Yacouba Rabba 
  
Two methods of stabilization of a wave equation with a dynamical boundary control

We are concern with a wave equation with a dynamic boundary condition.At the first time we use the multiplier method to prove the rational energy decay rate and then we prove the optimality of this decay by using Littman's and Markus's theorem which is a spectral method.

1 Introduction and main results.

We define V = {y ∈ H 1 (0, 1), y(0) = 0}, and H = V × L 2 (0, 1) × R. H is a Hilbert space endowed with the inner product (u, u) H = 1 0 (y x y x + z z)dx + η η, with u = (y, z, η), u = ( y, z, η) We are going to studie the following system    y tt -y xx = 0 y(0, t) = 0 y tt (1, t) + y t (1, t) + y x (1, t) = 0 [START_REF] Benchimol | A note on weak stabilizability of contraction semigroups[END_REF] Setting u := (y(x, t), y t (x, t), y t (1, t)) and z(x) := y t (x, t), so z(1) = y t (1, t). du dt = (y t , y tt , y tt (1))

= (z, y xx , -y x (1) -z(1))

= (z, y xx , -y x (1)) + (0, 0, -z(1)).

Furthermore, setting

Au := (z, y xx , -y x (1)) and Bu := (0, 0, -z(1))

with D(A) = {u = (y, z, η) ∈ H, y ∈ H 2 (0, 1), z ∈ V, η = z(1)} ⊂ H, and D(B) = H, we may rewrite (1) in the form

du dt = Au + Bu, with u(0) = u 0 ∈ H. (2) 
Since ((A+B)u, u) = -z 2 (1), (by a simple computing) , and R(I-(A+B)) = H (the proof is based on the same technique used in [START_REF] Brezis | Analyse fonctionnelle, théorie et applications[END_REF] at page 141) we have by applying theorem 1.2.3 of [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] at page 3, that the operator A + B generates a C 0 semigroup of contraction S(t), so this problem is well posed. Let u be a smooth solution of this system, his associated energy is

E(t) = 1 2 1 0 (y 2 t + y 2 x )dx + y 2 t (1, t) ,
and we are going to prove, by using the multiplier method that

E(t) ≤ E(0) 2M M + t , ∀t ≥ 0,
for this we will apply the following theorem of Haraux: Theorem :if a nonincreasing function, E : R + → R + is such that there exists a constant M such that:

+∞ S E 2 (t)dt ≤ M E(0)E(S), ∀S > 0, then E(t) ≤ E(0) 2M M + t , ∀t ≥ 0.
After this, we prove by a spectral method that this rational decay rate is optimal by using the following theorem of Littman and Markus : Theorem : Consider a C 0 -semigroup S A (t) acting on a real or complex Hilbert space H, with infinitesimal generator A. If (i)the eigenvalues λ n of A are of the form λ n = -σ n + iτ n with σ n > a n δ , a > 0, δ > 0, (ii)the eigenvectors {Φ n } n≥1 associated to the eigenvalues λ n form a Riez basis in H, (iii)and u 0 ∈ H is such that

u 0 = n≥1 a n Φ n , |a n | ≤ b n q b > 0, q > 1 2
then there exists a constant C > 0 depending on u 0 such that

S A (t)u 0 H ≤ C t q-1 2 δ , ∀t > 0.
Remark: if we assume that σ n ∼ 1 n δ and a n ∼ 1 n q , then we have

S A (t)u 0 H ∼ C t q-1 2 δ , ∀t > 0.
2 The multiplier method.

Taking the derivative of E(t), we have E t (t) = -y 2 t (1, t), so the energy is a decreasing function. Let us make a remark: E(t) = 1 2 u 2 . So we can define the energy of high order : E 1 (t) = 1 2 u t 2 . So we begin by the equality y tt = y xx , that we multiply by xy x E(t), then we integrate by parts for

x ∈]0; 1[, 0 ≤ S ≤ t ≤ T, to obtain T S 1 0 y 2 t E(t)dxdt + T S 1 0 y 2 x E(t)dxdt = T S y 2 x (1, t)E(t)dt+ T S y 2 t (1, t)E(t)dt+2 T S 1 0 y t xy x E t (t)dxdt-2[ 1 0 y t xy x E(t)dx] T S .
Then we have to majorize each of the four terms of the second member of this equality.

Since for (a, b) ∈ R 2 , ab = 1 2 × 2ab ≤ 1 2 (a 2 + b 2 ), we have 1 0 y t xy x dx ≤ 1 2 1 0 y 2 t dx + 1 0 x 2 y 2 x dx ≤ 1 2 1 0 y 2 t dx + 1 0 y 2 x dx ≤ E(t),
so by multiplying by -E t (t), which is positive real number we obtain

T S 1 0 y t xy x E t (t)dxdt ≤ - T S E(t)E t (t)dt = 1 2 (E 2 (S)-E 2 (T )) ≤ 1 2 E 2 (S) ≤ 1 2 E(S)E(0), then - 1 0 y t xy x E(t)dx T S ≤ 2E 2 (S) ≤ 2E(0)E(S), then T S y 2 t (1, t)E(t)dt ≤ E(S) T S y 2 t (1, t)dt = E(S) T S -E t (t)dt = E(S)(E(S) -E(T )) ≤ E(S)E(0), and 
T S y 2 x (1, t)E(t)dt = T S (-y t (1, t) -y tt (1, t)) 2 E(t)dt ≤ 2 T S y t (1, t) 2 E(t)dt + 2 T S y tt (1, t) 2 E(t)dt ≤ 2E(S)E(0) + 2E(S) T S y tt (1, t) 2 dt ≤ 2E(S)E(0) + 2E(S)(E 1 (S) -E 1 (T )) ≤ 2E(S)E(0) + 2E(S)E 1 (S) ≤ 2E(S)E(0) + 2E(S)E 1 (0) ≤ 2E(S)(E(0) + E 1 (0)). Consequently T S E 2 (t)dt ≤ E(S)E(0)M, for M, a constant, then as T ≥ S, +∞ S E 2 (t)dt ≤ E(S)E(0)M,
then as E is a nonincreasing function, we apply Haraux's theorem :

E(t) ≤ E(0) 2M M + t ∀t ≥ 0.
Let λ ∈ C be an eigenvalue and u = (y, z, z(1)) ∈ D(A + B), the eigenvector of A + B. So we have

y xx -λ 2 y = 0, 0 < x < 1, y(0) = 0, -y x (1) = (λ + 1)z(1) z = λy.
So the general solution of this system is given by y(x) = Csh(λx), C ∈ C. It is remarquable that 0 isn't an eigenvalue of A + B. By using the boundary condition at x = 1 to deduce that λ is an eigenvalue of A + B if and only if λ is a zero of the function f (z) = (z + 2)e 2z -z . By the same technique we find that ıµ ∈ iR is an eigenvalue of the operator A if and only if iµ is a zero of the function g(z) = (z + 1)e 2z -z + 1. By using Hadamard's factorization theorem, we can prove that the function f (z) has infinite number of roots λ n for n ∈ Z.

Let us prove that the algebraic multiplicity of an eigenvalue λ of A + B is one.By the above system, we have ker(A + B -λI) = vect(sh(λx), λsh(λx), λsh(λ)).

We do a reasoning by the absurd, so let us assume that there exists u = (y, z, z(1)) ∈ ker(A + B -λI) 2 \ker(A + B -λI).

Then u = (y, z, z(1)) is a solution of

(A + B)u = λu + v, v ∈ ker(A + B -λI).
So v = C(sh(λx), λsh(λx), λsh(λ)) for a constant C.For simplify we choose C = 1 λ , so we deduce that

y xx = λ 2 y + 2sh(λx) -y x (1) = (1 + λ)(λy(1) + 1 λ sh(λ)) + sh(λ) y(0) = 0
So we find that the general solution is

y(x) = Csh(λx) + x λ ch(λx) for a constant C.
Using the boundary condition at x = 1, we have

th(λ) = - λ 2 + λ + 1 3λ + 1 .
On the other hand th(λ) = -1 1+λ , since λ is an eigenvalue . Consequently

λ = 0, or -1 - √ 2, or -1 + √ 2, but 0 isn't an eigenvalue, so λ = -1 - √ 2, or -1 + √ 2, but this again is impossible since th(λ) = -1 1+λ . If λ n is for n → +∞,
an eigenvalue of A + B, we use complex analysis argument about the logarithm and this expansion for x, in a neighborhoud of 0, ln(x -1) = -x -x 2 2 -x 3 3 + O(x 4 ), to obtain the expansion

λ n = i(πn + 1 πn - 7 3π 3 n 3 ) - 1 π 2 n 2 + O( 1 n 4 ),
and for α n , an eigenvalue of A, we obtain

α n = i(πn + 1 πn - 4 3π 3 n 3 ) + O( 1 n 4 ),
Here is an important lemme. Lemme : there exist an integer N such that, for n > N, the function f has 4n -2 roots in C n , with C n =] -nπ, nπ[×] -nπ, nπ[. we want to apply Rouche's theorem to f and g,therefore we have to prove on ∂C n , the inequality |f (z) -g(z)| < |g(z)|. Let us make the proof:

|f (z)-g(z)| = |e 2z -1|, and |g(z)| = |(z+1)(e 2z -1)+2| > |z+1||e 2z -1|-2, so |g(z)| > (|z| -1)(|f (z) -g(z)| -2) > |f (z) -g(z)
|, for |z| sufficiently large, so for z ∈ C n , the disired inequality will be obtained for n, sufficiently large.This means that for n > N, with N ∈ N. Now we study the roots of g(z) on the imaginary axe, so we will see that for

x ∈ R, g(ix) = 0 ⇒ tan(x) = 1 x , since d dx (tan(x) - 1 x ) = 1 + tan 2 (x) + 1 x 2 > 0, g has 4n -2 roots in C n .
Recall that iα n ∈ iR is an eigenvalue of A, and u n the associated eigenvector, by choosing some suitable constants u 0 = (1, 0, 0), and for n = 0, u n = ( 1 α n sh(α n x), sh(α n x), sh(α n )),

It is easy to note that (iA) -1 is self-adjoint and compact, so un un , is a Hilbert basis, and since by simple computing

u n 2 = 1 + 1 π 2 n 2 + O( 1 n 3 ) → 1, u n
, is a Riesz basis . By using above expansion of α n , and λ n , it's easy to show that

n∈Z-{0} u n -v n 2 < ∞,
with u n = ( 1 αn sh(α n x), sh(α n x), sh(α n )), the eigenvectors of A, and v n = ( 1λn sh(λ n x), sh(λ n x), sh(λ n )), those of A + B. Now we want to prove that the system (v n ) n∈Z-{0} , is ω-linearly independent, for this we solve:

given (y 0 , z 0 , z 0 (1)), (A + B)(y, z, z(1)) = (y 0 , z 0 , z 0 (1)), we find So by defining G, by G(y) =

z = y 0 , z ( 
x 0 t 1 y(s)dsdt, we have

i(A + B) -1 = i   0 G 0 id V 0 0 0 0 0   + i   -xδ 1 0 -xid R 0 0 0 δ 1 0 0   ,
the first term of this decomposition is bounded and self-adjoint and the second one is compact, therefore, with [START_REF] Gohberg-Krein | Introduction to the Theory of Linear nonselfadjoint Operators[END_REF],Theorem 1.5.2, (v n ) n∈Z-{0} , is ωlinearly independent .So since n∈Z-{0} u n -v n 2 < ∞, and since (u n ), is a Hilbert basis, we can use Bari's theorem (see [START_REF] Gohberg-Krein | Introduction to the Theory of Linear nonselfadjoint Operators[END_REF] ) to conclude that (v n ), is a Hilbert basis too. Now that we have a Riesz basis of A + B, we can apply Littman-Markus theorem : let us take u 0 = n∈Z-{0} a n v n ∈ H, such that

|a n | ∼ b |n| q , q > 1 2
, b > 0, then

E(t) = 1 2 S A+B (t)u 0 2 ∼ C t q-1 2
, ∀t > 0.

We see that it isn't possoible to improve the rate obtained by the multiplier method by taking q = 3 2 .
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 110 = y 0 (1), y(x) = (-z 0 (1) -y 0 (1))x + x 0 (s)dsdt.