
HAL Id: hal-02608600
https://hal.science/hal-02608600v1

Submitted on 21 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structural Reductions Revisited
Yann Thierry-Mieg

To cite this version:
Yann Thierry-Mieg. Structural Reductions Revisited. 41ST INTERNATIONAL CONFERENCE ON
APPLICATION AND THEORY OF PETRI NETS AND CONCURRENCY, Jun 2020, Paris, France.
�hal-02608600�

https://hal.science/hal-02608600v1
https://hal.archives-ouvertes.fr

Structural Reductions Revisited

Yann Thierry-Mieg1 [0000−0001−7775−1978]

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France first.last@lip6.fr

Abstract. Structural reductions are a powerful class of techniques that reason
on a specification with the goal to reduce it before attempting to explore its
behaviors. In this paper we present new structural reduction rules for verification
of deadlock freedom and safety properties of Petri nets. These new rules are
presented together with a large body of rules found in diverse literature. For
some rules we leverage an SMT solver to compute if application conditions are
met. We use a CEGAR approach based on progressively refining the classical
state equation with new constraints, and memory-less exploration to confirm
counter-examples. Extensive experimentation demonstrates the usefulness of this
structural verification approach.

1 Introduction

Structural reductions can be traced back at least to Lipton’s transaction reduction [13]
and in the context of Petri nets to Berthelot’s seminal paper [1]. A structural reduction
rule simplifies the structure of the net under studywhile preserving properties of interest.
Structural reductions are complementary of any other verification or model-checking
strategies, since they build a simpler net that can be further analyzed using othermethods.

The main idea in reduction rules is either to discard parts of the net or to accelerate
over parts of the behaviors by fusing adjacent transitions. Reduction rules exploit the
locality property of transitions to define a reduction’s effect in a small neighborhood.
Most rules can be adapted to support preservation of stutter-invariant temporal logic.

Structural reductions have been widely studied with generalisations that apply to
many other models than Petri nets e.g. [12]. The classical reduction rules [1] include
pre and post agglomeration, for which [9, 11] give broad general definitions that can be
applied also to colored nets. More recently, several competitors in the Model Checking
Contest have worked on the subject, [5] defines 8 reduction rules used in the tool Tapaal
and [2] defines very general transition-centric reduction rules used in the tool Tina.

In this paper, we develop a new framework that integrates an SMT solver, a memory-
less pseudo random walk and structural reduction rules with the goal of jointly reducing
a model and a set of properties expressed as invariants. The SMT constraints and the
reduction rules we propose include classic ones as well as many contributions original
to this paper. These components together form a powerful reduction engine, that can in
many cases push reductions to obtain an empty net and only true or false properties.

2 Definitions

Petri net syntax and semantics

2 Y. Thierry-Mieg

Definition 1. Structure. A Petri net # = 〈P,T ,W−,W+,<0〉 is a tuple where P is the
set of places, T is the set of transitions, W− : P ×T ↦→ N and W+ : P ×T ↦→ N

represent the pre and post incidence matrices, and <0 : P ↦→N is the initial marking.

Notations: We use ? (resp. C) to designate a place (resp. transition) or its index
dependent on the context. We let markings < be manipulated as vectors of natural with
|P | entries. We letW− (C) andW+ (C) for any given transition C represent vectors with
|P | entries.W>

− ,W>
+ are the transposed flow matrices, where an entryW>

− (?) is a
vector of |T | entries. We noteW4 =W+−W− the integer matrix representing transition
effects.

In vector spaces, we use E ≥ E′ to denote ∀8, E(8) ≥ E′(8), and offer sum E + E′ and
scalar product : · E for scalar : with usual element-wise definitions.

We note •= (resp. =•) the pre set (resp. post set) of a node = (place or transition).
E.g. for a transition C its pre set is •C = {? ∈ P | W− (?, C) > 0}. A marking < is said to
enable a transition C if and only if < ≥W− (C). A transition C is said to read from place
? ifW− (?, C) > 0∧W4 (?, C) = 0.

Definition 2. Semantics. The semantics of a Petri net are given by the firing rule C−→ that
relates pairs of markings: in any marking < ∈N |P | , if C ∈ T satisfies < ≥W− (C), then
<

C−→ <′ with <′ = < +W+ (C) −W− (C). The reachable set R is inductively defined as
the smallest subset of N |P | satisfying <0 ∈ R, and ∀C ∈ T ,∀< ∈ R,<

C−→ <′⇒ <′ ∈ R.

Properties of Interest We focus on deadlock detection and verification of safety prop-
erties. A net contains a deadlock if its reachable set contains a marking < in which no
transition is enabled. A safety property asserts an invariant I that all reachable states
must satisfy. The invariant is given as a Boolean combination (∨,∧,¬) of atomic propo-
sitions that can compare (⊲⊳∈ {<,≤,=,≥, >}) arbitrary weighted sum of place markings
to another sum or a constant, e.g.

∑
?∈P U? ·<(?) ⊲⊳ : , with U? ∈ Z and : ∈ Z.

In the case of safety properties, the support of a property is the set of places whose
marking is truly used in the predicate, i.e. such that at least one atomic proposition has a
non zero U? in a sum. The support Supp ⊆ P of the property defines the subset SC ⊆ T
of invisible or stuttering transitions C satisfying ∀? ∈ Supp,W4 (?, C) = 0 1. For safety,
we are only interested in the projection of reachable markings over the variables in the
support, values of places in P \Supp are not observable in markings. A small support
means more potential reductions, as rules mostly cannot apply to observed places or
their neighborhood.

3 Property Specific Reduction

We are given a Petri net # and either a set of safety invariants or a deadlock detection
query. We consider the problem of building a structurally smaller net # ′ and/or simpler
properties such that the resulting properties hold on the smaller net if and only if the
original properties hold on the original net. In particular, properties that can be proven or

1 This sufficient condition for being stuttering might be relaxed by a more refined examination
of the property and the effect of transitions on its truth value with respect to its value initially.

Structural Reductions Revisited 3

disproven reduce to true or false, and when all properties are thus simplified, an empty
system # ′ is enough to answer the problem.

In this paper we introduce a combination of three solution strategies: 1. we try to
disprove an invariant by using a memory-less exploration that can randomly or with
guidance encounter counter-example states thus under-approximate the behavior, 2. we
try to prove an invariant holds using a system of SMT constraints to over-approximate
reachable states and 3. we use structural reduction rules that preserve the properties
of interest through a transformation. These approaches reinforce and complement each
other and together provide a structural decision procedure often able to reduce the system
to an empty net.

We consider an over-approximation of the state space, symbolically represented as
set of constraints over a system of variables encoded in an SMT solver. We use this
approximation to detect unfeasible behavior.

The SMT procedure while powerful is only a semi-decision procedure in the sense
that UNSAT answers prove that the invariant holds (¬I is not reachable), but SAT
answers are not trusted because we work with an over-approximation of the system. The
now classic CEGAR scheme [6] proposes an elegant solution to this problem, consisting
in replaying the abstract candidate counter-example on the original system, to try to
exhibit a concrete counter-example thus proving the invariant does not hold. Similarly
to [17] our constraint system is able to provide along with SAT answers a Parikh firing
count (see Sec. 4) that can guide to a concrete counter-example.

We thus engineered a memory-less and fast transition engine able to explore up to
millions of states per second to under-approximate behaviors by sampling. This engine
can run in pseudo-random exploration mode or can be guided by a Parikh firing count
coming from the SMT engine. If it can find a reachable marking that does not satisfy I
the invariant is disproved.

We combine these solutions with a set of structural reduction rules (Sec. 5), that can
simplify the net by examining its structure, and provide a smaller net where parts of
the behavior are removed . The resulting simplified net and set of properties can then
be exported in a format homogeneous to the initial input, typically for processing by a
full-blown model-checker. If all properties have been reduced to true or false, the net
will be empty.

4 Proving with SMT Constraints

In this section, we define an over-approximation of the state space, symbolically manipu-
lated as a set of constraints over a system of variables encoded in a Satisfiability Modulo
Theory (SMT) solver [15]. We use this approximation to detect unfeasible behavior. We
present constraints that can be progressively added to a solver to over-approximate the
state space with increasing accuracy. Structural reduction rules based on a behavioral
characterisation of target conditions are also possible in this context (see Sec .7).

4.1 Approximating with SMT

SMT solvers are a powerful and relatively recent technology that enables flexible mod-
eling of constraint satisfaction problems using first order logic and rich data types and

4 Y. Thierry-Mieg

theories, as well as their combinations. We use both linear arithmetic over reals and
integers (LRA and LIA) to approximate the reachable set of states by constraints over
variables representing the marking of places.

As first step in all approaches, we define for each place ? ∈ P a variable <? that
represents its marking. These variables are initially only constrained to be positive:
∀? ∈ P,<? ≥ 0. If we know that the net is one-safe (all place markings are at most one)
e.g. because the net was generated, we add that information: ∀? ∈ P,<? ≤ 1.

We then suppose that we are trying to find a reachable marking that invalidates a
given invariant property � over a support. In other words we assert that the <? variables
satisfy¬�. For deadlocks, we consider the invariant � asserting that at least one transition
is enabled, expressed in negative form as ¬� = ∀C ∈ T ,∃? ∈ •C,<? <W− (?, C), and thus
reduce the Deadlock problem to Safety.

An UNSAT answer is a definitive "NO" that ensures that � is indeed an invariant of
the system. A SAT answer provides a candidate marking <2 with an assignment for the
<? variables, but is unreliable since we are considering an over-approximation of the
state-space. To define the state equation constraint (see below) we also add a variable =C
for each transition C that counts the number of times it fired to reach the solution state.
This Parikh count provides a guide for the random explorer.

Workflow Because we are hoping for a definitive UNSAT answer, and that we have
a large set of constraints, they are fed incrementally to the solver, hoping for an early
UNSAT result. In practice we check satisfiability after every few assertions, and start
with the simpler constraints that do not need additional variables.

Real arithmetic is much easier to solve than integer arithmetic, and reals are an
over-approximation of integers since if no solution exists in reals (UNSAT), none exists
in integers either. We therefore always first incrementally add constraints using the real
domain, then at the end of the procedure, if the result is still SAT, we test if the model
computed (values for place markings and Parikh count) are actually integers. If not, we
escalate the computation into integer domain, restarting the solver and introducing again
from the simplest constraints. At the end of the procedure we either get UNSAT or a
"likely" Parikh vector that can be used to cheaply test if the feasibility detected by SAT
answer is actually doable.

4.2 Incremental Constraints

We now present the constraints we use to approximate the state space of the net, in
order of complexity and induced variables that corresponds to the order they are fed to
our solver. We progressively add generalized flow constraints, trap constraints, the state
equation, read arc constraints, and finally add new "causality" constraints.

Generalized flows A flow F is a weighted sum of places
∑
?∈P U? ·<? that is an

invariant of the state space. A semi-flow only has positive integers as U8 ∈N coefficients
while generalized flows may have both positive and negative integer coefficients U8 ∈Z.

It is possible to compute all generalized flows of a net in polynomial time and space,
and the number of flows is itself polynomial in the size of the net. We use for this

Structural Reductions Revisited 5

purpose a variant of the algorithm described in [7], initially adopted from the code
base of [3] and then optimized for our scenario. This provides a polynomial number of
simple constraints each only having as variables a subset of places (the U8 are fixed). The
constant value of the flow in any marking can be deduced from the initial marking of the
net. We do not attempt to compute semi-flows as there can be an exponential number of
them, but we still first assert semi-flow constraints (if any were found) before asserting
generalized flows as these have far fewer solutions due to markings being positive.

Trap constraints In [8], to reinforce a system of constraints on reachable states, "trap
constraints" are proposed. Such a constraint asserts that an initially marked trap must
remain marked.

Definition 3. Trap. A trap (is a subset of places such that any transition consuming
from the set must also feed the set. (⊆ P is a trap iff.

∀? ∈ (,∀C ∈ ?•,∃?′ ∈ C •∧?′ ∈ (.

The authors show that traps provide constraints that are a useful complement to state
equation based approaches, as they can discard unfeasible behavior that is otherwise
compatible with the state equation. The problem is that in general these constraints are
worst case exponential in number. Leveraging the incremental nature of SMT solvers,
we therefore propose to only introduce "useful" trap constraints, that actually contradict
the current candidate solution.

We consider the candidate state <2 produced as SAT answer to previous queries,
and try to contradict it using a trap constraint: we look for an initially marked trap that is
empty in the solution. The search for such a potential trap can be done using a separate
SMT solver instance.

For each place ? in the candidate state <2 , we introduce a Boolean variable 1? that
will be true when ? is in the trap. We then add the trap constraints:
∃? ∈ P,<0 (?) > 0∧ 1? trap was initially marked
∀? ∈ P,<2 (?) > 0⇒¬1? no finally marked places
1?⇒∀C ∈ ?•,∃?′ ∈ C •∧1?′ trap definition
If this problem is SAT, we have found a trap (from which we can derive a constraint

expressed as
∨
?∈(<? > 0 that can be added to the main solution procedure. Otherwise,

no trap constraint existed that could contradict the given witness state. The procedure is
iterated until no more useful trap constraints are found or UNSAT is obtained.

State equation The state equation [16] is one of the best known analytical approxima-
tions of the state space of a Petri net.

Definition 4. State equation. We define for each transition C ∈ T a variable =C ∈N. We
assert that

∀? ∈ %,<? = <0 (?) +
∑

C ∈?•∪•?
=C ·W4 (?, C)

The state equation constraint is thus implemented by adding for each transition C ∈ T
a variable =C ≥ 0 and then asserting for each place ? ∈ P a linear constraint. Instead of

6 Y. Thierry-Mieg

considering all transitions and adding a variable for each of them, we can limit ourselves
to one variable per possible transition effect, thus having a single variable for transitions
C, C ′ such that W4 (C) =W4 (C ′). Care must be taken when interpreting the resulting
Parikh vectors however. In the worst case, the state equation adds |T | variables and |P |
constraints, which can be expensive for large nets. We always start by introducing the
constraints bearing on places in the support.

A side effect of introducing the state equation constraints is that we now have a
candidate Parikh firing vector, in the form of the values taken by =C variables. The
variables in this Parikh vector can now be further constrained, as we now show.

Read ⇒ Feed Constraints A known limit of the state equation is the fact that it does
not approximate read arc behavior very well, since it only reasons with actual effects
W4 of transitions. However we can further constrain our current solution to the state
equation by requiring that for any transition C used in the candidate Parikh vector, that
reads from an initially insufficiently marked place ?, there must be a transition C ′ with a
positive Parikh count that feeds ?.

Definition 5. Read Arc Constraint. For each transition C ∈ T , for every initially insuf-
ficiently marked place it reads from i.e. ∀? ∈ •C, such thatW4 (?, C) = 0∧W− (?, C) >
<0 (?), we assert that:

=C > 0⇒
∨

{C′∈•?\{C } |W4 (?,C′)>0}
=C′ > 0

These read arc constraints are easy to compute and do not introduce any additional
variables so they can usually safely be added after the problem with the state equation
returned SAT, thus refining the solution.

While in practice it is rare that these additional constraints allow to concludeUNSAT,
they frequently improve the feasibility of the Parikh count solution on nets that feature
a lot of read arcs (possibly due to reductions), going from an unfeasible solution to one
that is in fact realizable.

Causality Constraints Solutions to the state equation may contain transition cycles,
that "borrow" non-existing tokens and then return them. This leads to spurious solutions
that are not in fact feasible. However, we can break such cycles of transitions if we
consider the partial order that exists over the first occurrence of each transition in a
potential concrete trace realizing a Parikh vector.

Indeed, any time a transition C consumes a token in place ?, but ? is not initially
sufficiently marked, it must be the case that there is another transition C ′ that feeds ?,
and that C ′ precedes C in the trace.

We thus consider a precedes ≺⊆ T ×T relation between transitions that is : non-
reflexive ∀C ∈ T ,¬(C ≺ C), transitive ∀C1, C2, C3 ∈ T , C1 ≺ C2 ∧ C2 ≺ C3 ⇒ C1 ≺ C3, anti-
symmetric ∀C1, C2 ∈ T , C1 ≺ C2⇒ ¬(C2 ≺ C1). This relation defines a strict partial order
over transitions.

Definition 6. Causality Constraint. We add the definition of the precedes relation to the
solver. For each transition C ∈ T , for each input of its input places that is insufficiently

Structural Reductions Revisited 7

marked i.e. ∀? ∈ •C,W− (?, C) > <0 (?), we assert that

=C > 0⇒
∨

{C′∈•?\{C } |W4 (?,C′)>0}
(=C′ > 0∧ C ′ ≺ C)

These constraints reflect the fact that insufficiently marked places must be fed before
a continuation can take place. These constraints offer a good complement to the state
equation as they forbid certain Parikh solutions that use a cycle of transitions and
"borrow" tokens: such an Ouroboros-like cycle now needs a causal predecessor to be
feasible. Our solutions still over-approximate the state-space as we are only reasoning
on the first firing of each transition, and we construct conditions for each predecessor
place separately, so we cannot guarantee that all input places of a transition have been
simultaneously marked.
Notes:The addition of causal constraints forming a partial order to refine state equation
based reasoning has not been proposed before in the literature to our knowledge.

To encode the precedes constraints in an SMT solver the approach we found most
effective in practice consists in defining a new integer (or real) variable >C for each
transition C, and use strict inferior >C1 < >C2 to model the precedes relation C1 ≺ C2.
This remains a partial order as some >C variables may take the same value, and avoids
introducing any additional theories or quantifiers.

5 Structural Reduction Rules

This section defines a set of structural reduction rules. For each rule, we give a name
and identifier; whether it is applicable to deadlock detection, safety or both; an informal
description of the rule; a formal definition of the rule; a sketch of correctness where⇒
proves that states observably satisfying the property (or deadlocks) are not removed by
the reduction,⇐ proves that new observable states (or deadlocks) are not added.

Deadlock detection can be stated as the invariant "at least one transition is enabled".
But this typically implies that all places are in the support, severely limiting rule appli-
cation. So instead we define deadlock specific reductions that consider that the support
is empty, and that are mainly concerned with preserving divergent behavior (loops).

5.1 Elementary Transition rules

Rule 1. Equal transitions modulo :
Applicability: Safety, Deadlock
Description:When two transitions are equal modulo : , the larger one can be discarded.
Definition: If ∃C, C ′ ∈ T ,∃: ∈N,W− (C) = : ·W− (C ′) ∧W+ (C) = : ·W+ (C ′), discard C.
Correctness:⇒: In any state where C is enabled, C ′ must be enabled, and firing : times
C ′ leads to the same state as firing C. ⇐: Discarding transitions cannot add states. For
deadlocks, any state enabling C in the original net still has a successor by C ′.

Rule 2. Dominated transition
Applicability: Safety, Deadlock
Description:When a transition C has the same effect as C ′ but more preconditions, which

8 Y. Thierry-Mieg

can happen due to read arc behavior, C can be discarded.
Definition: If ∃C, C ′ ∈ T ,W4 (C) =W4 (C ′) ∧W− (C) ≥W− (C ′), discard C.
Correctness:⇒: any state that enables C also enables C ′, and the resulting state is the
same.⇐: Discarding transitions cannot add states. For deadlocks, any state enabling C
in the original net still has successors by C ′ in the resulting net.

Rule 3. Redundant Composition
Applicability: Safety, Deadlock
Description: When a transition C has the same effect and more input places than a
composition C1.C2, where C1 enabled implies C1.C2 is enabled, C can be discarded.
Definition: If ∃C, C1, C2 ∈ T ,W− (C) ≥ W− (C1),W+ (C1) ≥ W− (C2),W4 (C) =W4 (C1) +
W4 (C2), discard C.
Correctness: ⇒: any state that enables C also enables C1, C2 is necessarily enabled
after firing C1, and the state reached by the sequence C1.C2 is the same as reached by C.
⇐: Discarding transitions cannot add states. For deadlocks, any state enabling C in the
original net still has successors by C1 in the resulting net.
Notes: This pattern could be extended to compositions of more transitions, but there is
a risk of explosion as we end up exploring intermediate states of the trace. [2] notably
proposes a more general version that subsumes the four first rules presented here but is
more costly to evaluate.

Rule 4. Neutral transition
Applicability: Safety
Description: When a transition has no effect it can be discarded.
Definition: If ∃C ∈ T ,W− (C) =W+ (C), discard C.
Correctness:⇒: any state reachable by a firing sequence using C can also be reached
without firing C.⇐: Discarding transitions cannot add states.

Rule 5. Sink Transition
Applicability: Safety
Description: A transition C that has no outputs and is stuttering can be discarded.
Definition: If ∃C ∈ SC , C• = ∅, discard C.
Correctness:⇒: any state reached by firing C enables less subsequent behaviors since
tokens were consumed by C. Any firing sequence of the original net using C is still
possible in the new net if occurrences of C are removed, and leads to a state satisfying
the same properties because C stutters.⇐: Discarding transitions cannot add states.

Rule 6. Source Transition
Applicability: Deadlock
Description: If a transition has no input places then the net has no reachable deadlocks.
Definition: If ∃C ∈ T ,•C = ∅, discard all places and discard all transitions except C.
Correctness: ⇒: Since C is fireable in any reachable state, there cannot be reachable
deadlock states.⇐: The resulting model has no deadlocks, like the original model.

5.2 Elementary Place rules

Rule 7. Equal places modulo :
Applicability: Deadlock, Safety

Structural Reductions Revisited 9

Description:When two places are equal modulo : (flow matrices and initial marking),
either one can be discarded (we discard the larger one).
Definition: If ∃?, ?′ ∈ P \ Supp,∃: ∈ N,<0 (?) = : ·<0 (?′),W>

− (?) = : ·W>
− (?′) ∧

W>
+ (?) = : ·W>

+ (?′), discard ?.
Correctness: ⇒: Removing a place cannot remove any behavior. ⇐: Inductively we
can show that <(?) = : ·<(?′) in any reachable marking <. Thus enabling conditions
on output transitions C of ?• = ?′• are always equivalent: either ? and ?′ are both
insufficiently marked or both are sufficiently marked to let C fire. Removing one of these
two conditions thus does not add any behavior.

Rule 8. Sink Place
Applicability: Deadlock, Safety
Description: When a place ? has no outputs, and is not in the support of the property,
it can be removed.
Definition: If ∃? ∈ P \Supp, ?• = ∅, discard ?
Correctness: ⇒: Removing a place cannot remove any behavior. ⇐: Since the place
had no outputs it already could not enable any transition in the original net.

Rule 9. Constant place
Applicability: Deadlock, Safety
Description: When a place’s marking is constant (typically because of read arc behav-
ior), the place can be removed and the net can be simplified by "evaluating" conditions
on output transitions.
Definition: If ∃? ∈ P,W>

− (?) =W>
+ (?), discard ? and any transition C ∈ T such that

W− (?, C) > <0 (?).
Correctness: ⇒: Removing a place cannot remove any behavior. The transitions dis-
carded could not be enabled in any reachable marking so no behavior was lost.⇐: The
remaining transitions of ?• have one less precondition, but it evaluated to true in all
reachable markings, so no behavior was added. Discarding transitions cannot add states.
Notes: This reduction also applies to places in the support, leading to simplification of
the related properties.

Rule 10. Maximal Unmarked Siphon
Applicability: Deadlock, Safety
Description: An unmarked siphon is a subset of places that are not initially marked
and never will be in any reachable state. These places can be removed and adjacent
transitions can be simplified away.
Definition: A maximal unmarked siphon (⊆ P can be computed by initializing with
the set of initially unmarked places (= {? ∈ P | <0 (?) = 0}, and) ⊆ T with the full
set T then iterating:

– Discard from) any transition that has no outputs in (, C ∈), C •∩(= ∅,
– Discard from) any transition C that has no inputs in (and discard all of C’s output
places from (. So ∀C ∈), if •C ∩ (= ∅, discard C from) and discard C• from (,

– iterate until a fixed point is reached.

If (is non-empty, discard any transition C such that •C ∩ (≠ ∅ and all places in (.
Correctness: ⇒: The discarded transitions were never enabled so no behavior was

10 Y. Thierry-Mieg

lost. Removing places cannot remove behavior. ⇐: Removing transitions cannot add
behavior. The places removedwere always empty so they could not enable any transition.
Notes: Siphons have been heavily studied in the literature [14]. This reduction also
applies to places in the support, leading to simplification of the related properties.

Rule 11. Bounded Marking Place
Applicability: Deadlock, Safety
Description: When a place ? has no true inputs, i.e. all transitions effects can only
reduce the marking of ?, <0 (?) is an upper bound on its marking that can be used to
reduce adjacent transitions.
Definition: If ∃? ∈ P,∀C ∈ T ,W4 (?, C) ≤ 0, discard any transition C ∈ T such that
W− (?, C) > <0 (?)
Correctness:⇒: Since the transitions discarded were never enabled in any reachable
marking, removing them cannot lose behaviors.⇐: Discarding transitions cannot add
behaviors.

Rule 12. Implicit Fork/Join place
Applicability: Deadlock, Safety
Description: Consider a place ? not in the support that only touches two transitions:
C 5 >A : with two outputs (of which ?) and C 9>8= with two inputs (of which ?). If we can
prove that the only tokens that can mark the other input ?′ of C 9>8= must result from
firings of C 5 >A : , ? is implicit and can be discarded.
Definition: If∃? ∈ P\Supp,∃C 5 , C 9 ∈ T ,•? = {C 5 }∧ ?•= {C 9 },W+ (?, C 5) =W− (?, C 9) =
1, C 5 • = {?, ?′′} ∧W+ (?′′, C 5) = 1,•C 9 = {?, ?′} ∧W− (?′, C 9) = 1, then if ?′ is induced
by C 5 , discard ?.
We use a simple recursive version providing sufficient conditions for the test "is ?
induced by C":

– If ? has C as single input andW+ (?, C) = 1, return true.
– If ? has a single input C ′ andW+ (?, C ′) = 1, if there exists any input ?′ of C ′, such
thatW+ (?′, C ′) = 1, and (recursively) ?′ is induced by C return true. Else false.

Correctness:⇒:Removing a place cannot remove any behavior.⇐: In anymarking that
disabled C 9 , either both ? and ?′ were unmarked, or only ?′ was unmarked. Removing
the condition on ? thus does not add behavior.
Notes: There are many ways we could refine the "induced by" test, and widen the
application scope, but the computation should remain fast.We opted here for a reasonable
complexity vs. applicability trade-off. The implementation further bounds recursion
depth (to 5 in the experiments), and protects against recursion on a place already in the
stack. Implicit places are studied in depth in [10], the concept is used again in SMT
backed Rule 21.

Rule 13. Future equivalent place
Applicability: Deadlock, Safety
Description:When two places ? and ?′ enable isomorphic behaviors up to permutation
of ? and ?′, i.e. any transition consuming from ? has an equivalent but that consumes
from ?′, the tokens in ? and ?′ enable the same future behaviors. We can fuse the two

Structural Reductions Revisited 11

places into ?, by redirecting arcs that feed ?′ to instead feed ?.
Definition:We let E ≡? |?′ E′ denote equality under permutation of elements at index ?
and ?′ of two vectors E and E′.

If ∃?, ?′ ∈ P \Supp, ? •∩?′• = ∅,∀C ∈ ?•,W− (?, C) = 1
∧∃C ′ ∈ ?′•,W− (C) ≡? |?′W− (C ′) ∧W+ (C) ≡? |?′W+ (C ′),
then ∀C ∈ •?′, setW+ (?, C) =W+ (?, C) +W+ (?′, C), update initial marking to <′0 (?) =
<0 (?) +<0 (?′), and discard ?′ and transitions in ?′•.
Correctness:⇒: Any firing sequence of the original net using transitions consuming
from ?′ still have an image using the transitions feeding from ?. These two traces are
observation equivalent since neither ? nor ?′ are in the support, so no behavior was
lost. This transformation does not preserve the bounds on ?’s marking however.⇐: The
constraints on having only arcs with value 1 feeding from ? and not having common
output transitions feeding from both ? and ?′ ensure there is no confusion problem for
themerged tokens in the resulting net; a token in ?′ of the original net allowed exactly the
same future behaviors (up to the image permutation) as any token in ? of the resulting
net. Merging the tokens into ? thus did not add more behaviors. Discarding transitions
cannot add states.
Notes: This test can be costly, but sufficient conditions for non-symmetry allow to limit
complexity and prune the search space, e.g. we group places by number of output tran-
sitions, use a sparse "equality under permutation test". . . The effect can be implemented
as simply moving the tokens in ?′ to ? and redirecting arcs to ?, other rules will then
discard the now constant place ?′ and its outputs.

5.3 Agglomeration rules

Agglomeration in ? consists in replacing ? and its surrounding transitions (feeders
and consumers) to build instead a transition for every element in the Cartesian product
•? × ?• that represents the effect of the sequence of firing a transition in •? then
immediately a transition in ?•. This "acceleration" of tokens in ? reduces interleaving
in the state space, but can preserve properties of interest if ? is chosen correctly. This
type of reduction has been heavily studied [11, 12] as it forms a common ground between
structural reductions, partial order reductions and techniques that stem from transaction
reduction.
Definition 7. Agglomeration of a place ? ∈ P:
∀ℎ ∈ •?,∀ 5 ∈ ?•, define a new transition C:{

Let : = W+ (?,ℎ)
W− (?, 5) , : ∈N, : ≥ 1,

W− (C) =W− (ℎ) + : ·W− (5) ∧W+ (C) =W+ (ℎ) + : ·W+ (5)

Discard transitions in •? and ?•. Discard place ?.

Note the introduction of the : factor, reflecting how many times 5 can be fed by
one firing of ℎ. This factor should be a natural number for the agglomeration to be well
defined. As a post processing, it is recommended to apply identity reduction Rule 1 to
the set of newly created transitions, this set is much smaller than the full set of transitions
but often contains duplicates.

12 Y. Thierry-Mieg

Rule 14. Pre Agglomeration
Applicability: Deadlock, Safety
Description: Basically, we assert that once an ℎ ∈ •? transition becomes enabled, it will
stay enabled until some tokens move into the place ? by actually firing ℎ. Transition ℎ
cannot feed any other places, so the only behaviors it enables are continuations 5 that
feed from ?. So we can always "delay" the firing of ℎ until it becomes relevant to enable
an 5 transition. We fuse the effect of tokens exiting ? using 5 with its predecessor action
ℎ, build a set of ℎ. 5 agglomerate actions and discard ?.
Definition:
∃? ∈ P \Supp ? not in support
<0 (?) = 0 initially unmarked
•?∩ ?• = ∅ distinct feeders and consumers
•? ⊆ SC feeders are stuttering
∀ℎ ∈ •?,

W+ (?, ℎ) = 1, feed arc weights are one
ℎ• = {?} ? is the single output of ℎ
∃?1 ∈ P,W+ (?1, ℎ) <W− (?1, ℎ) ℎ is divergent free
∀?2 ∈ •ℎ, ?2• = {ℎ} ℎ is strongly quasi-persistent

∀ 5 ∈ ?•, {
W− (?, 5) = 1 consume arc weights are one

Then perform a pre agglomeration in ?.
Correctness: ⇒: Any sequence using an ℎ and an 5 still has an image using the
agglomerated transition ℎ. 5 in the position 5 was found in the original sequence.
Because ℎ is invisible and only feeds ? that is itself not in the support, delaying it does
not lose any observable behaviors.⇐: Any state that is reachable in the new net by firing
an agglomerate transition ℎ. 5 was already reachable by firing the sequence ℎ then 5 in
the original net, so no behavior is added.
Notes: Pre agglomeration is one of the best known rules, this version is generalized to
more than one feeder or consumer and uses terminology taken from [11].

Rule 15. Post Agglomeration
Applicability: Deadlock, Safety
Description: Basically, we assert that once ? is marked, it fully controls its outputs, so
the tokens arriving in ? necessarily have the choice of when and where they wish to go
to. Provided ? is not in the support and its output transitions are invisible, we can fuse
the effects of feeding ? with an immediate choice of what happens to those tokens after
that. We fuse the effect of tokens entering ? using ℎ with a successor action 5 , build a
set of ℎ. 5 agglomerate actions and discard ?.
Definition: If
∃? ∈ P \Supp ? not in support
<0 (?) = 0 initially unmarked
•?∩ ?• = ∅ distinct feeders and consumers
?• ⊆ SC consumers are stuttering
∀ 5 ∈ ?•,{
• 5 = {?} no other inputs to 5
∀ℎ ∈ •?,W− (?, ℎ)/W+ (?, 5) ∈N natural ratio constraint

Structural Reductions Revisited 13

Then perform a post agglomeration in ?.
Correctness:⇒: Any sequence using an ℎ still has an image using the agglomerated
transition ℎ. 5 in the position ℎ was found in the original sequence, that leads to a state
satisfying the same propositions since 5 transitions stutter. Any sequence using an 5

transition must also have an ℎ transition preceding it, and the same trace where the 5
immediately follows the ℎ is feasible in both nets and leads to a state satisfying the same
propositions. It is necessary that the 5 transitions stutter so that moving them in the trace
to immediately follow ℎ does not lead to observably different states.⇐: Any state that is
reachable in the new net by firing an agglomerate transition ℎ. 5 was already reachable
by firing the sequence ℎ then 5 in the original net, so no behavior is added.
Notes: Post agglomeration has been studied a lot in the literature e.g. [11], this version
is generalized to an arbitrary number of consumers and feeders and a natural ratio
constraint on arc weights. This procedure can grow the number of transitions when both
| • ? | and |? • | are greater than one, which becomes more likely as agglomeration rules
are applied, and can lead to an explosion in the number of transitions of the net. In
practice we refuse to agglomerate when the Cartesian product size is larger than 32.

Rule 16. Free Agglomeration
Applicability: Safety
Description: Basically, we assert that all transitions ℎ that feed ? only feed ? and are
invisible. It is possible that the original net lets ℎ fire but never enables a continuation
5 , these behaviors are lost since resulting ℎ. 5 is never enabled, making the rule only
valid for safety. In the case of safety, firing ℎ makes the net lose tokens, allowing less
observable behaviors until a continuation 5 ∈ ?• is fired, so the lost behavior leading to
a dead end was not observable anyway. We agglomerate around ?.
Definition:
∃? ∈ P \Supp ? not in support
<0 (?) = 0 initially unmarked
•?∩ ?• = ∅ distinct feeders and consumers
•? ⊆ SC feeders are stuttering
∀ℎ ∈ •?, {

ℎ• = {?} ? is the single output of ℎ
W+ (?, ℎ) = 1 feed arc weights is one

∀ 5 ∈ ?•, {
W− (?, 5) = 1 consume arc weights is one

Then perform a free agglomeration in ?.
Correctness:⇒: If there exists a sequence using one of the 5 transitions in the original
system, it must contain an ℎ that precedes the 5 . The trace would also be possible if
we delay the ℎ to directly precede the 5 , because ℎ only stores tokens in ?, it cannot
causally serve to mark any other place than ?, and since ℎ transitions are stuttering
it leads to the same observable state in the new system. Traces that do not use an 5

transition are not impacted. Sequences that use an ℎ but not an 5 are no longer feasible,
but because ℎ transitions stutter, the same sequence without the ℎ that is still possible in
the new system would lead to the same observable states. So no observable behavior is
lost as sequences and behaviors that are lost were not observable.⇐: Any state that is
reachable in the new net by firing an agglomerate transition ℎ. 5 was already reachable

14 Y. Thierry-Mieg

by firing the sequence ℎ then 5 in the original net, so no behavior is added.
Notes: Free agglomeration is a new rule, original to this paper that can be understood
as relaxing conditions on pre-agglomeration in return for less property preservation. It
is a reduction that may remove deadlocks, as it is no longer possible to fire ℎ without 5 ,
which forbids having tokens in ? that could potentially be stuck because no 5 can fire.
After firing ℎ the net is less powerful since we took tokens from it and placed them in
?, these situations are no longer reachable.

Rule 17. Controlling Marked Place
Applicability: Deadlock, Safety
Description: A place ? that is initially marked and which is the only input of its single
stuttering output transition C, can be emptied using C. Since ? controls its output, once it
is emptied it will be post-agglomerable.
Definition: If ∃? ∈ P, ?• = {C},•C = {?}, ? ∉ C•,∃: ∈ N,<0 (?) = : ·W− (?, C), update
<′0 = <0 + : ·W4 (C).
Correctness:⇒:Since C is stuttering and only consumes from ?, firing it at the beginning
of any firing sequence will not change the truth value of the property in the reached
state.⇐: the new initial state was already reachable in the original model.
Notes: This is the first time to our knowledge that a structural reduction rule involving
tokenmovement is proposed. This reduction alsomay also consume someprefix behavior
as long as a single choice is available.

6 Graph-based Reduction Rules

In this section we introduce a set of new rules that reason on a structural over approx-
imation of the net behavior to quickly discard irrelevant behavior. The main idea is to
study variants of the token flow graph underlying the net to compute when sufficient
conditions for a reduction are met.

In these graphs, we use places as nodes and add edges that partly abstract away the
transitions. Different types of graphs considered, all are abstractions of the structure of
the net. A graph is a tuple � = (#,�) where nodes # are places # ⊆ P and edges � in
P ×P are oriented. We can notice these graphs are small, at most |P | nodes, so these
approaches are structural.

We consider that computing the prefix of a set of nodes, and computing strongly
connected components (SCC) of the graph are both solved problems. The prefix of (
is the least fixed point of the equation ∀B ∈ (,∃B′, (B′, B) ∈ � ⇒ B′ ∈ (. The SCC of a
graph form a partition of the nodes, where for any pair of nodes (?, ?′) in a subset, there
exists a path from ? to ?′ and from ?′ to ?. The construction of the prefix is trivial;
decomposition into SCC can be computed in linear time with Tarjan’s algorithm.

Rule 18. Free SCC
Applicability: Deadlock, Safety
Description: Consider a set of places % not in the support are linked by by elementary
transitions (one input, one output). Tokens in any of these places can thus travel freely
to any other place in this SCC. We can compute such SCC, and for each one replace all
places in the SCC by a single "sum" place that represents it.

Structural Reductions Revisited 15

Definition: We build a graph that contains a node for every place in P \ Supp and an
edge from ? to ?′ iff. ∃C ∈ T ,•C = {?} ∧W− (?, C) = 1, C• = {?′} ∧W+ (?′, C) = 1.

For each SCC (of size 2 or more of this graph, we define a new place ? such
that: ∀C ∈ T ,W− (?, C) =

∑
?′∈(W− (?′, C) ∧W+ (?, C) =

∑
?′∈(W+ (?′, C), and <0 (?) =∑

?′∈(<0 (?′). Then we discard all places in the SCC (.
Correctness:⇒: Any scenario that required to mark one or more places of the SCC is
still feasible (more easily) using the "sum" place; no behavior has been removed. ⇐:
The sum place in fact represents any distribution of the tokens it contains within the
places of the SCC in the original net. Because these markings were all reachable from
one another in the original net, the use of the abstract "sum" place does not add any
behavior.
Notes: This powerful rule is computationally cheap, provides huge reductions, and is
not covered by classical pre and post agglomerations. [5] has a similar rule limited to
fusing two adjacent places linked by a pair of elementary transitions. This rule (and a
generalization of it) is presented using a different formalization in [2].

Rule 19. Prefix of Interest: Deadlock
Applicability: Deadlock
Description: Consider the graph that represents all potential token flows, i.e. it has an
edge from every input place of a transition to each of its output places. Only SCC (lakes)
in this token flow graph can lead to absence of deadlocks in the system, if the net flows
has no SCC (like a river), it must eventually must lose all its tokens and deadlock. Tokens
and places that are initially above (feeding streams) or in an SCC are relevant, as well
as tokens that can help empty an SCC (they control floodgates). The rest of the net can
simply be discarded.
Definition: We build a graph � that contains a node for every place in P and an edge
from ? to ?′ iff. ∃C ∈ T , ? ∈ •C ∧ ?′ ∈ C•

We compute the set of non trivial SCC of this graph �: SCC of size two or more, or
a consisting of a single place ? but only if it has a true self-loop ∃C ∈ T ,•C = C• = {?}∧
W− (?, C) =W+ (?, C). We let (contain the union of places in these non trivial SCC. We
add predecessors of output transitions of this set to the set, (← (∪{•C | ∃? ∈ (,∃C ∈ ?•}.
This step not iterated. We then compute in the graph the nodes in the prefix of (add
them to this set (.

We finally discard any places that do not belong to Prefix of Interest (, as well as
any transition fed by such a place. Discard all places ?, ? ∉ (, and transitions in ?•.
Correctness: ⇒: The parts of the net that are removed inevitably led to a deadlock
(ending in a place with no successor transitions or being consumed) for the tokens that
entered them. These tokens now disappear immediately upon entering the suffix region,
correctly capturing the fact this trace would eventually lead to a deadlock in the original
net. So no deadlocks have been removed.⇐: Any scenario leading to a deadlock must
now either empty the tokens in the SCC or consist in interlocking the tokens in the SCC.
Such a scenario using only transitions that were preserved was already feasible in the
original net, reaching a state from which a deadlock was inevitable once tokens had
sufficiently progressed in the suffix of the net that was discarded.
Notes: This very powerful rule is computationally cheap and provides huge reductions.
The closest work we could find in the literature was related to program slicing rather

16 Y. Thierry-Mieg

than Petri nets. The main strength is that we ignore the structure of the discarded parts,
letting us discard complex (not otherwise reducible) parts of the net. The case where (
is empty because the net contains no SCC is actually relatively common in the MCC
and allows to quickly conclude.

Rule 20. Prefix of Interest: Safety
Applicability: Safety
Description: Consider the graph that represents all actual token flows, i.e. it has an edge
from every input place ? of a transition C to each of its output places ?′ distinct from ?,
but only if C is not just reading from ?′. This graph represents actual token movements
and takes into account read arcs with an asymmetry. A transition consuming from ?1
to feed ?2 under the control of reading from ?3 would induce an edge from ?1 to ?2
and from ?3 to ?2, but not from ?1 to ?3. Indeed ?1 is not causally responsible for the
marking in ?3 so it should not be in its prefix.

We start from places in the support of the property, which are interesting, as well
as all predecessors of transitions consuming from them (these transitions are visible by
definition). These places and their prefix in the graph are interesting, the rest of the net
can simply be discarded.
Definition: We build a graph � that contains a node for every place in P and an edge
from ? to ?′ iff.

∃C ∈ T , ? ∈ •C ∧ ?′ ∈ C •∧? ≠ ?′∧W− (?′, C) ≠W+ (?′, C)

We let (contain the support of the property (= Supp.
We add predecessors of output transitions of this set to the set,

(← (∪ {•C | ∃? ∈ (,∃C ∈ ?•}. This step not iterated.
We then add any place in the prefix of (to the interesting places (. We finally discard

all places ? ∈ P \ (, and for each of them the transitions in ?•.
Correctness:⇒: The parts of the net that are removed are necessarily stuttering effects,
leading to more stuttering effects. The behavior that is discarded cannot causally influ-
ence whether a given marking of the original net projected over the support is reachable
or not. Any trace of the original system projected over the transitions that remain in new
net is still feasible and leads to a state having the same properties as the original net.
So no observable behavior has been removed.⇐: Any trace of the new system is also
feasible in the original net, and leads to a state satisfying the same properties as in the
original net. So no behavior has been added.
Notes: This very powerful rule is computationally cheap, provides huge reductions,
and is not otherwise covered in the literature. Similarly to the rule for Deadlock, it can
discard complex (not otherwise reducible) parts of the net. The refinement in the graph
for read arcs allows to reduce parts of the net (including SCC) that are controlled by the
places of interest, but do not themselves actually feed or consume tokens from them.

7 SMT-backed Behavioral Reduction Rules

Leveraging the over-approximation of the state space defined in Section 4, we now define
reduction rules that test behavioral application conditions using this approximation.

Structural Reductions Revisited 17

Rule 21. Implicit place
Applicability: Deadlock, Safety
Description: An implicit place ? never restricts any transition C in the net from firing:
if C is disabled it is because some other place is insufficiently marked, never because of
?. Such a place is therefore not useful, and can be discarded from the net.
Definition: Implicit place: a place ? is implicit iff. for any transition C that consumes
from ?, if C is otherwise enabled, then ? is sufficiently marked to let C fire. Formally,

∀< ∈ R,∀C ∈ ?•, (∀?′ ∈ •C \ {?},<(?′) ≥W− (?′, C)) ⇒ <(?) ≥W− (?, C)

To use our SMT engine to determine if a place ? ∈ P \ Supp is assuredly implicit,
we assert:

∃C ∈ ?•,<? <W− (?, C) ∧∀?′ ∈ •C \ {?},<?′ ≥W− (?′, C)

If the result in UNSAT, we have successfully proved ? is implicit and can discard it.
Correctness:⇒: Removing a place cannot remove any behavior.⇐: Removing the

place ? does not add behavior since it could not actually disable any transition.
Notes: The notion of implicit place and how to structurally or behaviorally characterise
them is discussed at length in [10], but appears already in [1].

We recommend to heuristically start by testing the places that have the most output
transitions, as removing them has a larger impact on the net. The order is important when
two (or more) places are mutually implicit, so that each of them satisfies the criterion,
but they share an output transition C that only consumes from them (so both cannot be
discarded).

Rule 22. Structurally Dead Transition
Applicability: Deadlock, Safety
Description: If in any reachable marking C is disabled, it can never fire and we can
discard C.
Definition: For each transition C ∈ T , we use our Safety procedure to try to prove the
invariant "C is disabled" negatively expressed by asserting:∧

?∈•C
<? ≥W− (?, C)

If the result is UNSAT, we have successfully proved C is never enabled and can
discard it.
Correctness: ⇒: C was never enabled even in the over-approximation we consider,
therefore discarding it does not remove any behavior.⇐: Removing a transition cannot
add any behavior.
Notes: Because of the refined approximation of the state space we have, this test is quite
strong in practice at removing otherwise reduction resistant parts of the net.

8 Evaluation

8.1 Implementation
The implementation of the algorithms described in this paper was done in Java and
relies on Z3 [15] as SMT solver. The code is freely available under the terms of

18 Y. Thierry-Mieg

Gnu GPL, and distributed from http://ddd.lip6.fr as part of the ITS-tools. Using
sparse representations everywhere is critical; we work with transition based column
sparse matrix (so preset and postset are sparse), and transpose them when working
with places. The notations we used when defining the rules in this paper deliberately
present immediate parallels with an efficient sparse implementation of markings and
flow matrices. For instance, because we assume that ∀? ∈ •C is a sparse iteration we
always prefer it to ∀? ∈ P in rule definitions.

Our random explorer is also sparse, can restart (in particular if it reaches a deadlock,
but not only), is more likely to fire a transition again if it is still enabled after one
firing (encouraging to fully empty places), can be configured to prefer newly enabled
transitions (pseudo DFS) or a contrario transitions that have been enabled a long time
(pseudo BFS). It can be guided by a Parikh firing count vector, where only transitions
with positive count in the vector are (pseudo randomly) chosen and counts decremented
after each firing. For deadlock detection, it can also be configured to prefer successor
states that have the least enabled events. These various heuristics are necessary as some
states are exponentially unlikely to be reached by a pure random memory-less explorer.
Variety in these heuristics where each one has a strong bias in one direction is thus
desirable. After each restart we switch heuristic for the next run.

The setting of Section 2 is rich enough to capture the problems given in the Model
Checking Contest in the Deadlock, ReachabilityFireability and ReachabilityCardinality
examinations. We translate fireability of a transition C to the state based predicate < ≥
W− (C). We also negate reachability properties where appropriate so that all properties
are positive invariants that must hold on all states. To perform a reduction of a net and
a set of safety properties, we iterate the following steps, simplifying properties and net
as we progress:

1. We perform a random run to see if we can visit any counter-example markings
within a time bound.

2. We perform structural reductions preserving the union of the support of remaining
properties.

3. We try to prove that the remaining properties hold using the SMT based procedure.
4. If properties remain, we now have a candidate Parikh vector for each of them that

we try to pseudo-randomly replay to contradict the properties that remain.
5. If the computation has not progressed yet in this iteration, we apply the more costly

SMT based structural reduction rules (see Sec. 7)
6. If the problem has still not progressed in this iteration, we do a refined analysis to

simplify atoms of the properties, reducing their support
7. As long as at least one step in this process has made progress, and there remain

properties to be checked, we iterate the procedure.

Step 6 is trying to prove for every atomic proposition in every remaining property
that the atom is invariant: its value in all states is the same as in the initial state. Any
atom thus proved to be constant can then be replaced by its value in the initial state to
simplify the properties and their support. This procedure is also applicable to arbitrary
temporal logic formulas, as shown in [4]. We can thus in some cases even solve CTL
and LTL logic formulas by reducing some of their atomic propositions to true or false.

Structural Reductions Revisited 19

8.2 Experimental Validation

We used the MCC2019 models and formulas, limiting ourselves to examinations where
all formulas were solved in 2019. All the formulas solved by our tool agree with the
control values from the contest 2. An examination consists in a model instance and
either 16 safety predicates (cardinality or fireability) or a single deadlock detection task.
Model instances come from 90 distinct families of Petri nets, some of which features
colors.

For deadlock detection, the approach was able to fully solve 902 (536 true, 366
false) out of 932 deadlock problem instances (96.8%), where true means a deadlock was
found. For safety properties, we fully solved 1634 out 1748 examinations (93.5%), and
in total reduced 27594 out of 27968 formulas to true or false (98.6%).

We limited our experiments to 12 minutes of runtime and 8�� of RAM. We feel
this is a reasonable timeout for a filter in front of an exhaustive model-checker since the
contest gives 1 hour per examination. 21 of the 2680 examinations timed out; the total
runtime was 82: seconds thus averaging at 31 seconds per examination overall.

Of the 28496 formulas solved, the solutions were due to pseudo-random explo-
ration or Parikh guided exploration in 17829(62%) of formulas, to structural reductions
and immediate simplification for 4720(17%) formulas and the SMT procedure proved
5947(21%) formulas in total. These statistics reveal a bias in the benchmark in favor of
invariants that can be disproved by a counter-example.

The reduction rules presented in this paper are all relevant on this benchmark for
more than one model, and combine on top of each other to achieve superior reductions.

The problems that are not fully solved often have small state spaces on which
invariants do hold, but which the SMT constraints fail to prove and our memory-less
explorer cannot prove. The SMT solver is particularly useful; besides proving properties
to be true, in many cases the reduction becomes stuck until SMT can prove some places
to be implicit, which starts another round of reductions. The randommemory-less walker
also benefits hugely from reductions since they make it increasingly likely that we can
observe the target situation within a reasonable number of steps.

9 Conclusion

The approach presented in this paper combines over-approximation using an SMT solver,
under-approximation by sampling with a random walk, and works with a system that is
progressively simplified by property preserving structural reduction rules.

Structural approaches are a strong class of techniques to analyse Petri nets, that by-
pass state space explosion inmany cases. Structural reductions are particularly appealing
because any gain in structural complexity usually implies an exponential state space re-
duction. The approach presented in this paper is complementary of other verification
strategies as the behavior for the given properties is preserved by the transformations: it
can act as an elaborate filter in front of any verification tool.

2 The raw logs and procedure to reproduce the experiment are available on https://lip6.
github.io/ITSTools-web/structural.html as well as graphically rendered examples.

20 Y. Thierry-Mieg

The choice of using an SMT based solver rather than a more classical ILP engine
gives us flexibility and versatility, so that extending the refinement with new constraints
is relatively easy. Our current directions include some new partial agglomeration rules
where only some transitions stutter, investigating other more complete ways of replaying
a Parikh candidate such as the approach proposed in [17], and extending our set of
reduction rules to cover more fully the new advanced rules presented in [2].

References

1. Berthelot, G.: Checking properties of nets using transformation. In: Applications and Theory
in Petri Nets. Lecture Notes in Computer Science, vol. 222, pp. 19–40. Springer (1985)

2. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Counting Petri net markings from reduction
equations. International Journal on Software Tools for Technology Transfer (Apr 2019)

3. Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: ICE. EPTCS,
vol. 189, pp. 53–67 (2015)

4. Bønneland, F., Dyhr, J., Jensen, P.G., Johannsen,M., Srba, J.: Simplification of CTL formulae
for efficient model checking of Petri nets. In: Petri Nets. Lecture Notes in Computer Science,
vol. 10877, pp. 143–163. Springer (2018)

5. Bønneland, F.M., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Stubborn versus structural
reductions for Petri nets. J. Log. Algebr. Meth. Program. 102, 46–63 (2019)

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: CAV. LNCS, vol. 1855, pp. 154–169. Springer (2000)

7. D’Anna, M., Trigila, S.: Concurrent system analysis using Petri nets: an optimized algorithm
for finding net invariants. Computer Communications 11(4), 215–220 (1988)

8. Esparza, J., Melzer, S.: Verification of safety properties using integer programming: Beyond
the state equation. Formal Methods in System Design 16(2), 159–189 (2000)

9. Evangelista, S., Haddad, S., Pradat-Peyre, J.: Syntactical colored Petri nets reductions. In:
ATVA. Lecture Notes in Computer Science, vol. 3707, pp. 202–216. Springer (2005)

10. García-Vallés, F., Colom, J.M.: Implicit places in net systems. In: PNPM. pp. 104–113. IEEE
Computer Society (1999)

11. Haddad, S., Pradat-Peyre, J.: New efficient Petri nets reductions for parallel programs verifi-
cation. Parallel Processing Letters 16(1), 101–116 (2006)

12. Laarman, A.: Stubborn transaction reduction. In: NFM. Lecture Notes in Computer Science,
vol. 10811, pp. 280–298. Springer (2018)

13. Lipton, R.J.: Reduction: A method of proving properties of parallel programs. Commun.
ACM 18(12), 717–721 (1975)

14. Liu, G., Barkaoui, K.: A survey of siphons in Petri nets. Inf. Sci. 363, 198–220 (2016)
15. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. Lecture Notes in

Computer Science, vol. 4963, pp. 337–340. Springer (2008)
16. Murata, T.: State equation, controllability, and maximal matchings of Petri nets. IEEE Trans-

actions on Automatic Control 22, 412–416 (1977)
17. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. In: TACAS. Lecture

Notes in Computer Science, vol. 6605, pp. 224–238. Springer (2011)

