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ABSTRACT

Light fields have additional storage requirements com-
pared to conventional image and video signals, and demand
therefore an efficient representation. In order to improve
coding efficiency, in this work we propose a hybrid cod-
ing scheme which combines a learning-based compression
approach with a traditional video coding scheme. Their in-
tegration offers great gains at low/mid bitrates thanks to the
efficient representation of the learning-based approach and
is competitive at high bitrates compared to standard tools
thanks to the encoding of the residual signal. The proposed
approach achieves on average 38% and 31% BD rate saving
compared to HEVC and JPEG Pleno transform-based codec,
respectively.

Index Terms— light field, deep learning, HEVC, JPEG
Pleno

1. INTRODUCTION

Light fields (LFs) capture light intensity of scene objects from
various angles. The captured information offers novel appli-
cations such as refocusing and a perspective change at the cost
of increased dimensionality and thus storage demand. The ne-
cessity of efficient compression methods was acknowledged
by JPEG committee which started the JPEG Pleno initiative in
order to provide a standard framework for the representation
and coding of plenoptic data. In particular, some coding tools
are proposed and optimized to encode 4D light fields [1].

On the other side, some recent compression approaches
based on learning focus on optimizing the whole coding
pipeline in an end-to-end fashion [2]. Typically, these
schemes employ deep auto-encoders to learn good represen-
tations of data, which are then quantized and entropy coded.
The potential of these methods has been shown by their com-
petitive performance in terms of objective and subjective
metrics compared to traditional coding schemes [3]. How-
ever, it has been found that auto-encoder based approaches
provide significant gains at low bitrates, while they generally
fail to provide high quality and near-lossless reconstructions
at high bitrates. This phenomenon is mainly due to the nature
of autoencoders, which are intrinsically lossy. Conversely,
traditional codecs are designed to span the full quality range,

and in particular to provide near lossless performance at
higher bitrates.

In order to incorporate the benefits of both approaches, we
aim at overcoming the observed lack of scalability of deep
learning approaches by adding an enhancement layer. We
propose a hybrid scheme consisting of a base layer which
provides high gains at low/mid bitrates and serves as an ef-
ficient predictor for high bitrates. This is complemented by
an enhancement layer which allows the coding of the residual
signal via a traditional coding scheme and provides improved
performance at high bitrates. Furthermore, we explore var-
ious traditional coding schemes for the residual signal and
show that even with a simple approach such as scalar quanti-
zation it is possible to achieve significant gains with respect
to the base layer and to be competitive with state-of-the-art
LF codecs.

2. RELATED WORK

We divide the related work into two categories: the LF
compression using traditional approaches based on conven-
tional prediction and transformation pipelines, and end-to-end
learning-based image compression methods.

High Efficiency Video Coding (HEVC) and its exten-
sions significantly influenced LF coding [4][5][6]. Typically,
HEVC is used to encode a set of key views which is at the
decoder used to reconstruct the complete LF. Zhao et al. [7]
reconstruct the LF using a linear combination of decoded
views. Jiang et al. [8] recovers missing views via warping
and inpainting of occluded regions. Viola et al. [9] use graph
learning method to learn disparities between views and re-
store LF. These approaches are based on schemes including
different functional blocks and therefore difficult to optimize
together. Conversely, an end-to-end scheme learns a single
function which jointly optimizes and integrates all needed
operations. JPEG Pleno provided a coding tool for the light
field modality which works in two modes: the prediction
(WaSP) and the transformation (MuLE) [10]. The predic-
tion mode uses disparity-based warping and view merging to
predict views, while the transformation mode exploits the re-
dundancy in LF blocks using 4D Discrete Cosine Transform.
Although, the solutions are tailored for LF compression, they
are limited in the same way as the previous approaches.



End-to-end learning-based compression has been recently
proposed in [11] [12] [13] [14] and has gained huge popular-
ity due to its ability to replace the whole traditional compres-
sion pipeline with a single function. Ballé et al. proposed an
end-to-end compression approach which consists of analysis
and synthesis functions corresponding to an encoder and a de-
coder in conventional pipelines, respectively, plus a uniform
quantizer. In addition, they propose a differentiable quantiza-
tion mechanism allowing to optimize the rate-distortion (RD)
function directly [11]. Theis et al. [13] propose a similar
approach but deals with quantization and bitrate estimation
in different manner. Rippel et al. [14] propose a real-time
codec which applies a pyramidal analysis for the feature ex-
traction and an adaptive coding module and regularization.
Conversely to the previous approaches, Toderici et al. [12]
overcomes the necessity to train a separate model for each
lambda value in the RD function by adopting the encoding in
a progressive manner.

Our approach extends the work of Ballé et al. [11], and
operates on data of a higher dimension, requiring a careful
design of the network architecture to handle a particular fil-
tering across different views. Furthermore, motivated by the
limitations of auto-encoders in providing high-quality recon-
structions, we also introduce an enhancement layer to encode
the residual signal.

3. PROPOSED METHOD

Fig. 1 shows our proposed scheme. It consists of a base layer
illustrated with red blocks and an enhancement layer denoted
by cyan blocks. The layers are presented in detail in the fol-
lowing subsections.
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Fig. 1. Proposed coding scheme.

3.1. Base Layer

As a base layer, we propose an end-to-end trained compres-
sion scheme based on the recent work of Ballé et al. [11]
with added modifications to adjust to the LF structure. More
specifically, the scheme takes as input a LF image, reshapes it
by extracting sub-aperture views and stacking the views along
the third dimension following horizontal raster scan order, i.e.

row by row selection. The compression scheme is comprised
of three functional blocks: an analysis function fa(θ) which
creates a more compact representation of the input y = fa(x),
a quantization block or an entropy bottleneck Q(η), which
provides quantized version of y, ỹ, and a synthesis function
fs(φ) whose goal is to reconstruct the input from the quan-
tized compact representation x̂ = fs(ỹ).

The analysis function comprises a set of sequential non-
linear, downsampling, and convolutional layers while the
synthesis function is a symmetric counterpart of the encoding
function with downsampling layers replaced by upsampling
layers. More specifically, each layer utilizes 2D filters, which
slide along spatial dimensions and accumulate the contri-
bution of each feature map in the data signal in order to
jointly learn structures in spatial and angular domains. The
entropy bottleneck works in two modes depending on the
inference phase, i.e. the training or testing phase. During the
training phase the entropy bottleneck adds a uniform noise
U(−0.5, 0.5) to the transformed representation of the input to
approximate quantization in a differentiable manner. Further-
more, the entropy bottleneck learns the probability density
function of each feature map of the compacted representation
and utilizes them for entropy coding. A detailed description
of the network parameters is summarized in Fig. 2.
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Fig. 2. Neural network architecture. The parameters in each
block denote the number of filters, spatial extent of the filter,
stride, the usage of the bias and the activation function.

Weights of the analysis function, the entropy bottle-
neck and the synthesis function, θ, η and φ respectively,
are learned by minimizing the RD function J(θ, η, φ;x) =
R(ỹ) + λD(x, x̂) where the rate R(ỹ) is modeled with the
entropy of the compressed bottleneck, the distortion D is
the mean square error between the input x and the decoded
LF x̂, and the parameter λ governs the trade-off between the
rate and the distortion. We trained five models by selecting
five different lambda values. For each model, the weights
are learned using Adam optimizer with a learning rate of
1× 10−4 and 1× 10−3, for θ and φ, and η respectively. The
final bitstream is obtained by packing encoded coefficients,
the LF size and the lambda parameter.
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Fig. 3. Test images for the quality evaluation.

3.2. Enhancement layer

We observe that the auto-encoder based approach used in the
base layer reaches a saturation in performance at higher bi-
trates. A possible solution to this problem is increasing the
capacity of the network. However, this requires to use in-
creasing model complexity when approaching higher qual-
ity points. Instead, we propose to introduce an enhancement
layer to encode the residual signal between the original light
field and the reconstruction from the base layer. The advan-
tage of this hybrid approach is that the residual coding allows
incorporating any traditional image coding scheme. We com-
pute the residual signal by subtracting an input LF and its pre-
diction obtained using the base scheme followed by cropping
to a fixed range of values and translation to positive values.
For the purpose of an enhancement layer, we explore three
coding schemes. We evaluate scalar quantization followed by
sample entropy estimation due to its simplicity. Furthermore,
we evaluate HEVC coder using Intra and Inter prediction to
capture the remaining correlation in spatial and angular do-
mains.

4. RESULTS

4.1. Testing conditions

In our test, we follow test conditions proposed by JPEG Pleno
(CTC) [1] with slight modifications due to the setup of our ap-
proach. Namely, as our approach operates on the luminance
component only, we convert LF to YCbCr colour space and
set chroma components to neutral colour. We use the EPFL
LF image dataset [15] and select 4 test images as shown in
Fig. 3 and divide the rest of the images into training and
validation sets in the ratio 80/20. Each raw image is de-
coded using LFToolbox version 0.4 [16] [17], and a subset
of 13 × 13 sub-aperture views, each having the spatial reso-
lution of 625× 434 pixels is selected to generate a LF image.
The proposed approach is compared with HEVC (x265 im-
plementation as defined in the JPEG Pleno CTC) and JPEG
Pleno Verification Model 2.0 (VM 2.0) in terms of average
PSNR and SSIM. Prior to x265 encoding, a LF is converted
to YCbCr 4:4:4 10-bit colour space and arranged in a pseudo-
video sequence following serpentine scanning order as de-
fined in CTC. We evaluate VM 2.0 in the transformation mode
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Fig. 4. RD curve of the base layer, local RD curves obtained
for each lambda value and the RD curve obtained by comput-
ing the convex hull around all the point (a) and the compari-
son of the base layer and the improved versions (b) for the LF
image Bikes.

(MuLE) as it is more efficient for the coding of lenselet data.
Four bitrates are used to generate RD curve: 0.75 bpp (bits
per pixel), 0.1 bpp, 0.02 bpp and 0.005 bpp.

4.1.1. Joint rate-distortion curve

The contribution of the enhancement layer is evaluated in
terms of RD by generating a RD curve that corresponds to the
joint coding of the base layer and the enhancement layer. The
residual image is encoded using the proposed approaches for
different values of the quantization parameter providing local
RD curves around each RD point of the base layer. Fig. 4 (a)
illustrates the RD curve of the base layer (red) and the points
of local RD curves (asterisks). The final RD curve is obtained
by computing the convex hull around all the points (cyan).

4.2. The comparison of enhancement layers

Base

Im. ScalQuant HEVCIntra HEVCInter

I01 -13.2317% -27.4263% -31.9636%
I02 -4.9793% -13.8663% -16.0852%
I04 -8.3554% -22.1310% -22.6794%
I09 -14.4142% -22.2486% -31.2664%

Table 1. BD rate savings of the proposed hybrid approach
with three types of enhancement layer against the base layer.
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Fig. 5. Performance with respect to PSNR (upper row) and SSIM (bottom row): proposed Hybrid approach using HEVC Inter
for the enhancement layer, learning-based base layer, HEVC, MuLE.

Fig. 4 (b) compares the performances of the base layer
against the proposed extensions for the LF Bikes. It can be no-
ticed that at low bitrates enhancement layers do not improve
performance suggesting the superiority of the base layer. On
the contrary, at high bitrates we can notice the benefit of
adding the enhancement layer and note that even a simple
method such as scalar quantization provides ∼ 5− 15% sav-
ings comparing to the base layer. Further improvements are
obtained with HEVC’s Intra and Inter prediction modes which
gain by exploiting the spatial and inter-view correlations in
the residual signal. The quantification of the performance is
presented in Table 1 for all test contents.

4.3. The comparison with respect to anchors

We compare the best performing proposed hybrid approach
with the original base layer and two anchor methods pro-
posed by JPEG Pleno, and provide RD comparison in terms
of PSNR and SSIM in Fig. 5 and BD rate in terms of PSNR
in Table 2. The hybrid approach gains at lower bitrates thanks
to the learning-based base layer, while the introduction of the
enhancement layer increases the performance and makes the
approach competitive with the anchors at high bitrates. Nev-
ertheless, overall performance suggests significant gains of
the approach against the two anchors ranging from ∼ 16%
to ∼ 50% saving with respect to HEVC and from ∼ 25% to
∼ 40% saving with respect to MuLE.

5. CONCLUSION

We propose a hybrid coding scheme for LF based on a
learning-based approach and HEVC in order to overcome the

Hybrid(HEVCInter)

Im. Base MuLE HEVC

I01 -31.9636% -36.0352% -40.3208%
I02 -16.0852% -25.1350% -49.4795%
I04 -22.6794% -39.4541% -45.7385%
I09 -31.2664% -25.0123% -16.3930%

Avg. -25.4987% -31.4092% -37.9829%

Table 2. BD rate savings of the best proposed Hybrid ap-
proach using HEVC Inter for the enhancement layer, against
three anchors: learning-based base layer, MuLE, HEVC.

saturation in performance at high bitrates of auto-encoders.
Furthermore, we show that the proposed approach achieves
better performances against state-of-the-art anchors. More
precisely, the results show that it is possible to greatly im-
prove the performance at high bitrates and moderately at mid
bitrates compared to the learning-based base approach. At
the same time, the latter provides highly competitive gains at
low bitrates, demonstrating the superiority of learning-based
representations also for the case of LF.

In future work we aim to optimize the base layer and the
enhancement block jointly in an end-to-end fashion and to
add the coding of chroma components.
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[11] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston, “Variational image com-
pression with a scale hyperprior,” in International Con-
ference on Learning Representations, 2018.

[12] George Toderici, Sean M. O’Malley, Sung Jin Hwang,
Damien Vincent, David Minnen, Shumeet Baluja,

Michele Covell, and Rahul Sukthankar, “Variable rate
image compression with recurrent neural networks,” in
International Conference on Learning Representations,
2016.

[13] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and
Ferenc Huszár, “Lossy image compression with com-
pressive autoencoders,” in International Conference on
Learning Representations, 2017.

[14] Oren Rippel and Lubomir Bourdev, “Real-time adap-
tive image compression,” in International Conference
on Machine Learning, 2017.

[15] Martin Rerabek and Touradj Ebrahimi, “New light field
image dataset,” in International Conference on Quality
of Multimedia Experience (QoMEX), 2016.

[16] Donald G. Dansereau, Oscar Pizarro, and Stefan B.
Williams, “Decoding, Calibration and Rectification for
Lenselet-Based Plenoptic Cameras,” in Conference on
Computer Vision and Pattern Recognition, 2013.

[17] Donald G. Dansereau, Oscar Pizarro, and Stefan B.
Williams, “Linear volumetric focus for light field cam-
eras,” ACM Transactions on Graphics, 2015.


