n. By Lemma 1 this sequence is a convex exhaustion
with p(J ′n) ∼n p(Jn). Moreover ∂−Jn⊕C is contained in J ′n (c) with c = diam(I ′)+diam(C).
Therefore we conclude according to Lemma 5 :

]∂−Jn ≤ V (J ′n(c)) ,

≤ cp(J ′n),

.n cp(Jn).

�
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3.5. Fine estimate of ]∂±I Jn for general convex exhaustions (Jn)n in dimension 2.

We compare directly the cardinality of lattice points in the morphological boundary with the
first I-relative quermass integral of J∞ for two-dimensional convex exhaustion. This result
will not be used directly in the next sections but is potentially of independent interest.

Proposition 6. For any convex exhaustion (Jn)n in R2, we have

lim
n

]∂−I Jn

p(Jn)
= VI(J∞).

By Remark 2 and Lemma 2 we only need to consider integral convex exhaustions. In fact in
this case we also show the corresponding statement for the external morphological boundary.

Proposition 7. For any integral convex exhaustion (Jn)n in R2, we have

lim
n

]∂±I Jn

p(Jn)
= VI(J∞).

The rest of this subsection is devoted to the proof of Proposition 7. We start by giving
some preliminary lemmas.

We denote by ∠P the minimum of the interior angles at the vertices of a convex polygon
P ⊂ R2.

Lemma 6. For any integral convex exhaustion (Jn)n in R2, we have

lim inf
n
∠Jn > 0.

Proof. We have ∠J̃n = ∠Jn. Moreover the minimal angle is lower semi-continuous for the
Hausdorff topology, therefore lim infn∠J̃n ≥ ∠J∞. Since J∞ has non-empty interior, we have
∠J∞ > 0. �

Lemma 7. For any integral convex exhaustion (Jn)n in R2, we have

]F(Jn) = o (p(Jn)) .

Proof. Two integral polytopes are said equivalent when there is a translation (necessarily by
an integer) mapping one to the other. For any L the number aL of equivalence classes of
integral 1-polytopes with 1-Hausdorff measure less than L is finite (these polytopes are just
line segments with integral endpoints and their 1-Hausdorff measure is just equal to their
length). Moreover for a integral convex polytope there are at most two faces in the same
class. Therefore

]F(Jn) ≤ 2aL + ]{F ∈ F(Jn), H1(F ) ≥ L},

≤ 2aL +
p(Jn)

L
.

This inequality holds for all n and p(Jn) goes to infinity with n so that we conclude ]F(Jn) =
o (p(Jn)) as L was arbitrarily fixed. �

Given two distinct points A,B in R2 and h 6= 0, the rectangle RAB(h) of basis AB and
height h > 0 (resp. h < 0) is the semi-open rectangle [AB[×[A,D[ oriented as ABCD (resp.
ADCB)∗ with |AD| = |h|. This rectangle is said integral when A,B belong to Z2 and the
line (CD) has a non-empty intersection with Z2.

Lemma 8. For any integral rectangle R,

]R = V (R).

∗We denote a convex polytope with its vertices by respecting the usual orientation of the plane.
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Proof. After a translation by an integer we may assume that the origin is the vertex A of
the integral rectangle R = RAB(h). Let (p′, q′) be an integer on the line segment [A,B] with
p′, q′ relatively prime. By Bezout theorem there is (u, v) ∈ Z2 with up + vq = 1. Therefore
there is a matrix M ∈ SL2(Z) with M(p, q) = (k, 0). As the transformation M preserve
both the volume and the integer points it is enough to consider the semi-open parallelogram
M(R). But there is a piecewise integral translation, which maps M(R) to a semi-open integral
rectangle with basis M([A,B[) ⊂ R × {0}. For such a rectangle the area is obviously equal
to the cardinality of its integer points. �

For A,B ∈ R2 and ε < |AB|
2 we let Aε and Bε be the points in the line (AB) with Euclidean

distance |ε| to A and B respectively, which lie inside [A,B] if ε > 0 and outside ifnot. As the
symmetric difference of RAεBε(h) and RAB(h) is given by the union of two rectangles with
sides of length |ε| and |h| we have for some constant C = C(|ε|, |h|)

(3.3)
∣∣∣]RAεBε(h)− ]RAB(h)

∣∣∣ ≤ C.
This estimate still holds true for ε ≥ |AB|/2 when choosing the convention RAεBε(h) = ∅ for
such ε.

Fact. For any convex body I and for any a > 0, there exists ε+ = ε+(I) > 0 and ε− =
ε−(I, a) > 0 such that any convex polytope J = A1 · · ·An with ∠J ≥ a satisfies

∂+J ⊂
⋃
l<n

R
Aε

+

l A−ε
+

l+1

(
−hI(NAlAl+1)

)
and

∂−J ⊃
⋃
l<n

R
Aε
−
l A−ε

−
l+1

(
hI(N

AlAl+1)
)
.

-

TF

FR
+

F
R -

Figure 1: The external and internal rectangles associated to a face F of a
polygon. The external and internal morphological boundaries are respectively repre-
sented by the areas in yellow and green. The rectangles, R+

F and R−
F , given by Fact 3.5

are drawn in blue.
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This fact is illustrated on Figure 1 and its easy proof is left to the reader. We are now in
a position to prove Proposition 7.

Proof of Proposition 7. From the above fact and (3.3) there is ε = ε−(I,∠J) > 0 and C =
C(I,∠J) > 0 such that for any convex polytope J = A1 · · ·An

]∂−J ≥
∑
l<n

]RAl(ε)Al+1(ε)

(
−hI(NAlAl+1)

)
,

≥
∑

F∈F(J)

[
]RF

(
−hI(NF )

)
− C

]
.

Then when J is an integral convex polytope we get by Lemma 8 :

]∂−J ≥ −C]F(J) +
∑

F∈F(J)

V
(
RF

(
−hI(NF )

))
,

≥ −C]F(J) +

∫
Sd
hI dσJ .

For an integral convex exhaustion (Jn)n we obtain finally for large n by using Lemma 7 and
Lemma 6

]∂−Jn ≥ −C(I,
∠J∞

2
) · ]F(Jn) +

∫
Sd
hI dσJn ,

lim inf
n

]∂−Jn

p(Jn)
≥ lim

n

∫
Sd
hI dσJ̃n ,

≥
∫
Sd
hI dσJ∞ .

One proves similarly that lim supn
]∂+Jn
p(Jn)

≤
∫
Sd hI dσJ∞ and this concludes the proof of

Proposition 7 as we have ]∂+Jn ≥ ]∂−Jn according to Lemma 3. �

3.6. Supremum of O 7→ VI(O). In this section we investigate the supremum of VI on D1

for a given convex polytope I of Rd. We recall that there is a unique sphere SI containing
I with minimal radius, usually called the smallest bounding sphere of I. We let RI and
xI be respectively the radius and the center of SI . There are at least two distinct points in
SI ∩ I, whenever I is not reduced to a singleton, and SI ∩ I ⊂ ex(I). Moreover we have the
following alternative :

• either there is a finite subset of SI ∩ I generating an inscribable polytope T with
Int(T ) 3 xI (in particular the interior set of I is non empty),

• or there is a hyperplane H containing xI such that I lies in an associated semispace
and SI ∩H is the smallest bounding sphere of I ∩H.

The smallest bounding sphere SI (or I itself) will be said nondegenerated (resp. degen-
erated) and an associated polytope T (resp. hyperplane H) is said generating. For an
inscribable polytope T in Rd we may define its dual T ′ as the polytope given by the inter-
section of the inner semispaces tangent to the circumsphere of T at the vertices of T . In the
following T ′ always denotes the dual polytope of a generating polytope T with respect to I.

When SI is degenerated, there is a sequence of affine spaces H = H1 ⊃ H2 ⊃ · · ·Hl 3 xI
such that I ∩Hl is nondegenerated in Hl and for all 1 ≤ i < l the convex polytope I ∩Hi is
degenerated in Hi with Hi+1 as an associated generating hyperplane (Hi is a d−i dimensional
affine space). We denote by L a generating polytope of I∩Hl in Hl and by L′ its dual polytope
in Hl. Let U be an isometry of Rd mapping Hi for i = 1, · · · , l to {0i}×Rd−i (where 0i denotes
the origin of Ri) with U(xI) = 0. Then for R > 0 we let T ′R := U−1

(
[−R,R]l × U(L′)

)
. The

faces F of T ′R satisfy
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(1) either F = U−1
(
[−R,R]l × U(F)

)
for some face F of L′,

(2) or F = U−1
(
[−R,R]l−1 × {±R}i × U(L′)

)
for i = 1, · · · , l (where {±R}i coresponds

to the ith coordinate of the product).

For i = 1, 2 we let Fi(T ′R) be the subset of F(T ′R) given by the faces of the ith category.
Observe that when xI coincide with the origin then T ′ or T ′R, R > 0 are convex domains.

Proposition 8.

sup
O∈D1

VI(O) = RI .

The supremum of VI is achieved if and only if SI is nondegenerated. The supremum is then
achieved for O ∈ D1 homothetic to the dual polytope T ′ of a generating polytope T .

Proof. For any v ∈ Rd we have

VI+v(O) =

∫
hI+v dσO,

=

∫
hI dσO +

∫
Sd
v · u dσO(u),

=

∫
hI dσO +

∫
∂O

v ·NO dHd−1.

By the divergence formula we have
∫
∂O

v · NO dHd−1 = 0 for any v ∈ Rd and O ∈ D1.
Therefore we may assume xI = 0. With the above notations we have maxi∈I i · v ≤ RI for
all v ∈ Rd with ‖v‖ = 1 with equality iff v belongs to R−1I I. Therefore VI(O) ≤ RI for
any O ∈ D1. Moreover if the equality occurs then for x in a subset E of ∂O with full Hd−1-
measure, hI

(
NO(x)

)
= maxi∈I i·x = RI and therefore the normal unit vector NO(x) belongs

to R−1I I. But as O is a convex domain, we may find d + 1 points x1, · · · , xd+1 in E in such
a way the origin belongs to the interior of the simplex T = RI cv

(
NO(x1), · · · , NO(xd+1)

)
.

Thus SI is nondegenerated and the polytope T is a generating polytope with respect to I.
Moreover we have with the above notations∫

hI dσT ′ = RIp(T
′).

Therefore the homothetic polytope O′ of T ′ with unit perimeter achieves the supremum of
VI . We consider now the degenerated case. With the above notations, we have hI(N

F ) =
RI for any F ∈ F1(T ′R) (recall we assume xI = 0 without loss of generality). Moreover

Hd−1
(⋃

F∈F2(T ′R) F
)

= o(p(T ′R)) when R goes to infinity. Therefore the renormalization

OR ∈ D1 of T ′R satisfies

VI(OR)
R→+∞−−−−−→ RI .

�

4. Cellular automata

4.1. Definitions. We consider a finite set A. We endow the set A with the discrete topology

and Xd = AZd with the product topology. We consider the Zd-shift σ on AZd defined for
l ∈ Zd and u = (uk)k ∈ Xd by σl(u) = (uk+l)k. Any closed subset X of Xd invariant under
the action of σ is called a Zd-subshift. We fix such a subshift X in the remaining of the
paper.

For a bounded subset J of Rd we consider the partition PJ into J-cylinders, i.e. the
element PxJ of PJ containing x = (xi)i∈Zd ∈ X is given by PxJ := {y = (yi)i∈Zd ∈ X, ∀i ∈
J yi = xi}. In other terms we may define PJ as the joined partition

∨
j∈J σ

−jP0 with P0

being the zero-coordinate partition.
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A cellular automaton (CA for short) defined on a Zd-subshift X is a continuous map
f : X → X which commutes with the shift action σ. By a famous theorem of Hedlund [14]
the cellular automaton f is given by a local rule, i.e. there exists a finite subset I of Zd and
a map F : AI → A such that

∀j ∈ Zd (fx)j = F
(
(xj+i)i∈I

)
.

The (smallest) subset I is called the domain of the CA. Recall I ′ = I ∪ {0} and let I be the
convex hull of I ′.

4.2. Lyapunov exponents for higher dimensional cellular automata. Lyapunov ex-
ponent of one-dimensional cellular automata have been defined in [15, 16]. We develop a
similar theory in higher dimensions. Let f be a CA on a Zd-subshift X with domain I.

Given a convex body J of Rd and x ∈ X, we let

Ef (x, J) := {K convex body, fPxJ ⊂ PfxK }
A priori the family Ef (x, J) does not admit a greatest element for the inclusion. Observe

also that the convex body J 	 I belongs to Ef (x, J), in particular this family is not empty.
Then we let for all x :

grJf(x) := min{]J \K, K ∈ Ef (x, J)}.

The family Ef (x, J) and the function grJf(x) are constant on each atom A of PJ , thus
we let Ef (A, J) and grJf(A) be these quantities. We denote by Df (x, J) the subfamily of
Ef (x, J) consisting in K with ]J \K = grJf(x). For K in Df (x, J) the intersection K ∩ J
defines a convex body, which belongs also to Df (x, J).

For a convex exhaustion J = (Jn)n, we define the growth grJ f with respect to J as the
following real functions on X :

grJ f := lim sup
n

grJnf

p(Jn)
.

Finally we let for a convex domain O ∈ D1 :

grOf = sup
J∈E(O)

grJ f.

Lemma 9. The sequence of functions
(
grOf

k
)
k

is subadditive, i.e.

∀k, l ∈ N ∀x ∈ X, grOf
k+l(x) ≤ grOf

l(fkx) + grOf
k(x).

Proof. Fix x ∈ X and k, l ∈ N. Let J = (Jn)n ∈ E(O). We consider a sequence K := (Kn)n
of convex bodies in

∏
nDfk(x, Jn) with Kn ⊂ Jn for all n. Let Ik be the domain of fk. The

convex body Jn 	 Ik belongs to Efk(x, Jn) for all n. By Proposition 5, we have ]Jn \Kn ≤
]∂−IkJn = O (p(Jn)). It follows from Lemma 1 and Remark 2 that K is a convex exhaustion

in E(O) with p(Kn) ∼n p(Jn). We also let L = (Ln)n ∈
∏
nDf l(fkx,Kn) with Ln ⊂ Kn for

all n. Similarly the sequence L belongs to E(O) with p(Ln) ∼n p(Jn). Then we have for all
positive integers n :

fk+lPxJn = f l(fkPxJn),

⊂ f l
(
Pf

kx
Kn

)
,

⊂ Pf
k+lx
Ln

.

Therefore we have

grJnf
k+l(x) ≤ ]Jn \ Ln,

≤ ]Jn \Kn + ]Kn \ Ln,
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then

grJ f
k+l(x) = lim sup

n

grJnf

p(Jn)
,

≤ lim sup
n

grKnf

p(Jn)
+ lim sup

n

grLnf

p(Jn)
,

≤ lim sup
n

grKnf

p(Kn)
+ lim sup

n

grLnf

p(Ln)
,

≤ gr+Kf
k(x) + gr+Lf

l(fkx),

As the sequence K and L lie in E(O) we conclude that

grOf
k+l(x) ≤ grOf

k(x) + grOf
l(fkx).

�

The nonnegative function grOf satisfies grOf ≤ supJ∈E(O) lim supn
]∂−I Jn

p(Jn)
and this last

term is finite according to Proposition 5. Therefore the subadditive ergodic theorem applies :
for any µ ∈M(X, f) the sequence

(
1
ngrOf

n(x)
)
k

converge almost everywhere to a f -invariant

function χO with
∫
χO dµ = lim / infn

1
n

∫
grOf

n dµ. We call the function χO the Lyapunov
exponent of f with respect to O.

Remark 9. The exponent χO for O ∈ D plays some how the role of the sum of the positive
Lyapunov exponents in smooth dynamical systems.

5. Rescaled entropy of cellular automata

5.1. Definition. We let M(f) (resp. M(f, σ)) be the set of invariant Borel probability
measures on X which are f -invariant (resp. f - and σ-invariant). For a finite clopen partition
P of X we let Htop(P) = log ]P and Hµ(P) = −

∑
A∈P µ(A) logµ(A) with µ ∈ M(f). In the

following the symbol ∗ denotes either ∗ = top or ∗ = µ ∈ M(f). We let h∗(f,P) be the
entropy with respect to the clopen partition P :

h∗(f,P) := lim
n

1

n
H∗

(
n−1∨
k=0

f−kP

)
.

For two partitions P, Q of X, we say P is finer than Q and we write P > Q, when any atom
of P is contained in an atom of Q. The functions H∗(·) and h∗(f, ·) are nondecreasing with
respect to this order.

The rescaled entropy with respect to a convex exhaustion J = (Jn)n is defined as follows

hd∗(f,J ) = lim sup
n

h∗(f,PJn)

p(Jn)
.

In [9] the authors defines a similar notion for the rescaled topological entropy with the renor-
malization factor ]∂−I Jn (which depends on the domain I of f) rather than p(Jn).

Remark 10. For d = 2, when J =
⋃
i∈I Ji is a finite disjoint union of Jordan domains Ji

with Lipshitz boundary, we have

htop(f,PJ)

p(J)
≤
∑
i∈I htop(f,PJi)∑

i∈I p(Ji)
,

≤ sup
i∈I

htop(f,PJi)

p(Ji)
.
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Moreover for each i, we have p(Ji) ≥ p (cv(Ji)) and Pcv(Ji) is finer than PJi . Therefore

htop(f,PJ)

p(J)
≤
∑
i∈I htop(f,PJi)∑

i∈I p(Ji)
,

≤ sup
i∈I

htop(f,Pcv(Ji))

p (cv(Ji))
.

This inequality justifies somehow that we focus on convex bodies J of Rd.

We let also for any O ∈ D1

hd∗(f,O) = sup
J∈E(O)

hd∗(f,J )

and
hd∗(f) = sup

J
hd∗(f,J ),

where the last supremum holds over all convex exhaustions J . For d = 1 we have p(J) = 2
for any convex subset J . Therefore up to a factor 2 we recover the usual definition of entropy,
2h1∗(f) = h∗(f).

Remark 11. As the CA f commutes with the shift action σ we have for all k ∈ Zd and any
subset J of Zd htop(f,PJ+k) = htop(f, σ

−kPJ) = htop(f,PJ) and the same holds for the mea-
sure theoretical entropy with respect to measures in M(f, σ). Let us call generalized convex
domain any convex body with a non empty interior set. Replacing convex domains by gen-
eralized convex domains, we may define generalized convex exhaustions J and the associated
rescaled entropies. Then it follows from the aforementioned invariance by translation of the
entropy, that hdtop(O) = hdtop(O+α) for all α ∈ Rd and all generalized convex domain O with
unit perimeter. Indeed for any (Jn)n ∈ E(O) (resp. E (O + α)) there is a sequence of integers
(kn)n with (Jn + kn)n ∈ E (O + α) (resp. (Jn)n ∈ E(O)).

Remark 12. (1) The partition PJn may be written as
∨
k∈Jn σ

−kP0 with P0 being the
zero-coordinate partition. Instead of P0 we could choose another clopen generating
partition P, i.e. a partition of X into clopen sets with

∨
k∈Zd σ

−kP equal to the

partition of X into points. But for a finite subset J of Zd we have
∨
k∈J σ

−kP > P0

and
∨
k∈J σ

−kP0 > P so that in the definition of the rescaled entropy we may replace

P0 by any other generator P of X, i.e. PJn by
∨
k∈Jn σ

−kP.

(2) Let X be a zerodimensional compact metrizable space endowed with a expansive Zd-
action τ . We consider a map f preserving (X, τ) i.e. f is an homeomorphism of X
commuting with τ . The triple (X, τ, f) is called a topological Zd-expansive preserving
system (t.e.p.s. for short). Two t.e.p.s. (Y, φ, g) are conjugated when there is a
homeomorphism h : X → Y such that h ◦ f ◦ h−1 = g and h ◦ τ ◦ h−1 = φ. We
may define the rescaled entropy as we did for a CA and all the previous results hold
in this more general setting. Moreover two conjugated t.e.p.s. have the same rescaled
entropy. Any t.e.p.s. is conjugated to a CA.

5.2. Link with the metric mean dimension. In a compact metric space (X, d), the ball of
radius ε ≥ 0 centered at x ∈ X will be denoted by Bd(x, ε). For a continuous map f : X → X
we denote by dn the dynamical distance defined for all n ∈ N by

∀x, y ∈ X, dn(x, y) = max{d(fkx, fky), 0 ≤ k < n}.

The metric mean dimension of f is defined as mdim(f, d) = lim supε→0
htop(f,ε)
| log ε| where htop(f, ε)

denotes the topological entropy at the scale ε > 0 :

htop(f, ε) := lim sup
n

1

n
log min{]C,

⋃
x∈C

Bdn(x, ε) = X}.
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The topologial mean dimension is the infimum of mdim(f, d) over all distances on X.
We refer to [11] for alternative definitions and furter properties of mean dimension. The
topological mean dimension of a finite dimensional topological system is null.

Here f is a CA on a subshift of Zd. In particular it has zero topological mean dimen-
sion. For a norm ‖ · ‖ of Rd we may associate a metric d‖‖ on Xd by letting d‖‖(u, v) =

α−min{‖k‖, k∈Zd, uk 6=vk} for all u = (uk)k, v = (vk)k ∈ Xd. Then for l ∈ N the (open) ball
Bd‖‖(x, 2

−l) with respect to d‖‖ coincides with the cylinder PxJl with Jl = B‖‖(0, l).
As there is a correspondence between convex symmetric domains and unit balls of norms

on Rd, the mean dimension with respect to such distances d‖‖ are given by hdtop(f,JO) for
convex symmetric domains O.

Remark 13. In [17] the authors work with a measure theoretical quantity, called the measure
distorsion rate dimension and show a variational principle with the metric mean dimension
of d‖‖. Does this quantity coincides with µ 7→ hdµ(f,O) with O being the symmetric convex
domain associated to the norm ‖‖?

5.3. Monotonicity and Power. We investigate now basic properties of the rescaled entropy.

Lemma 10. For any O ∈ D and any α > 0, we have

hd∗(f,JO) = hd∗(f,JαO).

Proof. For n ∈ N, we let kn = dnαe, thus nO ⊂ knαO and p(nO) ∼n p(knαO). Therefore

hd∗(f,JO) = lim sup
n

h∗(f,PnO)

p(nO)
,

≤ lim sup
n

h∗(f,PknαO)

p(nO)
,

≤ lim sup
n

h∗(f,PknαO)

p(knαO)
,

≤ hd∗(f,JαO).

The other inequality is obtained by considering αO and α−1 in place of O and α. �

Lemma 11. For any O ∈ D1 and O′ ∈ D with O ⊂ Int(O′), we have

hd∗(f,JO) ≤ hd∗(f,O) ≤ p(O′)hd∗(f,JO′).

Proof. As JO ∈ E(O) the inequality hd∗(f,JO) ≤ hd∗(f,O) follows from the definitions. Let

now J ∈ E(O). For n large enough we have J̃n ⊂ Int(O′), therefore Jn ⊂ p(Jn)
1
d−1O′.

Therefore we conlude that

hd∗(f,J ) ≤ lim sup
n

p
(
p(Jn)

1
d−1O′

)
p(Jn)

hd∗(f,JO′),

≤ p(O′)hd∗(f,JO′).
�

For O ∈ D1 the origin belongs to Int(O) so that αO ∈ D and O ⊂ Int(αO) for any α > 1.
Moreover we have hd∗(f,JαO) = hd∗(f,JO) by Lemma 10. Together with Lemma 11 we get
immediately :

Corollary 14.
∀O ∈ D1, hd∗(f,O) = hd∗(f,JO).

Corollary 15.
O 7→ hd∗(f,O) is continuous on D1.
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Convex polytopes are dense in D. Therefore we get with P being the collections of convex
d-polytopes with the origin in their interior set :

Corollary 16.
sup
O∈D1

hd∗(f,O) = sup
P∈P

hd∗(f,JP ).

However we will see that the supremum is not always achieved. We prove now a formula
for the rescaled entropy of a power.

Lemma 12.
∀O ∈ D1 ∀k ∈ N, hd∗(fk, O) = khd∗(f,O).

Proof. Let O ∈ D1 and J = (Jn)n ∈ E(O). Let Jkn = Jn⊕ I ⊕ · · · ⊕ I︸ ︷︷ ︸
k times

for all n. The sequence

J k = (Jkn)n belongs also to E(O). Moreover the partition PJkn is finer than
∨k−1
l=0 f

−lPJn .
Therefore

h∗(f
k,PJn) ≤ kh∗(f,PJn) = h∗

(
fk,

k−1∨
l=0

f−lPJn

)
≤ h∗(fk,PJkn)

and we then obtain
hd∗(f

k,J ) ≤ khd∗(f,J ) ≤ hd∗(fk,J k).

We conclude by taking the supremum in J ∈ E(O). �

Remark 17. Clearly we have hdµ ≤ hdtop for any µ ∈ M(f) but we ignore if a general
variational principle holds true.

5.4. A first upperbound for the rescaled entropy. Let (X, f) be a cellular automaton
with domain I. We relate the entropy of PJ with the entropy of P∂±J and we prove an
upperbound for the rescaled entropy hdtop(f,O) in term of the first relative quermass integral
VI(O) with I being the convex hull of I ′.

Lemma 13. For any bounded subset J of Rd, we have

h∗(f,PJ) = h∗(f,P∂−I J
) and h∗(f,PJ) ≤ h∗(f,P∂+

I J
).

Proof. The inequality h∗(f,PJ) ≥ h∗(f,P∂−I J
) follows directly from the inclusion ∂−J ⊂ J .

By definition of the domain I and the erosion J 	 I, we have PJ > f−1PJ	I . Therefore we

get f−1PJ ∨ PJ = f−1P∂−J ∨ PJ and then by induction PJ ∨
∨k−1
l=0 f

−lP∂−J =
∨k−1
l=0 f

−lPJ
for all k. We conclude that :

h∗(f,PJ) = lim
k

1

k
H∗(f,

k−1∨
l=0

f−lPJ),

≤ lim
k

1

k

(
H∗ (PJ) +H∗

(
k−1∨
l=0

f−lP∂−J

))
,

≤ h∗(f,P∂−J).

We also have
PJ ∨ P∂+J > PJ⊕I > f−1PJ .

Therefore we get now by induction on k

PJ ∨
k−2∨
l=0

f−lP∂+J >

k−1∨
l=0

f−lPJ .

This implies h∗(f,P∂+
I J

) ≤ h∗(f,PJ).

�
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Proposition 18. For any O ∈ D1,

hdtop(f,O) ≤ VI(O) log ]A.

Proof. Recall that

hdtop(f,O) = hdtop(f,JO),

= lim sup
n

htop(f,PnO)

p(nO)
.

Then by applying Lemma 13 we obtain

hdtop(f,O) ≤ lim sup
n

htop(f,P∂±nO)

p(nO)
,

≤ lim sup
n

]∂±nO log ]A
p(nO)

.

For all k ∈ N \ {0} we let Ik be the domain of fk and we denote by Ik the convex hull of
I ′k = Ik ∪ {0}. Clearly we have Ik ⊂ I ⊕ · · · ⊕ I︸ ︷︷ ︸

k times

, therefore Ik ⊂ kI. By Lemma 4, we get for

some constant C = C(d) :

hdtop(f
k, O) ≤ (VIk(O) + C) log ]A,

≤ (VkI(O) + C) log ]A,
≤ (kVI(O) + C) log ]A.

But by Lemma 16 we have hdtop(f
k, O) = khdtop(f,O), so that we finally conclude when k

goes to infinity

hdtop(f,O) ≤ VI(O) log ]A.
�

6. Ruelle inequality

Recall (X,σ) denotes a Zd-subshift. The topological entropy of σ is defined for any Fölner
sequence L = (Ln)n (see e.g. [19]) as

htop(σ) = lim sup
n

Htop(PLn)

]Ln
.

Lemma 14. For all ε > 0 there exists c > 0 such that we have for any K ⊂ J convex bodies:

Htop(PJ\K) ≤
(
]J \K + cp(J ⊕ C)

)
· (htop(σ) + ε).

Proof. Let ε > 0. As the sequence of cubes C = (Cn)n defined by Cn = [−n, n[d∩Zd is a

Fölner sequence, there is a positive integer m such that
Htop(PCm )

]Cm
< htop(σ)+ε. Then for some

c = c(m) > 0 we may cover J \K by a family F at most
]J\K+cp(J⊕C)

]Cm
disjoint translated

copies of Cm. Indeed if Rm denotes a partition of Rd into translated copies of Cm, then any
atom A of Rm with A ∩ (J \K) 6= ∅ either satisfies A ⊂ J \K or A ∩

(
∂−CmJ ∪ ∂

−
Cm
K
)
6= ∅.

Clearly the number of A’s in the first case is less than
]J\K
]Cm

, whereas the numbers of atoms

A satisfying the second condition is less than ]∂−CmJ + ]∂−CmK. Arguing as in the proof

of Proposition 5, this last term is less than c (p(J ⊕ C) + p(K ⊕ C)) for some constant c
depending on m. As K is contained in J we have p(J ⊕ C) ≤ p(K ⊕ C).
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Therefore

Htop(PJ\K) ≤
(
]J \K + 2cp(J ⊕ C)

) Htop (PCm)

]Cm
,

≤
(
]J \K + 2cp(J ⊕ C)

)
· (htop(σ) + ε).

�

We refine now the inequality obtained in Lemma 18 at the level of invariant measures :

Lemma 15.

∀µ ∈M(f), hµ(f,O) ≤ htop(σ)

∫
χO dµ.

Proof. For any convex domain J and any µ ∈M(f) we have

hµ(f,PJ) ≤ Hµ(f−1PJ |PJ),

≤
∑
A∈PJ

µ(A)HµA(f−1PJ).

Fix ε > 0 and let c be as in Lemma 14. Then if (KA)A∈PJ is a family of convex bodies in∏
A∈PJ Ef (A, J) with KA ⊂ J for all A we obtain

hµ(f,PJ) ≤
∑
A∈PJ

µ(A)HµA(f−1PJ\KA),

≤
∑
A∈PJ

µ(A)Htop(PJ\KA),

≤
∑
A∈PJ

µ(A)
(
]J \KA + cp(J ⊕ C)

)
· (htop(σ) + ε).

By choosing KA with ]J \KA minimal we obtain

hµ(f,PJ) ≤ (htop(σ) + ε) ·
(∫

grJf dµ+ cp(J ⊕ C)

)
.

Therefore we have for any convex exhaustion J = (Jn)n (recall that p(Jn⊕C) ∼n p(Jn)) :

hdµ(f,J ) = lim sup
n

hµ(f,PJ)

p(Jn)
,

≤ (htop(σ) + ε) ·
(

lim sup
n

∫
grJnf

p(Jn)
dµ+ c

)
.

By Proposition 5 we have for all x ∈ X

sup
n∈N

grJnf(x)

p(Jn)
≤ sup
n∈N

]∂−Jn

p(Jn)
< +∞.

We may therefore apply Fatou’s Lemma to the sequence of functions
(
− grJnf

p(Jn)

)
n

:

lim sup
n

∫
grJnf

p(Jn)
dµ ≤

∫
lim sup

n

grJnf

p(Jn)
dµ,

then

hdµ(f,J ) ≤ (htop(σ) + ε)

(∫
grJ f dµ+ c

)
.



18 DAVID BURGUET

By taking the supremum over J ∈ E(O) we get

hdµ(f,O) ≤ (htop(σ) + ε)

(∫
grOf dµ+ c

)
.

By Lemma 12 we have
hdµ(f

k,O)

k = hdµ(f,O) for any k. Apply the above inequality to fk :

hdµ(f,O) ≤ (htop(σ) + ε)

(∫
grOf

k

k
dµ+

c

k

)
.

When k goes to infinity and then ε goes to zero, we conclude hdµ(f,O) ≤ htop(σ)
∫
χO dµ.

�

7. Entropy formula for permutative CA

The cellular automaton f is said permutative at i ∈ Zd if for all pattern P on I \ {i}
and for all a ∈ A there is b ∈ A such that the pattern P ib on I ∪ {i} given by the completion
of P at i by b satisfies F (P ib ) = a, in particular i belongs to the domain I of f . The CA is
said permutative when it is permutative at the nonzero extreme points of the convex hull I
of I ′ = I ∪ {0} (these points lie in I). The algebraic CA as described in the introduction are
permutative.

Proposition 19. The topological rescaled entropy of a permutative CA f on Xd is given by

hdtop(f) = RI′ log ]A.

The sets I ′ and I have the same smallest bounding sphere, thus RI′ = RI. Theorem 1,
stated in the introduction, follows from Proposition 19.

Question. For a permutative CA, the uniform measure λZ
d

with λ being the uniform measure
on A is known to be invariant [20]. Does the uniform measure maximize the entropy ?

Recall that for any k ∈ N \ {0} we denote by Ik the domain of fk and Ik the convex hull
of I ′k = Ik ∪ {0}. In the following we also let C(P,L) = {(xi)i∈Zd ∈ X, xj = pj ∀j ∈ L} be
the cylinder associated to the pattern P = (pj)j∈L ∈ AL on L ⊂ Zd. We also write C(P ) for
this cylinder when there is no confusion on L.

Lemma 16. For any permutative CA f and any k ∈ N \ {0}, the CA fk is also permutative
and

Ik = kI.

Proof. As already observed, the inclusion Ik ⊂ kI holds for any CA (not necessarily permuta-
tive). We will show k ex(I) ⊂ I ′k, which implies together with Ik ⊂ kI the equality Ik = kI. Let
i ∈ ex(I) \ {0} ⊂ I. For a fixed k we prove by induction on k that fk is permutative at ki, in
particular ki ∈ I ′k. Let P be a pattern on Ik \{ki} and let a ∈ A. Since we have Ik ⊂ Ik−1⊕I,
we may complete P by a pattern Q on (Ik−1 ⊕ I) \ {ki}. By induction hypothesis, (k − 1)i
lies in ex(Ik−1) and i lies in ex(I), therefore ki does not belong to Ik−1⊕ (I \ {i}), so that we
have Ik−1 ⊕ (I \ {i}) ⊂ (Ik−1 ⊕ I) \ {ki}. Therefore there is a pattern R on I \ {i} such that
fk−1C (Q, (Ik−1 ⊕ I) \ {ki}) is contained in the cylinder C(R, I \ {i}). As f is permutative
at i there is b ∈ A with F (Rib) = a or in other terms f

(
C(Rib, I)

)
⊂ C (a, {0}). Since fk−1

is permutative at (k − 1)i, we may find c ∈ A with fk−1
(
C(Qkic , Ik−1 ⊕ I)

)
⊂ C (b, {i}).

Therefore we get

fk
(
C(Qkic , Ik−1 ⊕ I)

)
⊂ f

(
C(Rib, I)

)
⊂ C (a, {0}) .

But Ik is the domain of fk and P is the restriction of Q to Ik \ {ki}, so that we also have
fk
(
C(P kic , Ik)

)
⊂ C (a, {0}), i.e. fk is permutative at ki. �
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For a convex d-polytope J and a face F of J we consider the subset of ∂−I J given by

∂−I F := ∂−I J ∩ T
+
F J(−hI(NF )). The sets ∂−I F for F ∈ F(J) are covering ∂−I J but do not

define a partition in general. For any F ∈ F(J) we let uF ∈ ex(I) ⊂ I ′ with uF ·NF = hI(N
F )

and we also let dF be the the Euclidean distance to TF . Then for j ∈ ∂−I J we let Fj be a face

of J such that dFj (j + uFj ) = −dFj (j) + uFj ·NFj is maximal among faces F with j ∈ ∂−I F .

We consider then a total order ≺ on ∂−I J such that i ≺ j if dFi(i+ uFi) < dFj (j + uFj ). We

also let FI(J) be the subset of F(J) given by faces F for which uF is uniquely defined. We
denote by ∂⊥I J the subset of ∂−I J given by

∂⊥I J :=
⋃

F∈FI(J)

∂−I F.

Lemma 17. With the above notations, let j ∈ ∂⊥I J . Then

∀k ∈ N, j + kuFj /∈ {j′, j′ ≺ j} ⊕ kI.

Proof. We argue by contradiction : there are j′ ≺ j and u ∈ I with j + kuFj = j′ + ku.
Observe that

dFj (j + kuFj ) = dFj (j + uFj ) + (k − 1)uFj ·NFj ,

dFj (j
′ + ku) = dFj (j

′ + u) + (k − 1)u ·NFj .

We will show that the equality between these two distances implies u = uFj , therefore j = j′.
Indeed we have

dFj (j
′ + u) ≤ sup

v∈ex(I)
dFj (j

′ + v), u ·NFj ≤ sup
v∈ex(I)

v ·NFj ,

≤ dFj′ (j
′ + uFj′ ), ≤ hI(NFj ),

dFj (j
′ + u) ≤ dFj (j + uFj ) u ·NFj ≤ uFj ·NFj ,

therefore u ·NFj = uFj ·NFj , and finally u = uFj as j belongs to ∂⊥I J . �

For a partition P of X and a positive integer k, we write Pk to denote the iterated partition∨k−1
l=0 f

−lP in order to simplify the notations.

Lemma 18. Let J be a convex d-polytope and let k, n be positive integers. For any Ak ∈ PkJ
and any pattern P on ∂⊥I J , there is w ∈ Ak such that fkw belongs to C(P, ∂⊥I J).

Proof. For any j ∈ ∂⊥I J we let Pj be the restriction of P = (pl)l∈∂⊥J to {j′, j′ ≺ j}. We
show now by induction on j ∈ ∂⊥J that there is w ∈ Ak with fkw ∈ C(Pj). By Lemma
16 the CA fk is permutative at kuFj so that we may change the (j + kuFj )th-coordinate of
w to get w′ ∈ X with (fkw′)j = pj . Moreover the j′-coordinates of fkw for j′ ≺ j only
depends on the coordinates of w on {j′, j′ ≺ j} ⊕ kI so that by Lemma 17 we still have
fkw′ ∈ C(Pj , {j′, j′ ≺ j}), thus fkw′ ∈ C(Pj′′) with j′′ being the successor of j for ≺ in
∂⊥J . �

Lemma 19. Let T ′ and T ′R, R > 0 be the polytopes associated to I as defined in Subsection
3.6. We have

F(T ′) = FI(T
′)

and

∀R > 0, F1(T ′R) ⊂ FI(T
′
R).
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Proof. Let F ∈ F(T ′) or F ∈ F1(T ′R). Such a face F is tangent to SI′ at some u ∈ ex(I) with
u ·NF = hI(N

F ). Then any v with v ·NF = hI(N
F ) belongs to TF . But TF ∩ I ⊂ TF ∩SI′ =

{u}, therefore we have necessarily uF = u.
�

We are now in a position to prove Proposition 19.

Proof of Proposition 19. The inequality hdtop(f) ≤ RI′ log ]A follows immediately from Propo-
sition 18 and Proposition 8. By Lemma 18 we have for any convex d-polytope O and any
positive integer n

∀Ak ∈ PknO, ]{Ak+1 ∈ Pk+1
nO , Ak+1 ⊂ Ak} ≥ ]∂⊥nO.

Consequently we have

htop(f,PnO) ≥ ]∂⊥nO log ]A,

hdtop(f,JO) ≥ lim sup
n

]∂⊥nO

nd−1p(O)
log ]A.

We first assume that SI = SI′ is nondegenerated. Let T ′ be the dual polytope of a
generating polytope T . Note that T ′ is a convex body with nonempty interior containing 0
(but the origin does not lie necessarily in its interior set). By Lemma 19 we have F(T ′) =
FI(T

′), therefore F(nT ′) = FI(nT
′) and ∂⊥nT ′ = ∂−nT ′ for all n. Applying then Lemma 4

we get for some constant C = C(d) :

hdtop(f,JT ′) ≥ lim sup
n

]∂−nT ′

nd−1p(T ′)
log ]A,

≥ VI(T
′)

p(T ′)
log ]A− C.

Then it follows from Proposition 8 that :

hdtop(f,JT ′) ≥ RI log ]A− C.

For any positive integer k the above equality also holds for fk and Ik in place of f and I.
Moreover we have Ik = kI according to Lemma 16, so that we get together with the power

formula of Lemma 12 and O′ := p(T ′)−
1
d−1T ′ :

hdtop(f,O
′) =

hdtop(f
k, O′)

k
,

≥ RIk
k

log ]A− C

k
,

≥ RkI
k

log ]A− C

k
,

≥ RI log ]A− C

k
,

hdtop(f, T
′) ≥ RI′ log ]A.

This conclude the proof in the nondegenerated case.
We deal now with the degenerated case. By Lemma 19 we have for all R > 0 with the

notations of Subsection 3.6 :

hdtop(f,JT ′R) ≥ lim sup
n

]∂−nT ′R −
∑
F∈F2(T ′R) ]∂

−nF

p(nT ′R)
log ]A.
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But for F ∈ F2(T ′R) we have

]∂−nF ≤ V (∂−nF ⊕ C),

= nd−1 diam(I)O(Rl−1)

Since limR→∞
p(T ′R)
Rl

= Hd−l(L′) > 0 and ]F2(T ′R) = 2l, we get

lim sup
n

∑
F∈F2(T ′R) ]∂

−nF

p(nT ′R)
= diam(I)O(R−1).

Together with Proposition 4 we get for some constant C = C(d) :

hdtop(f,JT ′R) ≥
(
VI(T

′
R)− C − diam(I)O(R−1)

)
log ]A.

We conclude as in the degenerated case by using the power rule. Fix ε > 0 and let
k > Cε−1. We obtain finally

hdtop(f,O
′
R) =

hdtop(f
k, O′R)

k
,

≥
(
VIk(T ′R)

kp(T ′R)
− ε− diam(Ik)

k
O(R−1)

)
log ]A,

≥
(
VI(T

′
R)

p(T ′R)
− ε− diam(I)O(R−1)

)
log ]A,

R→+∞−−−−−→ (RI′ − ε) log ]A.
�
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