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RATIONAL ENERGY DECAY RATES BY APPLYING A THEOREM OF TOMILOV AND BORICHEV

Applying a theorem of Borichev and Tomilov, we obtain a rational decay rate for the solutions of the one-dimensional wave equation with suitable dynamic boundary conditions.In particular, we give a new proof of an earlier theorem of Wehbe.Then we apply again Borichev and Tomilov theorem for wave equation with another dynamic boundary conditions

Introduction and statement of the main results

We define V = {y ∈ H 1 (0, 1), y(0) = 0}, and H = V × L 2 (0, 1) × R, H is a Hilbert space endowed with the inner product (u, u) H = 1 0 (y x y x + z z)dx + η η, u = (y, z, η), u = ( y, z, η) ∈ H. Then we are concerned with the following system:

(1.1)

         y tt -y xx = 0
for 0 < x < 1 and t > 0, y(0, t) = 0 for t ≥ 0, y x (1, t) + η(t) = 0 for t > 0, η t (t) -y t (1, t) + βη(t) = 0 for t > 0 and a constant β > 0.

Setting z := y t and u := (y, z, η) = (y, y t , η) we have du dt = (y t , y tt , η t ) = (z, y xx , y t (1, t) -βη(t))

= (z, y xx , z(1)) + (0, 0, -βη(t)).

Furthermore, setting

Au := (z, y xx , z(1)) and Bu := (0, 0, -βη(t))

with D(A) = {u = (y, z, η) ∈ H, y ∈ H 2 (0, 1), z ∈ V, y x (1) + η = 0} ⊂ H, and D(B) = H, we may rewrite (3.1) in the form

(1.2) du dt = Au + Bu, with u(0) = u 0 ∈ H.
We recall from [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF], the following result:

Theorem 1.1. The operator A is m-dissipative, B is dissipative, then A + B generates a C 0 semigroup of contraction on H.
Consequently, the problem (3.1) is well posed in H.

Our main result is the following:

Theorem 1.2. The semigroup generated by the operator A + B has a rational decay rate:

T (t)(A + B) -1 H = O(t -1
) as t → +∞. Our proof will be based on the following important results: Theorem 1.3 (Borichev and Tomilov [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]). Let (T (t)) t≥0 be a bounded C 0 -semigroup on a Hilbert space H with a generator A satisfying iR ∈ ρ(A). Then for any fixed α > 0, the following conditions are equivalent:

R(is, A) = O(|s| α ) as s → ∞, (i) T (t)(-A) -α = O(t -1 ) as t → ∞, (ii) T (t)(-A) -α x = o(t -1 ) as t → ∞, for each fixed x ∈ H, (iii) T (t)A -1 = O(t -1 α ) as t → ∞, (iv) T (t)A -1 x = o(t -1 α ) as t → ∞, for each fixed x ∈ H. (v) 2. Proof of Theorem 1.2
We start by determining the asymptotic expansion of the eigenvalues of the operator A. Setting Au = α n u with n ∈ N and α n ∈ C, we have

(z, y xx , z(1)) = α n (y, z, η) = α n (y, z, -y x (1)).
Hence y xx = α n z = α 2 n y. Since y(0) = 0 and y(1) = -y x (1), it follows by solving the ordinary differential equation that y(x) = C n sh(α n x), and α n satisfies the following equalities:

sh(α n ) = -α n ch(α n ),
⇐⇒ e αn -e -αn = -α n (e αn + e -αn ),

⇐⇒ (1 + α n )e 2αn = 1 -α n ⇐⇒ e 2αn = -1 - 2 α n + 1 .
We use complex analysis argument about the logarithm and this expansion for x in a neighborhoud of 0 :

ln(1 -x) = -x - x 2 2 + O(x 3 )
to obtain the expansion

α n = i(πn + π 2 + 1 πn - 1 2π 2 n 2 + O( 1 n 3 ))
for n → +∞ and the associated eigenvectors are

u n = C n (sh(α n x), α n sh(α n x), -α n ch(α n )), n = 0.
Remark 2.1. 0 is an eigenvalue of the operator A associated to the eigenvector u 0 = (x, 0, -1) (see [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF]).

Remark 2.2. Our notation is different from that of Wehbe: we write α n instead of λ n (see [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF].

In order to get a Hilbert basis, we normalize vectors u n (see [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF]) to obtain the following vectors:

e n (x) = 1 1 + ch 2 α n ( 1 α n sh(α n x), sh(α n x), -ch α n ).
Let us compute the resolvent of the operator A + B. We have for every s ∈ R the following equality:

(isI -(A + B)) +∞ n=0 a n e n = +∞ n=0 ise n -A(a n e n ) -B(a n e n ) = +∞ n=0 a n (ise n -α n e n -B(e n ) = +∞ n=0 a n (ise n -α n e n + βp 3 (e n )),
where set p 3 (x, y, z) := (0, 0, z). Since

p 3 (e n ) = +∞ j=0 (p 3 (e n ) | e j )e j , it follows that (isI -(A + B))( +∞ n=0 a n e n ) = +∞ n=0 a n ise n -α n e n + β +∞ j=0 (p 3 (e n ) | e j )e j = +∞ n=0 a n ise n -α n e n + β +∞ j=0 (p 3 (e j ) | e n )e n = +∞ n=0 a n e n is -α n + β +∞ j=0 (p 3 (e j ) | e n ) = +∞ n=0 a n e n is -α n + β +∞ j=0 (p 3 (e j ) | p 3 (e n )) = +∞ n=0 a n e n   is -α n + β ch(α n ) 1 + ch 2 α n +∞ j=0 ch(α j ) 1 + ch 2 α j   .
This yields the following expression for the resolvent at is:

(isI -(A + B)) -1 +∞ n=0 a n e n = +∞ n=0 a n e n is -α n + β ch(αn) √ 1+ch 2 αn +∞ j=0 ch(α j ) √ 1+ch 2 α j .
Thanks to asymptotic expansion of α n , a simple computation leads to the following relation:

ch(α n ) 1 + ch 2 α n = 2(-1) n-1 πn + (-1) n πn 2 + O( 1 n 3 ) as n → +∞,
and this prove that the series +∞ j=0 ch(α j ) √ 1+ch 2 α j converges .

We have thus the relation

(isI -(A + B)) -1 ( +∞ n=0 a n e n ) = a 0 e 0 is + β 1 √ 2 +∞ j=0 ch(α j ) √ 1+ch 2 α j + +∞ n=1
a n e n is -i(πn

+ π 2 + 1 πn -1 2πn 2 + O( 1 n 3 )) + β 2(-1) n-1 πn + (-1) n πn 2 + O( 1 n 3 ) +∞ j=0 ch(α j ) √ 1+ch 2 α j .
Now we have the next lemma: for s → +∞, we have

|is-i(πn+ π 2 + 1 πn - 1 2πn 2 +O( 1 n 3 ))+β 2(-1) n-1 πn + (-1) n πn 2 + O( 1 n 3 ) +∞ j=0 ch(α j ) 1 + ch 2 α j | ≥ O( 1 s ) 
Proof: we recall that for a complex number z, |z| ≥ |Re(z)|, and |z| ≥ |Im(z)| so if |is -i(πn

+ π 2 + 1 πn -1 2πn 2 + O( 1 n 3 ))| ≥ O( 1 s
), the estimate of the lemma is obtained, otherwise |is -i(πn

+ π 2 + 1 πn -1 2πn 2 + O( 1 n 3 ))| ≤ O( 1 s
), for all O( 1 s ), so, since s → +∞, we have s ∼ πn, and |β 2(-1) n-1 πn

+ (-1) n 2πn 2 + O( 1 n 3 ) +∞ j=0 ch(α j ) √ 1+ch 2 α j | ≥ O( 1 s )
, then the estimate of lemma is again obtained. So the proof of lemma is complete. Consequently we have

(isI -(A + B)) -1
H = O(s) as s → +∞, so by applying the theorem of Borichev and Tomilov we get

T (t)(A + B) -1 H = O(t -1
), t → +∞, so the proof of theorem 1.2 is complete.

wave equation with another boundary condition

We define V = {y ∈ H 1 (0, 1), y(0) = 0}, and H = V × L 2 (0, 1) × R, H is a Hilbert space endowed with the inner product (u, u) H = 1 0 (y x y x + z z)dx + η η, u = (y, z, η), u = ( y, z, η) ∈ H. Then we are concerned with the following system:

(3.1)      y tt -y xx = 0 for 0 < x < 1 and t > 0, y(0, t) = 0 for t ≥ 0, y tt (1, t) + y t (1, t) + y x (1, t) = 0 for t > 0 .
Setting u := (y(x, t), y t (x, t), y t (1, t)) and z := y t (x, t) as a function of x, so z(1) = y t (1, t), then we have (the prove is based on the same technique used in [START_REF] Brezis | Analyse fonctionnelle, théorie et applications[END_REF] at page 141 ) we have by applying theorem 1.2.3 of [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] at page 3, that the operator A + B generates a C 0 semigroup of contraction S(t), so this problem is well posed . Now we are going to prove a theorem which is similar to theorem1.2 . We start by determining the asymptotic expansion of the eigenvalues of the operator A.

Setting Au = α n u with n ∈ N and α n ∈ C, we have

(z, y xx , -y x (1)) = α n (y, z, z (1)) 
Hence y xx = α n z = α 2 n y. Since y(0) = 0 and α 2 n y(1) = -y x (1), it follows by solving the ordinary differential equation that y(x) = C n sh(α n x), and α n satisfies the following equalities:

ch(α n ) = -α n sh(α n ),
⇐⇒ e αn + e -αn = -α n (e αn -e -αn ),

⇐⇒ (1 + α n )e 2αn = -1 + α n ⇐⇒ e 2αn = 1 - 2 α n + 1 .
We use complex analysis argument about the logarithm and this expansion for x in a neighborhoud of 0 :

ln(1 -x) = -x - x 2 2 - x 3 3 + O(x 4 )
to obtain the expansion

α n = i(πn + 1 πn - 4 3π 3 n 3 + O( 1 n 4 )) for n → +∞
and the associated eigenvectors are

u n = C n (sh(α n x), α n sh(α n x), α n sh(α n )), n = 0.
Remark 3.1. 0 is an eigenvalue of the operator A associated to the eigenvector u 0 = (1, 0, 0) .

In order to get a Hilbert basis, we normalize vectors u n to obtain the following vectors:

e n (x) = 1 1 + sh 2 α n ( 1 α n sh(α n x), sh(α n x), sh α n ).
Let us compute the resolvent of the operator A + B. We have for every s ∈ R the following equality: a n e n is -

α n + +∞ j=0 (p 3 (e j ) | e n ) = +∞ n=0 a n e n is -α n + +∞ j=0 (p 3 (e j ) | p 3 (e n )) = +∞ n=0 a n e n   is -α n + sh(α n ) 1 + sh 2 α n +∞ j=0 sh(α j ) 1 + sh 2 α j   .
This yields the following expression for the resolvent at is:

(isI -(A + B)) -1 +∞ n=0 a n e n = +∞ n=0 a n e n is -α n + sh(αn) √ 1+sh 2 αn +∞ j=0 sh(α j ) √ 1+sh 2 α j .
Thanks to asymptotic expansion of α n , a simple computation leads to the following relation: sh

(α n ) 1 + sh 2 α n = i(-1) n ( 1 πn - 1 π 3 n 3 + O( 1 n 4 
)) as n → +∞, and this prove that the series +∞ j=0 sh(α j ) √ 1+sh 2 α j converges .

We have thus the relation 

(isI -(A + B)) -1 ( +∞ n=0 a n e n ) = a 0 e 0 is + +∞ n=1 a n e n i((s -(πn + 1 πn -4 3π 3 n 3 + O( 1 n 4 )) + (-1) n πn -(-

  t , y tt , y tt (1)) = (z, y xx , -y x (1) -z(1)) = (z, y xx , -y x (1)) + (0, 0, -z(1)).

  Furthermore, settingAu := (z, y xx , -y x (1)) and Bu := (0, 0, -z(1))with D(A) = {u = (y, z, η) ∈ H, y ∈ H 2 (0, 1), z ∈ V, η = z(1)} ⊂ H,and D(B) = H, we may rewrite (3.1) in the form (3.2) du dt = Au + Bu, with u(0) = u 0 ∈ H. Since ((A + B)u, u) = -z(1) 2 , (by a simple computing) , and R(I -(A + B)) = H

(

  isI -(A + B)) +∞ n=0 a n e n = +∞ n=0 ise n -A(a n e n ) -B(a n e n ) = +∞ n=0 a n (ise n -α n e n -B(e n ) = +∞ n=0 a n (ise n -α n e n + p 3 (e n )),where set p 3 (x, y, z) := (0, 0, z). Since p 3 (e n ) = +∞ j=0 (p 3 (e n ) | e j )e j , it follows that (isI -(A + B))( +∞ n=0 a n e n ) = +∞ n=0 a n ise n -α n e n + +∞ j=0 (p 3 (e n ) | e j )e j = +∞ n=0 a n ise n -α n e n + +∞ j=0 (p 3 (e j ) | e n )e n = +∞ n=0

  1) n π 3 n 3 + O( 1 n 4 ) (πn + 1 πn -4 3π 3 n 3 + O( 1 n 4 ))| ≥ O( 1 s ), the estimate of the lemma is obtained, otherwise |s -(πn + 1 πn -4 3π 3 n 3 + O( 1 n 4 ))| ≤ O( 1 s), for all O( 1 s ), so, since s → +∞, we have s ∼ πn, and| (-1) n πn -(-1) n π 3 n 3 + O( 1 n 4 ) | ≥ O( 1 s ), then the estimate of lemma is again obtained. So the proof of lemma is complete. Consequently we have(isI -(A + B)) -1H = O(s) as s → +∞, so by applying the theorem of Borichev and Tomilov we getS(t)(A + B) -1 H = O(t -1), t → +∞, so the proof is complete.
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