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RESCALED ENTROPY OF CELLULAR AUTOMATA

DAVID BURGUET

ABSTRACT. For a d-dimensional cellular automaton with d > 1 we introduce a rescaled
entropy which estimates the growth rate of the entropy at small scales by generalizing pre-
vious approaches [1, 9]. We also define a notion of Lyapunov exponent and proves a Ruelle
inequality as already established for d = 1 in [16, 15]. Finally we generalize the entropy
formula for 1-dimensional permutative cellular automata [18] to the rescaled entropy in
higher dimensions. This last result extends recent works [17] of Shinoda and Tsukamoto
dealing with the metric mean dimensions of two-dimensional symbolic dynamics.

1. INTRODUCTION

In this paper we estimate the dynamical complexity of multidimensional cellular automata.
In the following the main results will be stated in a more general setting, but let us focus in

d
this introduction on the following algebraic cellular automaton on (IFZ,)Z with p prime given
for some finite family (a;);cr in F}; by

d
Y(x;); € Fp)" L f(z));) = (Z @i$i+j> :
il j

Let I' = TU{0}. For d = 1 the topological entropy of f is finite and equal to diam(I") log p
where diam(I’) denotes the diameter of I’ for the usual distance on R [18]. However in higher
dimensions the topological entropy of f is always infinite unless f is the identity map [13, 10].
Moreover the topological entropy of the Z%t!-action given by f and the shift vanishes. In
this paper we investigate the growth rate of (hiop(f, Py, )),, for nondecreasing sequences (.J,,)
of convex subsets of R? where (P, ), denotes the clopen partitions into J,,-coordinates with
J,, = J, NZ% This sequence appears to increase as the perimeter p(.J,,) of J,,. We define

the rescaled entropy h‘tiop( f) of f as limsup;_ %

. In [9] another renormalization is
used, whereas in [1] the authors only investigate the case of squares J,, = [-n,n|?, n € N.
For d = 1 we get h%op( f)= % We generalize the entropy formula for algebraic cellular

automata as follows :

d
Theorem 1. Let f be an algebraic cellular automaton on (IFP)Z as above, then

hgop(f) = Rp logpv
where Ry denotes the radius of the smallest bounding sphere containing I'.

In fact we establish such a formula for any permutative cellular automaton (see Section 7).
In [17] the authors compute, inter alia, the metric mean dimension of the horizontal shift in
7?2 for some standard distances. These dimensions may be interpreted as the rescaled entropy
with respect to some particular sequence of convex sets (J,,),. In particular we extend these
results in higher dimensions for general permutative cellular automata.
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2 DAVID BURGUET

We also consider a measure theoretical analogous quantity of the rescaled entropy. In
dimension one, a notion of Lyapunov exponent has been defined in [15]. Then Tisseur [16]
proved in this case a Ruelle inequality relating this exponent with the Kolmogorov-Sinai
entropy. In this paper we also introduce a notion of Lyapunov exponent in higher dimensions,
which bounds from above the rescaled entropy of measures.

The paper is organized as follows. In Section 2 we state some measure geometrical proper-
ties of convex sets in R4. We recall the dynamical background of cellular automata in Section
4 and we introduce then a Lyapunov exponent for multidimensional cellular automata. In
Section 5 we define and study the topological and measure theoretical rescaled entropy. We
prove the Ruelle type inequality in Section 6. The last section is devoted to the proof of the
entropy formula for permutative cellular automata.

2. BACKGROUND ON CONVEX GEOMETRY

2.1. Convex bodies, domains and polytopes. For a fixed positive integer d we endow the
vector space R? with its usual Euclidean structure. The associated scalar product is simply
denoted by - and we let S? be the unit sphere. For a subset F' of R? we let I, Int(F) and
OF be respectively its closure, interior set and boundary. We denote by F the set of integer
points in F, i.e. F = FNZY We also denote by V(F) the d-Lebesgue measure of F (also
called the volume of F') when the set F' is Borel.

The extremal set of a convex set J is denoted by ex(J) and the convex hull of F C R?
by cv(F). A convex body is a compact convex set of R?. A convex body containing the
origin 0 € R? in its interior set is said to be a convex domain. The set of convex bodies
endowed with the Hausdorff topology is a locally compact metrizable space. In the following
we denote by D, resp. D!, the set of convex domains, resp. with unit perimeter, endowed
with the Hausdorff topology. A convex polytope (resp. k-polytope with k < d) in R? is a
convex body given by the convex hull of a finite set (resp. with topological dimension equal
to k). When this finite set lies inside the lattice Z¢, the convex polytope is said integral.
We let F(P) be the set of faces of a convex polytope P. For a convex body J we denote by
J the integral polytope given by the convex hull of integer points in J, i.e. J = cv(J).

A convex domain J has Lipshitz boundary and finite perimeter p(J). For convex domains
the perimeter in the distributional sense of De Giorgi coincides with the (d — 1)-Hausdorff
measure Hy_1 of the boundary. For J € D we let &J be the subset of points z € 9.J,
where the tangent space T,J is well defined. The set &' J has full Hy_1-measure in 9.J. We
let N/(x) € S? be the unit J-external normal vector at x € &'.J. For any x € 9'J we let
T.FJ (resp. T, J) be the open external (resp. closed internal) semi-space with boundary
T,J. With these notations we have J = (), .5 ;15 J. For € € R we denote by T:5J(e) the
semi-planes T:fJ(¢) = T£J +eN”(x). When J is a convex polytope and F € F(.J), we write
Tr to denote the tangent affine space supporting F, T;?L for the associated semi-spaces and
NF for the unit external normal to F.

The support function of a convex body I is the real continuous function h; on S% :

Vo € S¢, hi(z) = maxu - z.
uel
The support function completely characterizes the convex body I. The area measure o ; of
a convex domain J is the Borel measure on S? given by N/ Hy_; :

VB Borel of S, ¢;(B) = Hy_1 ((NJ)%B) .

If a sequence (J,), in D is converging to Jo, € D (for the Hausdorff topology), then o, is
converging weakly to o__, in particular the perimeter of .J,, goes to the perimeter of J, (see
Proposition 10.2 in [7]).
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2.2. Convex exhaustions. We consider sequences J = (Jp)nen of convex domains with
~ 1

p(Jn) 2 400, such that the sets J, = p(J,) 7T J, € D' are converging to a limit J., € D
in the Hausdorff topology. In particular (J, J, = R?.  Moreover the limit J, has unit
perimeter. The sequences J = (J,,), satisfying the above properties are said to be convex
exhaustions. For O € D! we denote by £(O) the set of convex exhaustions J = (J,,),, with
Joo = O. Moreover for O € D we let Jo € € (p(O)fdlflO) be the convex exhaustion given
by Jo = (n0O),,. A convex exhaustion (J,), is said integral when J,, is an integral polytope
for all n.

The inner radius r(E) of a subset E of R? is the largest a > 0 such that E contains a

Euclidean ball of radius a. For two subsets E and F of R? we denote EAF the symmetric
difference of E and F given by EAF := (E\ F)U (F\ E).

Lemma 1. Let O € D and J = (J,)n € E(O). Then any sequence of convex bodies K =
(Kp)n with r (K, AJdy) = o (p(Jn)) belongs to £(O) and p(Ky,) ~™ p(Jy).

Proof. We claim that p (Jn)fﬁ n 18 converging to J., in the Hausdorff topology. Then

by taking the perimeter in this limit we get lim,, ’; ((Ij:)) = p(Jx) = 1 and therefore K, =
D (Kn)_ﬁ K, also goes to Jo, = O. Let us prove now the claim. Fix a Euclidean ball B
with Jo, C Int B. It is enough to show that p (Jn)_ﬁ K, N B is converging to J. Indeed
as K, is convex, this will imply that p(Jn)_ﬁ K, C B lies in B for n large enough (if
not p (Jnfﬁ K, N OB is non empty for infinitely many n and therefore we should have
Joo NOB # ). By extracting a subsequence we may assume p (Jnfﬁ K, N B is converging
to a convex body K, and we need to prove Ko, = Jo,. We argue by contradiction. As J, is
a convex domain, we have either Int(J) \ Koo # 0 or Int(K ) \ Joo # 0. But for x in one of

these sets, there is s > 0 such that the balls p(J,,)B(z, s) are contained in K, A.J,, therefore
r (K,AJdy) > sp(Jy), for n large enough. O

Remark 2. If4K,AJ, =o0 (p(Jn)%> then the condition on the inner radius in Lemma 1
holds and therefore IC belongs to £(O). In particular (J,)n is a convex exhaustion in E(O).

2.3. Internal and external morphological boundary. We recall some terminology of
mathematical morphology used in image processing. For two subsets I and J of R?, the
dilation (also known as the Minkowski sum) J & I and the erosion J & I of J by I are
defined as follows

JelI={i+j|ielandjeJ},
JoI={jeR|Viel,i+jcJ}.

When the origin 0 belongs to I then we have J C J®I and JoI C J. When J is a convex
body then J & [ is a convex body. Assume now that I is also a convex body. The dilation
J @1 is then also a convex body with ex(J @) C ex(I) ®ex(J). In particular, when I and .J
are moreover convex polytopes, then so is J@®1. We have J&I =, 2o ; Ty J (hi(—N”7(z)))
(also J @ I C Nyepy Ty J (hi(N7(x))), but this last inclusion may be strict). When J is a
convex polytope, the above intersection is finite, thus J © I is also a convex polytope. The
convex bodies given by the erosion J & I and the dilation J @ I are also known as the inner
and outer parallel bodies of J relative to I. We recall that hygr = hy + hy. In particular
when I = {3} is a singleton, we get hyy;(x) = hy(x) +i-z for all z € S?. In general we only
have h]@] S hJ — h[.
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The internal and external (morphological) boundaries of J relative to I denoted
respectively by 0, J and 8;2] are given by

ofJ=T®J)\J,
oy J=J\(Jel).

Clearly we have 0F J = 97J with I’ = T U {0}. When J is a convex domain then we have
Oy J = 0,/ and ofJ c 8:;(1).]. In the following the set I will be fixed so that we omit
the index [ in the above definitions when there is no confusion.

Finally we observe that r (J,A(J, ® I)), r (J,A(J, © 1)) < diam(I’). Therefore it follows
from Lemma 1, that if (J,,), is a convex exhaustion and I a convex body then (J,, ©I), and
(Jp @ I),, define convex exhaustions with the same limit as (J, ).

3. COUNTING INTEGER POINTS IN MORPHOLOGICAL BOUNDARY OF LARGE CONVEX SETS

For a large convex domain J and a fixed integral polytope I we estimate the cardinality of
the integer points in the morphological boundaries of J relative to I. We first compare the
cardinality of integer points in the internal and external boundaries of J and J. Recall that
F denotes the set of integer points in a subset set F' of R? and J = cv(J).

Lemma 2. With the above notations we have

0" J=0"J
and

otJcatJ.

In general the last inclusion is strict.

Proof. For any convex domain J, a point u of J belongs to 0~ J if and only if there is v
in ex(I) such that u + v does not lie in J. As JNZ¢ = JNZ? and ex(I) C Z%, we get
9= J = 9~ J. Similarly if a point v € %J is an integer, then w € J ® I but u ¢ J. Therefore
we get 0TJ C 0T J. O

Lemma 3. Let J be a convex polytope.
80— J <40t J.

Proof. We have 07 J C Uper (s T J(—=hr(NT)). For F € F(J) there exists uf” € ex(I) with
hi(NT) =ul"- N¥. Let Fy,--- Fy be an enumeration of F(J). Let ¢ : ~J — 07.J be the
function defined by ¢(x) = = +uf? for z € Sy := G*JOT};J(th(NFl)) and ¢(z) = z + uf
for z € Sy := 0~ J NTHE J(=hy(NF))\ U,c; T J(—hs(N**)) by induction on I.

This map is injective : indeed if ¢(z) = ¢(y) either x and y lie in the same S; and then
d(x) =z +uf' =y +uft = ¢(y) clearly implies x = y or x € Sy, y € S; with k # . We may
assume k < [ without loss of generality. Then y + u’" € T}, J whereas = + uf* € T} J and

we get thus a contradiction. Finally the map ¢ preserves the integer points since we have
ex() c 7. (]

3.1. First relative quermass integral. Let O be a convex domain and let I be a convex
body. For p € R we let
o _{ O @ pl when p > 0,
P71 O pl when p < 0.

Proposition 3.
hmw :/ hydoo.
p S

p—0
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For p > 0 the formula follows from Minkowski’s formula on mixed volume (see Theorem
6.5 and Corollary 10.1 in [7]). For p < 0 we refer to [12] (see also Lemma 2 in [4] for the
2-dimensional case).

The quantity d fgd hr doo is known as the first I-relative quermass integral of J. In the
following we denote by V;(O) the integral de hydogo. For convex bodies I C H and k € N, we
have V;(O) < Vg (O) and V;1(O) = kV;(O) for any convex domain O. The support function
hy being continuous, the first I-relative quermass integral of O is continuous with respect to
the Hausdorff topology, i.e. if (O,,), is a sequence of convex domains converging to a convex
domain O« in the Hausdorff topology, then we have

We deduce now from Proposition 3 an estimate on the volume of the morphological bound-
ary for large convex sets.

Corollary 4. Let I be a convex body containing 0 and let O € D. Then
V (0Fn0) ~n?=t [ hrdoo.
Sd

Proof. We only consider the case of the external boundary as one may argue similarly for the
internal boundary. For all n we have

V (0fn0) =V (nO®I) -V (nO),
=n? (V(O®en'I)-V(0))
According to Proposition 3 we conclude that
% (8}’710) ~ it / hydoo.
sd
O

3.2. Counting integer points in large convex sets. Since Gauss circle problem counting
lattice points in convex sets has been extensively investigated. Let C = [0,1]%. Clearly for
any Borel subset K of R? we have always

(3.1) K <V(K@C).

In the other hand, Bokowski, Hadwiger and Wills have proved the following general (sharp)
inequality for any convex domain O [2] :
0]
(3.2) V(0) - ]% < 0.
There exist precise asymptotic estimates of #zO for large = > 0 for convex smooth domains
O having positive curvature, in particular we have in this case 20 = V(20) + o(z9~1) [8].

3.3. First rough estimate for #0770 NZ¢ with O € D. For a real sequence (ay,), and

two numbers [ and C' > 0 we write a,, ~¢ [ when the accumulation points of (ay), lie in
l-Cl+C].

Lemma 4. There exists a constant C depending only on d such that we have for any convex
domain O € D and any convex body I of R* with 0 € I :

407 nO o Vi(0)
p(n0) p(0) -
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Proof. We only argue for 8;0, the other case being similar. We have ﬁ@?‘nO = tin0O & I-fn0O,
and then by combining Equation (3.1) and (3.2) we get :

p(nO @ I)
2

p(nO)
2 b

V(O @) — —V(nO+C) <tdfn0 <V(nOaIa®C)—V(no)+

After dividing by n?~!, the right (resp. left) hand side term is going to de(hl — hc —
1/2)doo (resp. [so(hr 4+ hc +1/2)doo ) according to Corollary 4. O

3.4. Upperbound of 9~ .J, for general convex exhaustions. For a subset £ of R and
for r > 0 we let E(r) := {x € E,d(z,0F) < r} with d being the Euclidean distance. With
the previous notations we may also write E(r) = 05 E where B, denotes the Euclidean ball
centered at 0 with radius r.

Lemma 5. For any convex body J in R?, we have
V (J(r)) <rp(J).

Proof. We first assume that J is a convex polytope. Let « € J(r). There is F' € F(J) with
|z —2p|| < d(z,F) =d(z,0J) < r, where xp denotes the orthogonal projection of z onto
Tr. Observe that xp belongs to F : if not the segment line [z, zr] would have a non empty
intersection with d.J and the intersection point y € 9J would satisfy ||z — y|| < ||z — zp| <
d(x,0J). Therefore J(r) C Upe (s Rr(r) with Rp(r) := {x—tN¥(z), z € F and t € [0,7]}.
Finally we get

V()< Y V(Re(r),

FeF(J)
<rp(J).

For a general convex body, there is a nondecreasing sequence (.J,), of convex polytopes
contained in J converging to J in the Hausdorff topology. Then the characteristic function of
J,(r) is converging pointwisely to the characteristic function of J(r), in particular V (J,(r)) 2
V (J(r)). Moreover p(J,) goes to p(J), so that the desired inequality is obtained by taking

the limit in the inequalities for the convex polytopes J,. O

Proposition 5. For any convex ezhaustion (J,), in RY, we have

i 10; Jy,
im sup
n p (Jn)

Proof. As already observed, we have 0~ J,, < V(0~J,,®C) with C = [0, 1]%. Let (J},),, be the
sequence given by J! = J, @ C for all n. By Lemma 1 this sequence is a convex exhaustion
with p(J)) ~™ p(Jp). Moreover 9~ .J,, ® C' is contained in J}, (¢) with ¢ = diam(I") + diam(C).
Therefore we conclude according to Lemma 5 :

< diam(I') + Vd.

$0~Jn <V (J,,(0)),
< ep(Jy,),
NG Cp(Jn)-



RESCALED ENTROPY OF CELLULAR AUTOMATA 7

3.5. Fine estimate of ﬁafJn for general convex exhaustions (J,), in dimension 2.
We compare directly the cardinality of lattice points in the morphological boundary with the
first I-relative quermass integral of J, for two-dimensional convex exhaustion. This result
will not be used directly in the next sections but is potentially of independent interest.

Proposition 6. For any convex ezhaustion (J,), in R?, we have
. for Jn
im
n p(Jy)

By Remark 2 and Lemma 2 we only need to consider integral convex exhaustions. In fact in
this case we also show the corresponding statement for the external morphological boundary.

=Vi(Jso)-

Proposition 7. For any integral convex ezhaustion (J,,), in R?, we have

207 Jn
lim = V[ J .
The rest of this subsection is devoted to the proof of Proposition 7. We start by giving
some preliminary lemmas.

We denote by ZP the minimum of the interior angles at the vertices of a convex polygon
P C R%

Lemma 6. For any integral conver exhaustion (1), in R%, we have

liminf /J,, > 0.

Proof. We have LI = 2. Moreover the minimal angle is lower semi-continuous for the
Hausdorff topology, therefore liminf,, ZJ,, > ZJ,. Since Jo, has non-empty interior, we have
L)oo > 0. |

Lemma 7. For any integral convex exhaustion (1), in R%, we have
17 (Jn) = o (p(Jn)).-

Proof. Two integral polytopes are said equivalent when there is a translation (necessarily by
an integer) mapping one to the other. For any L the number aj, of equivalence classes of
integral 1-polytopes with 1-Hausdorff measure less than L is finite (these polytopes are just
line segments with integral endpoints and their 1-Hausdorff measure is just equal to their
length). Moreover for a integral convex polytope there are at most two faces in the same
class. Therefore

Jn
<2ar, + 1%
This inequality holds for all n and p(J,,) goes to infinity with n so that we conclude §F(J,,) =

o(p(Jn)) as L was arbitrarily fixed. O

Given two distinct points A, B in R? and h # 0, the rectangle Rap(h) of basis AB and
height h > 0 (resp. h < 0) is the semi-open rectangle [AB[x[A, D[ oriented as ABCD (resp.
ADCB)* with |AD| = |h|. This rectangle is said integral when A, B belong to Z? and the
line (C'D) has a non-empty intersection with Z?2.

Lemma 8. For any integral rectangle R,
‘R = V(R).

*We denote a convex polytope with its vertices by respecting the usual orientation of the plane.
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Proof. After a translation by an integer we may assume that the origin is the vertex A of
the integral rectangle R = Rap(h). Let (p/,¢’) be an integer on the line segment [A, B] with
p',q relatively prime. By Bezout theorem there is (u,v) € Z? with up + vq = 1. Therefore
there is a matrix M € SL2(Z) with M(p,q) = (k,0). As the transformation M preserve
both the volume and the integer points it is enough to consider the semi-open parallelogram
M (R). But there is a piecewise integral translation, which maps M (R) to a semi-open integral
rectangle with basis M([A, B[) C R x {0}. For such a rectangle the area is obviously equal
to the cardinality of its integer points. |

For A,B € R? and € < |Az—m we let A€ and B€ be the points in the line (AB) with Euclidean
distance |¢| to A and B respectively, which lie inside [A, B] if € > 0 and outside ifnot. As the
symmetric difference of R4cpc(h) and Rap(h) is given by the union of two rectangles with
sides of length |e|] and |h| we have for some constant C = C(|¢[, |h|)

(3:3) fRacpe (h) — §Rap(h)| < C.

This estimate still holds true for € > |AB|/2 when choosing the convention R4<pe(h) = 0 for
such e.

Fact. For any conver body I and for any a > 0, there exists €™ = €T (I) > 0 and ¢~ =
e~ (I,a) > 0 such that any convex polytope J = Ay --- A,, with ZJ > a satisfies

otyc|JR

I<n

o (_hI(NAzAHl ))

+
AT AL

and

0 ID R, o (hr(NAA1))

I<n

1 1+1

Figure 1: The external and internal rectangles associated to a face F of a
polygon. The external and internal morphological boundaries are respectively repre-
sented by the areas in yellow and green. The rectangles, R}, and Ry, given by Fact 3.5
are drawn in blue.
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This fact is illustrated on Figure 1 and its easy proof is left to the reader. We are now in
a position to prove Proposition 7.

Proof of Proposition 7. From the above fact and (3.3) there is e = ¢ ([,4J) > 0 and C =
C(I,4J) > 0 such that for any convex polytope J = A; --- 4,

8070 > D #Ra A (o) (Fhi(NAAH)),

I<n

> Y [#Re (h(NT) -]

FeF(J)

Then when J is an integral convex polytope we get by Lemma 8 :

t0°J > —CiF(J)+ Y V(Rp (=hi(N"))),
FeF(J)

Z—Cﬁ]:(J)-i-/ hrdoy.
sd

For an integral convex exhaustion (J,,), we obtain finally for large n by using Lemma 7 and
Lemma 6

Ll
to0—J, > —C(I, %) “8F(Jn) +/ hrdoy,,
Sd
lim inf 10 Jn >lim [ hrdoy

n p(Jn) noJsd
> hrdoy_,.
sd

+
One proves similarly that limsup,, % < fgd hrdoy_ and this concludes the proof of

Proposition 7 as we have $0*J,, > #0~J,, according to Lemma 3. (]

3.6. Supremum of O ~ V;(O). In this section we investigate the supremum of V; on D*
for a given convex polytope I of R?. We recall that there is a unique sphere S; containing
I with minimal radius, usually called the smallest bounding sphere of I. We let R; and
x7 be respectively the radius and the center of S;. There are at least two distinct points in
S; NI, whenever I is not reduced to a singleton, and Sy NI C ex(I). Moreover we have the
following alternative :

e cither there is a finite subset of S; N I generating an inscribable polytope T with
Int(T) > x7 (in particular the interior set of I is non empty),

e or there is a hyperplane H containing x; such that I lies in an associated semispace
and S; N H is the smallest bounding sphere of I N H.

The smallest bounding sphere Sy (or I itself) will be said nondegenerated (resp. degen-
erated) and an associated polytope T (resp. hyperplane H) is said generating. For an
inscribable polytope T in R? we may define its dual 7" as the polytope given by the inter-
section of the inner semispaces tangent to the circumsphere of T' at the vertices of T'. In the
following T" always denotes the dual polytope of a generating polytope T with respect to I.

When Sy is degenerated, there is a sequence of affine spaces H = Hy D Hy D ---H; 3 g
such that I N H; is nondegenerated in H; and for all 1 <4 < [ the convex polytope I N H; is
degenerated in H; with H;,1 as an associated generating hyperplane (H; is a d—i dimensional
affine space). We denote by L a generating polytope of INH; in H; and by L’ its dual polytope
in H;. Let U be an isometry of R? mapping H, fori = 1,--- 1 to {0;} x R?~% (where 0; denotes
the origin of R*) with U(x7) = 0. Then for R > 0 we let T := U~! ([—R, R]! x U(L’)). The
faces F' of T}, satisfy
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(1) either F = U~ ([-R, R]' x U(F)) for some face F of L’,
(2) or F=U"*([-R,R'"™* x {+R}; x U(L")) fori =1,--- 1 (where {£R}; coresponds
to the i*" coordinate of the product).

For i = 1,2 we let F;(T%) be the subset of F(T%) given by the faces of the i'! category.
Observe that when x; coincide with the origin then T” or Tj,, R > 0 are convex domains.

Proposition 8.

sup Vi(O) = Ry.
OeD?

The supremum of Vi is achieved if and only if St is nondegenerated. The supremum is then
achieved for O € D' homothetic to the dual polytope T' of a generating polytope T.

Proof. For any v € R? we have

VI+U(O):/hI+v doo,

:/h1d00+/ v-udoo(u),
Sd

:/h,d0—0+/ v NOdHa .
00

By the divergence formula we have [, v - N®dHq_1 = 0 for any v € R and O € D'.
Therefore we may assume x; = 0. With the above notations we have max;c;i-v < Ry for
all v € R? with |jv|]| = 1 with equality iff v belongs to R;'I. Therefore V;(O) < R; for
any O € D'. Moreover if the equality occurs then for x in a subset E of 9O with full Hy_;-
measure, hy (N©(z)) = max;es i-x = Ry and therefore the normal unit vector N () belongs
to Rl_ll. But as O is a convex domain, we may find d + 1 points z1,--- , 2441 in E in such
a way the origin belongs to the interior of the simplex T' = Rjcv (NO (z1),---,N© ($d+1))-
Thus Sy is nondegenerated and the polytope T is a generating polytope with respect to I.
Moreover we have with the above notations

/h] dO’T/ = R[p(T/).

Therefore the homothetic polytope O’ of T” with unit perimeter achieves the supremum of
Vi. We consider now the degenerated case. With the above notations, we have h;(NT') =
Ry for any F € F1(Tf) (recall we assume z; = 0 without loss of generality). Moreover

Ha—1 (U Feryry) F ) = o(p(T})) when R goes to infinity. Therefore the renormalization

Og € D' of T}, satisfies

R—+o00
e

Vi(Or) Ry.

4. CELLULAR AUTOMATA

4.1. Definitions. We consider a finite set .A. We endow the set A with the discrete topology
and X4 = AZ" with the product topology. We consider the Z?-shift ¢ on AZ" defined for
1€ 7% and u = (up)r € Xq by 0'(u) = (ugs1)r. Any closed subset X of X, invariant under
the action of ¢ is called a Z?-subshift. We fix such a subshift X in the remaining of the
paper.

For a bounded subset J of R? we consider the partition P; into J-cylinders, i.e. the
element P% of P; containing = (z;);ez¢ € X is given by P% = {y = (yi)ieze € X, Vi €
J y; = z;}. In other terms we may define P; as the joined partition \/jEJJ*j Py with Pg
being the zero-coordinate partition. B
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A cellular automaton (CA for short) defined on a Z?-subshift X is a continuous map
f+ X — X which commutes with the shift action o. By a famous theorem of Hedlund [14]
the cellular automaton f is given by a local rule, i.e. there exists a finite subset I of Z¢ and
amap F: AT — A such that

Vj ez’ (fx); =F ((:Cj‘f‘i)iel) :

The (smallest) subset I is called the domain of the CA. Recall I’ = I U {0} and let I be the
convex hull of I'.

4.2. Lyapunov exponents for higher dimensional cellular automata. Lyapunov ex-

ponent of one-dimensional cellular automata have been defined in [15, 16]. We develop a

similar theory in higher dimensions. Let f be a CA on a Z%subshift X with domain 1.
Given a convex body J of R? and = € X, we let

E¢(x,J) ;== {K convex body, fP% C Pff}

A priori the family £f(x, J) does not admit a greatest element for the inclusion. Observe
also that the convex body J & I belongs to £¢(z, J), in particular this family is not empty.
Then we let for all z :

gryf(z) =min{fJ \ K, K € & (z,J)}.

The family £(z, J) and the function gr; f(z) are constant on each atom A of P, thus
we let £7(A,J) and gr;f(A) be these quantities. We denote by D¢ (z, J) the subfamily of
Es(x,J) consisting in K with §J \ K = gr;f(x). For K in Dy(z,J) the intersection K N J
defines a convex body, which belongs also to Dy (z, J).

For a convex exhaustion J = (J ), we define the growth gr ; f with respect to J as the
following real functions on X :

gry, |
p(Jn)

gr 7 f := limsup
n
Finally we let for a convex domain O € D! :

grof = sup gr,f.
JeEE(O)

Lemma 9. The sequence of functions (grofk)k 1s subadditive, i.e.
Vk,l €NV e X, grof(z) <grof'(ffe) + gro f*(@).

Proof. Fix x € X and k,l € N. Let J = (J,)n € £(0). We consider a sequence K := (K,,),
of convex bodies in [[, Dy (x, J,,) with K,, C J,, for all n. Let I}, be the domain of f*. The
convex body J, © I} belongs to sk (x,.Jy,) for all n. By Proposition 5, we have f.J,, \ K, <

407 Jn = O (p(Jy)). It follows from Lemma 1 and Remark 2 that K is a convex exhaustion
in £(0) with p(K,,) ~™ p(J,). We also let £ = (L), € [, Py (f*z, K,,) with L,, C K, for
all n. Similarly the sequence £ belongs to £(0O) with p(L,) ~™ p(J,). Then we have for all
positive integers n :

SRR = FHRPT),
k(L‘
c f! (P{(w ) ,
k+lw
cPl
Therefore we have

ngnka(x) < 8Jn \ L,
< 8dn \ K + 8K\ Ly,
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then
gr - f*(z) = limsup L./
no p(Jn)’
. grg, f . grr, f
< lim sup 2= + lim sup no
n (Jn) n p(Jn)
. grg, f .. grp |
< lim sup 2= + lim sup n
n p(Kn) n p(Ln)

< gric (o) + ez f'(ffx),
As the sequence K and L lie in £(O) we conclude that

gro ff (@) < grof* (@) + gro f'(fFx).
O

The nonnegative function gre, f satisfies grp f < supzcg (o) limsup, % and this last
term is finite according to Proposition 5. Therefore the subadditive ergodic theorem applies :
for any p € M(X, f) the sequence (%L grof" (x)) ,, converge almost everywhere to a f-invariant
function xo with [ xo du = lim /inf, % J grof™du. We call the function xo the Lyapunov
exponent of f with respect to O.

Remark 9. The exponent xo for O € D plays some how the role of the sum of the positive
Lyapunov exponents in smooth dynamical systems.

5. RESCALED ENTROPY OF CELLULAR AUTOMATA

5.1. Definition. We let M(f) (resp. M(f,0)) be the set of invariant Borel probability
measures on X which are f-invariant (resp. f- and o-invariant). For a finite clopen partition
P of X we let Hyi,,(P) = logP and H,(P) = — > scp (A) log u(A) with € M(f). In the
following the symbol * denotes either * = top or x = u € M(f). We let h.(f,P) be the
entropy with respect to the clopen partition P :

1 n—1
h.(f,P) :=lim —H, ka>.
oo (V

For two partitions P, Q of X, we say P is finer than Q and we write P > Q, when any atom
of P is contained in an atom of Q. The functions H,(-) and h.(f,-) are nondecreasing with
respect to this order.

The rescaled entropy with respect to a convex exhaustion J = (J,,),, is defined as follows

In [9] the authors defines a similar notion for the rescaled topological entropy with the renor-
malization factor §0; J,, (which depends on the domain I of f) rather than p(J,).

Remark 10. For d = 2, when J =
with Lipshitz boundary, we have
htop(f: PJ) < Zie[ htop(fv PJL)
p(J) T Xerp(l)
S Sup htOp(fa PJ7) ]
et p(Ji)

icr Ji 18 a finite disjoint union of Jordan domains J;
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Moreover for each i, we have p(J;) > p(cv(J;)) and Pey(y,y is finer than Pj,. Therefore
haop(f,Pr) _ Xier hop(f, P1)

p(7) T Yiep()

htop(f7 Pcv(,]-))

< sup 2 - vUi))

ier  p(ev(Ji))
This inequality justifies somehow that we focus on convex bodies J of R%.
We let also for any O € D!

h{(f,0) = sup hi(f,7)
7€€(0)

and

h{(f) = sup hi(f,T),
J

where the last supremum holds over all convex exhaustions J. For d = 1 we have p(J) = 2
for any convex subset J. Therefore up to a factor 2 we recover the usual definition of entropy,
2h.(f) = hi(f)-

Remark 11. As the CA f commutes with the shift action o we have for all k € Z* and any

subset J of Z hiop(f,Prik) = hiop(fs 0 FPy) = hiop(f, Ps) and the same holds for the mea-

sure theoretical entropy with respect to measures in M(f,0). Let us call generalized convex
domain any conver body with a non empty interior set. Replacing convex domains by gen-
eralized convexr domains, we may define generalized convexr exhaustions J and the associated
rescaled entropies. Then it follows from the aforementioned invariance by translation of the
entropy, that hi,,(0) = h{,,(O +«) for all o € R* and all generalized convex domain O with
unit perimeter. Indeed for any (Jp)n € E(O) (resp. £(O + «)) there is a sequence of integers

(kn)n with (Jo, + kn)n € E(O + &) (resp. (Jn)n € £(O)).

Remark 12. (1) The partition P;, may be written as \/,¢ ;. o~ *Py with Py being the
zero-coordinate partition. Instead of Pg we could choose another clopen generating
partition P, i.e. a partition of X into clopen sets with \/} cya o~ *P equal to the
partition of X into points. But for a finite subset J of Z¢ we have Vies o P > Py
and \/}.c s 0Py > P so that in the definition of the rescaled entropy we may replace
Po by any other generator P of X, i.e. Py by VkeJn o kP,

(2) Let X be a zerodimensional compact metrizable space endowed with a expansive Z2-
action 7. We consider a map f preserving (X, 7) i.e. f is an homeomorphism of X
commuting with 7. The triple (X, T, f) is called a topological Z-expansive preserving
system (t.e.p.s. for short). Two t.e.p.s. (Y,¢,g) are conjugated when there is a
homeomorphism h : X — Y such that ho foh™ =g and hoTtoh™! = ¢. We
may define the rescaled entropy as we did for a CA and all the previous results hold
in this more general setting. Moreover two conjugated t.e.p.s. have the same rescaled
entropy. Any t.e.p.s. is conjugated to a CA.

5.2. Link with the metric mean dimension. In a compact metric space (X, d), the ball of
radius € > 0 centered at € X will be denoted by By(x, €). For a continuous map f : X — X
we denote by d,, the dynamical distance defined for all n € N by

o,y € X, dn(z,y) = max{d(f*z, f*y), 0 <k <n}.
The metric mean dimension of f is defined as mdim(f,d) = limsup,_,, feop(:9) yhere hiop(f, €)

| log €|
denotes the topological entropy at the scale € > 0 :

hiop(f, €) == limsup % log min{#C, U By, (z,¢) = X}.
n zeC
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The topologial mean dimension is the infimum of mdim(f,d) over all distances on X.
We refer to [11] for alternative definitions and furter properties of mean dimension. The
topological mean dimension of a finite dimensional topological system is null.

Here f is a CA on a subshift of Z%. In particular it has zero topological mean dimen-
sion. For a norm | - || of R? we may associate a metric d|; on X4 by letting dj(u,v) =

o~ min{lkll, kEZ?, wiAtvi} for al] 4 = (ug)g,v = (vi)r € Xgq. Then for I € N the (open) ball
By, (z,27") with respect to dj coincides with the cylinder P% with .J; = By (0,1).

As there is a correspondence between convex symmetric domains and unit balls of norms
on R?, the mean dimension with respect to such distances dy are given by h, (f, Jo) for
convex symmetric domains O.

Remark 13. In [17] the authors work with a measure theoretical quantity, called the measure
distorsion rate dimension and show a variational principle with the metric mean dimension
of dyj|. Does this quantity coincides with p hZ(f,O) with O being the symmetric convex
domain associated to the norm ||| ?

5.3. Monotonicity and Power. We investigate now basic properties of the rescaled entropy.
Lemma 10. For any O € D and any o > 0, we have

hi(f,Jo) = hi(f, Jao).
Proof. For n € N, we let k,, = [2], thus nO C k,aO and p(nO) ~" p(k,aO). Therefore

hy(f,Pno)
p(n0O)

< lim sup half, Phnao) (i’(;gb)ao) )

h* (fa PknaO)
p(knaO) ’

< h{(f, Jao)-
The other inequality is obtained by considering oO and o~ ! in place of O and a. O
Lemma 11. For any O € D! and O’ € D with O C Int(0O’), we have
hi(f,Jo) < hi(f,0) < p(O")h(f, Tor).

Proof. As Jo € £(0) the inequality hi(f, Jo) < hd(f,O) follows from the definitions. Let

now J € £(0). For n large enough we have J, C Int(0’), therefore J, C p(Jn)ﬁO’.
Therefore we conlude that

h’g(fa jO) = limsup

< lim sup
n

P (p(Jn)dle/)
P(Jn)
< p(ORL(f, To).

hA(f,T) < limsup hI(f. Jor),

]

For O € D! the origin belongs to Int(O) so that O € D and O C Int(aO) for any a > 1.
Moreover we have hd(f, Jno) = h%(f, Jo) by Lemma 10. Together with Lemma 11 we get
immediately :

Corollary 14.

Corollary 15.
O — he(f,0) is continuous on D*.
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Convex polytopes are dense in D. Therefore we get with P being the collections of convex
d-polytopes with the origin in their interior set :

Corollary 16.

sup hi(f,0) = sup hi(f,Tp).
0eD!? pPeP

However we will see that the supremum is not always achieved. We prove now a formula
for the rescaled entropy of a power.

Lemma 12.
YO € D' Vk € N, he(f*,0) = khi(f,0).
Proof. Let O € D! and J = (J,,)n, € £(O). Let J¥ = J, @I @ --- @ I for all n. The sequence
—_———

k times
J* = (JF),, belongs also to £(0O). Moreover the partition P is finer than \/;:Ol [Py,
Therefore

k—1
he(f*,Ps,) < kha(f,Ps,) = he (fk7 V f_lPJn> < ha(f*,P )

1=0
and we then obtain
E(F*,T) < khE(F,T) < hE(F8, T5).
We conclude by taking the supremum in J € £(O). O
Remark 17. Clearly we have hz < hfop for any u € M(f) but we ignore if a general

variational principle holds true.

5.4. A first upperbound for the rescaled entropy. Let (X, f) be a cellular automaton
with domain I. We relate the entropy of P; with the entropy of Ps+; and we prove an
upperbound for the rescaled entropy hfop( f,0) in term of the first relative quermass integral
V1(O) with I being the convex hull of I'.

Lemma 13. For any bounded subset J of R, we have
h*(fv P]) = h*(fv POI_J) and h*(fv P]) < h*(fv Pa?’])'

Proof. The inequality h.(f,Pj) > h.(f, PE’I_J) follows directly from the inclusion 9—J C J.

By definition of the domain I and the erosion J © I, we have Py > f~!Pjss;. Therefore we
get f'P;VP; = f"'Py—; V P; and then by induction P; Vv \/;:01 fPy-, = \/;:01 Py
for all k. We conclude that :

1N
ha(f,Pg) = lim 2 H.(f, l\:/o 7Py,

k-1
< liin% <H (Py) + H. (l\/0 flPaJ>) :
< hi(f,Po-1).
We also have
P;VPs+s>Pigr >f71PJ.
Therefore we get now by induction on k
k-2 k-1
Prv\/ fPors >\ f'Ps.
=0 =0

This implies /.(f, P+ ;) < he(f,PJ).



16 DAVID BURGUET

Proposition 18. For any O € D',
hi,p(£,0) < Vi(O) log §A.
Proof. Recall that

hgop(f) O) = h;fiop(f7 j0)7

= lim sup hto;(({; Op)n 0) )

Then by applying Lemma 13 we obtain
. hiop(f: Potno)
R (f,0) < limsup —22_0ZnQ7
tOp(f ) — " p p(nO)
. $0tn0log t.A
< limsup —/—/———="—.
n p(nO)
For all k € N\ {0} we let Iz be the domain of f* and we denote by I the convex hull of
I = I, U{0}. Clearly we have I, C I @ --- @ I, therefore I, C kI. By Lemma 4, we get for

k times

some constant C = C(d) :

hiop(f*,0) < (Vi,(0) + C) log £ A,
< (Vur(0) + C) log §A,
< (kV1(0) 4+ C)log A

)
But by Lemma 16 we have h{., (f*,O) = kh{,,(f,O), so that we finally conclude when k
goes to infinity
hifp(1.0) < VA(O) log 4.A.

6. RUELLE INEQUALITY
Recall (X, o) denotes a Z%subshift. The topological entropy of o is defined for any Félner
sequence £ = (Ly), (see e.g. [19]) as

H;,, (P
hiop(0) = limsup —top\l Ln) o L").

Lemma 14. For all € > 0 there exists ¢ > 0 such that we have for any K C J convex bodies:
Hiop(Pic) < (11 \ K +p(J © C)) - (hiop(@) + ).

Proof. Let € > 0. As the sequence of cubes C = (C,,),, defined by C,, = [-n,n['NZ? is a

Folner sequence, there is a positive integer m such that % < hiop(o)+e. Then for some

o
¢ = c¢(m) > 0 we may cover J\ K by a family F at most % disjoint translated

copies of Cy,. Indeed if R,, denotes a partition of R? into translated copies of C,,, then any
atom A of R, with AN (J\ K) # 0 either satisfies A C J\ K or AN (ang U 85mK) £ ().
Clearly the number of A’s in the first case is less than %, whereas the numbers of atoms
A satisfying the second condition is less than §0, J + £0, K. Arguing as in the proof

of Proposition 5, this last term is less than ¢ (p(J @ C) + p(K @ C)) for some constant ¢
depending on m. As K is contained in J we have p(J & C) < p(K @ C).
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Therefore

Htop (PCm)
iCm

< (WK +20p(J ©C)) - (hiop(0) +€).

Hiop(Pic) < (87 \ K +2ep(J @ C))

O

We refine now the inequality obtained in Lemma 18 at the level of invariant measures :

Lemma 15.
Vi € M(£). ul£.0) < bray(o) [ xodn
Proof. For any convex domain J and any p € M(f) we have
hu(f,Py) < Hu(f~MPSIPY),
< 3 WA, (fP).

APy

Fix € > 0 and let ¢ be as in Lemma 14. Then if (K4)acp, is a family of convex bodies in
[Tacp, €(A,J) with K4 C J for all A we obtain

h/d«(fv PJ) < Z /J“(A)HMA(f_lpJ\KA)7
AeP,

< Z (A) Heop(P i)
AeP;

< > wlA) (22 \ Ka+ (T © ) - (huaplor) + ).
AeP,

By choosing K4 with §J \ K4 minimal we obtain

WFP) < (higle) 49+ ([ st al00).

Therefore we have for any convex exhaustion J = (J,,), (recall that p(J,, ® C) ~™ p(J,)) :

hu(f,PJ)

. gry, |
< (hyo 0+e~<hmsup/ e/ +c>.
By Proposition 5 we have for all z € X
o~ J,
sup M < sup Hi < 400.

neN p(Jn) neN p(Jn)

We may therefore apply Fatou’s Lemma to the sequence of functions (— ir("f};)

. gry. f . gry f
hmsup/ 2 du < /hmsup = du,

then

hﬁ(f,J) < (hiop(0) +€) </grjfdu+c).
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By taking the supremum over J € £(O) we get

BL(£,0) < (huopl) + ) ( [srosin+ ) |

d k
By Lemma 12 we have w = hfb(f, O) for any k. Apply the above inequality to f* :

H70) < (o) + ([ E2L s £).

When k& goes to infinity and then € goes to zero, we conclude hz(f, 0) < hyop(0) [ x0 dp.
O

7. ENTROPY FORMULA FOR PERMUTATIVE CA

The cellular automaton f is said permutative at i € Z< if for all pattern P on I\ {i}
and for all a € A there is b € A such that the pattern P} on I U {i} given by the completion
of P at i by b satisfies F(P) = a, in particular i belongs to the domain I of f. The CA is
said permutative when it is permutative at the nonzero extreme points of the convex hull I
of I' = I U{0} (these points lie in I). The algebraic CA as described in the introduction are
permutative.

Proposition 19. The topological rescaled entropy of a permutative CA f on Xy is given by
h?op(f) = RI’ IOg H-A

The sets I’ and T have the same smallest bounding sphere, thus Ry = Ry. Theorem 1,
stated in the introduction, follows from Proposition 19.

Question. For a permutative CA, the uniform measure AZY with A\ being the uniform measure
on A is known to be invariant [20]. Does the uniform measure maximize the entropy ?

Recall that for any k € N\ {0} we denote by I}, the domain of f* and I the convex hull
of I} = I}, U {0}. In the following we also let C(P, L) = {(x;);eze € X, x; = p;Vj € L} be
the cylinder associated to the pattern P = (p;)jer, € AL on L C Z4. We also write C(P) for
this cylinder when there is no confusion on L.

Lemma 16. For any permutative CA f and any k € N\ {0}, the CA f* is also permutative
and

I, = kL

Proof. As already observed, the inclusion I, C kI holds for any CA (not necessarily permuta-
tive). We will show k ex(I) C I}, which implies together with I}, C kI the equality I, = kI. Let
i € ex(I)\ {0} C I. For a fixed k we prove by induction on k that f* is permutative at ki, in
particular ki € I}.. Let P be a pattern on I\ {ki} and let a € A. Since we have I, C I;_1 ® 1,
we may complete P by a pattern Q on (I—1 @ I) \ {ki}. By induction hypothesis, (k — 1)i
lies in ex(I;_1) and ¢ lies in ex(I), therefore ki does not belong to I,_1 & (I \ {i}), so that we
have I,_1 & (I'\ {i}) C (Iy—1 ® I) \ {ki}. Therefore there is a pattern R on I \ {i} such that
fErC(Q, (Iy—1 @ I) \ {ki}) is contained in the cylinder C(R, I\ {i}). As f is permutative
at i there is b € A with F(R}) = a or in other terms f (C(R},I)) C C (a,{0}). Since f*~!
is permutative at (k — 1)i, we may find ¢ € A with f*=1 (C(Q¥, I,_y ® 1)) C C (b, {i}).
Therefore we get

FFCQE iy @ D)) € f(C(R;,T)) € C (a,{0}).

But I, is the domain of f* and P is the restriction of Q to I \ {ki}, so that we also have
[ (C(PE . IL)) C C(a,{0}), i.e. f* is permutative at ki. O
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For a convex d-polytope J and a face F' of J we consider the subset of g J given by
Oy F = 0y JNTFEJ(—hy(NT)). The sets 9; F for F' € F(J) are covering d; .J but do not
define a partition in general. For any F' € F(J) we let u" € ex(I) C I’ with uf"- N¥ = hy(NT)
and we also let dr be the the Euclidean distance to Tx. Then for j € 9] J we let F}; be a face
of J such that dp, (j + u'7) = —dp, (j) + v - N*7 is maximal among faces F with j € o F.
We consider then a total order < on 8f J such that i < j if dg, (i +u’*) < dp, (j + u’7). We
also let Fi(J) be the subset of F(J) given by faces F for which up is uniquely defined. We
denote by d:-.J the subset of oy J given by

ot J = U o F.
FeFi(J)

Lemma 17. With the above notations, let j € 3f-J, Then
VkeN, j+kuli ¢ {j, j <} @KL

Proof. We argue by contradiction : there are j' < j and u € I with j + kufy = j' + ku.
Observe that

dp,(j + ku™) = dp, (j + u™) + (k — 1)u7 - N5,
dr, (5" + ku) = dp, (' +u) + (k — L)u- NI

We will show that the equality between these two distances implies u = u7 | therefore j = 5'.
Indeed we have

dp,(j' +u) < sup dp,(j' +v), w- N < sup v- N5,
veex(I) veex(I)
< dp, (7 +u), < hn(N),
dp, (7' +u) < dp, (j +u') u- NFi <ofi . NFi
therefore u - N¥i = wFi - N¥i and finally u = uf7 as j belongs to di-J. O

For a partition P of X and a positive integer k, we write P¥ to denote the iterated partition
\/;:O1 f7'P in order to simplify the notations.

Lemma 18. Let J be a convex d-polytope and let k,n be positive integers. For any A* € P’}
and any pattern P on Oi-J, there is w € A* such that f¥w belongs to C(P,d:J).

Proof. For any j € d-J we let P; be the restriction of P = (p;);epr s to {j’, 5 < j}. We
show now by induction on j € 91J that there is w € A* with f*w € C(P;). By Lemma
16 the CA f* is permutative at kuf so that we may change the (j + kuf7)-coordinate of
w to get w' € X with (f*w’); = p;. Moreover the j’-coordinates of fXw for j/ < j only
depends on the coordinates of w on {j’, 7/ < j} @ kI so that by Lemma 17 we still have
fEw' € C(P;, {4, j/ < j}), thus ffw’ € C(P;») with j” being the successor of j for < in
o+J. (|

Lemma 19. Let T' and Tj, R > 0 be the polytopes associated to 1 as defined in Subsection
3.6. We have
F(T') = A(T")
and
VR >0, F1(Tg) C Fi(TR).
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Proof. Let F € F(T') or F € F1(T}). Such a face F' is tangent to Sy at some u € ex(I) with
u-NF = hy(NT). Then any v with v- N¥' = hy(N¥') belongs to Tp. But Tr NI C Tp NSy =
{u}, therefore we have necessarily up = u.

(|

We are now in a position to prove Proposition 19.

Proof of Proposition 19. The inequality htdop( f) < Rp log §A follows immediately from Propo-

sition 18 and Proposition 8. By Lemma 18 we have for any convex d-polytope O and any
positive integer n

vAF € PR, #{ARTL € PREL D ARTL ¢ AR > #9100,
Consequently we have

htop(f7 PnO) Z ﬂm log ﬁA7
L

d o 10—n0O
htop(f7 Jo) > hmnsup W

We first assume that S; = Sp is nondegenerated. Let 7" be the dual polytope of a
generating polytope T. Note that T” is a convex body with nonempty interior containing 0
(but the origin does not lie necessarily in its interior set). By Lemma 19 we have F(T") =
Fi(T"), therefore F(nT') = Fi(nT’) and 9+nT’ = d~nT"’ for all n. Applying then Lemma 4
we get for some constant C' = C'(d) :

log #.A.

. o~ nT’
o, F) > limsup - log £,

d—1p(T/)
Vi(T7)

— p(T")

loggA —C.

Then it follows from Proposition 8 that :
hi, (f, Jrv) = Rylog A — C.

For any positive integer k the above equality also holds for f* and I in place of f and I.
Moreover we have I, = kI according to Lemma 16, so that we get together with the power
formula of Lemma 12 and O := p(T")" 717" :

hi,, (f*,0")
k 9
Ry, C
k 10gﬁ¢4_ ka
Rkﬂ C
> _
- log #.A =
> RylogfA — %

h;lop(fv TI) > RI’ 10g ﬁA

hiop(f,0") =

>

This conclude the proof in the nondegenerated case.
We deal now with the degenerated case. By Lemma 19 we have for all R > 0 with the
notations of Subsection 3.6 :

80" 0T = 3 per,(ry) B0~ nE
p(nT)

hiyp(f: Try,) > limsup log #.A.
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But for F' € F»(T}) we have

g0~ nF < V(0 nF & C),
= n4 ! diam(I)O(R'™1)
Since lim g0 22 = H, (1) > 0 and 1F5(Tf) = 21, we get
. Yorer,(1y) 10— nF

lim sup n

n p(nTp)

Together with Proposition 4 we get for some constant C' = C'(d) :

hiop(f. Try,) 2 (Vi(TR) — C — diam(I)O(R ™)) log #A.

We conclude as in the degenerated case by using the power rule. Fix ¢ > 0 and let
k > Ce~!'. We obtain finally

= diam(I)O(R™Y).

hgo k’O/
hiop(£,07) = M
o (‘g;((;’/z’z)) e dlaLI]Z(]I’”()(B’,—l)) log #.A,
R
> (‘2((;;1%)) —€— diam(]I)O(R_l)> log .4,
R
Rodoo, (Rp —¢)log A.
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