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Abstract

This research work focuses on the so-called non-intrusive model coupling procedure which has been proposed and
widely analyzed in structural mechanics during the last decade, and which constitutes a flexible and attractive
engineering simulation tool for the analysis of localized phenomena with low implementation effort. In this context,
we propose verification tools that enable to certify the quality of approximate solutions obtained from such a non-
intrusive model coupling. They consist in computable a posteriori error estimator and indicators, constructed
in order to quantitatively assess the overall error level and the various error sources, and which are dedicated
to the practical control of the error on outputs of interest. An adaptive algorithm is then defined in order to
effectively and automatically drive the coupling process, and optimally adjust the coupling parameters (location
of the coupling interface, local mesh size, number of iterations) so that a given error tolerance is reached with
minimal computing resources. Performance of the approach is shown on several numerical experiments involving
various quantities of interest and adaptivity scenarios.

Key words: Concurrent models; Non-intrusive coupling; A posteriori error estimation; Modeling error; Model adaptation;
Goal-oriented approaches

1. Introduction

The fine analysis of localized complex phenomena has always been of major interest in simulation-based
structural mechanics engineering. A typical case is aerospace engineering, in which local phenomena due
to nonlinearities, heterogeneities, or geometric details are frequently studied over structures exhibiting
various scales (from micrometer-sized composite fibers up to meter-sized aircraft components). For this
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purpose, and in order to avoid the use of numerically expensive physical models over the whole structure,
a natural and usual practice is to introduce such high-fidelity models in a neighborhood of the regions
of interest alone, at a local scale, while simpler and computationally cheaper surrogate models are used
elsewhere at the global scale. These latter models may be obtained from homogenization or considering
the linear range of the material behavior, for instance. The corresponding model reduction procedure
leads to numerical simulations which can be performed with affordable computing resources in industrial
applications.
In this context, a wide variety of numerical methods, dedicated to multiscale and/or multi-model com-
puting, have emerged. They can roughly be categorized in two main classes. The first class, mainly
devoted to multiscale analysis with micro/macro models, consists in model enrichment by means of aug-
mented approximation spaces (using finer meshes or specific enrichment functions) and superposition of
micro/macro solutions. We may cite in this class :

— methods with enrichment based on a partition of unity (PUM) [61] such as the Generalized Finite
Element Method (GFEM) [84,26] or the eXtended Finite Element Method (XFEM) [62] ;

— other methods, such as adaptive localized Multiscale FEM (MsFEM) [48,30,20], in which specific
basis functions encode fine-scale details of the solution ;

— methods with local correction, as performed in the Variational MultiScale method (VMS) [49], the
hierarchical modeling method [65], multigrid methods [74,81], the bridging scale method [88], the chi-
mera method [15], numerical homogenization [29,33], or structural zooming with FE patches [36,76].

Nevertheless, a major drawback of these model enrichment methods is that they can hardly be used
in practical multiscale engineering activities due to their level of intrusiveness in existing commercial
software.
The second class of numerical methods, on which we particularly focus in this work, refers to model
coupling methods with interface data transfers. These have received much interest with the emergence
of new simulation trends in which several models, potentially coming from different software or physics,
are used into parallel computations that are run on modern clusters. Among the wide list of coupling
methods, and out of traditional sub-modeling (with one-way weak coupling) which is still a standard in
industry [51,87], we may refer to several advanced methods with strong coupling :

— improved iterative sub-modeling methods with global correction (taking into account the influence
of local phenomena) or static condensation [47,60,24] ;

— the mortar method [5,8,16] enforcing weak equalities at the coupling interface by means of Lagrange
multipliers ;

— the Nitsche method [44,83] ;
— energy averaging methods with volume interface such as the Arlequin method [6,7,79], the bridging

domain method [90], or the MAAD method for atomic-to-continuum couplings [17].
Domain decomposition methods, such as well-known FETI [31], BDD [59], FETI-DP [32], or mixed LA-
TIN [53,25], are also coupling methods based on Schwarz algorithms [58] and are widely used in structural
engineering [57,37]. Here again, all these model coupling approaches are intrusive as such, in the sense
that they require quite deep modifications of FE solvers and software, as well as time-consuming meshing
procedures, which is not always feasible in an industrial context.

More recently, a new and attractive class of model coupling methods referred to as non-intrusive local-
global coupling has emerged [34], following pioneering ideas developed in [89]. It consists in a substitution
approach, with iterative solver, that enables local modifications of an existing finite element model (in
terms of mesh refinement, introduction of local features related to the geometry or material behavior,
. . .) while keeping the corresponding initial numerical operators unchanged at the global level. It de-
fines a coarse global numerical model over the whole physical domain, in which geometry, connectivity,
operators and solver are fixed (the initial factorized global matrix is thus conserved along the iterative
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coupling procedure), while local modeling evolutions are performed through a separate numerical mo-
del defined over local zones or patches. Interface data are then iteratively exchanged between these two
models. Besides the increased flexibility with no global remeshing, this non-intrusive technique involving
independent local-global solvers permits an easy merging of commercial software with any other specific
simulation code dedicated to the modeling of complex phenomena of interest. Indeed, no modification
of the commercial software is required and standard input/output specifications of such software can be
fulfilled. Over the last decade, the non-intrusive local-global coupling method has been extensively applied
and analyzed in many engineering situations exhibiting complex local phenomena. It was in particular
implemented for problems with local plasticity [34,11], for crack propagation problems [43,75,35], for the
analysis of local uncertainties from a global deterministic operator [22,63], for 2D/3D couplings in thin
composite panels with local stress concentration and debonding [39,42], for problems involving a NURBS
definition of the domain shape and including local geometric details, fracture, or mesh refinement [12,14],
or for transient dynamics problems [9,21,10]. It was also used in conjunction with domain decomposition
techniques [27,71,38]. A global overview of the current capabilities of the non-intrusive local-global cou-
pling method is available in [27].

In addition to model coupling, the present paper refers to a main challenge in simulation-based engi-
neering, identified in the report of the NSF Simulation-Based Engineering Science panel [69], and that
deals with the certification of simulation models and methods. As any numerical method, the non-intrusive
local-global coupling method is impacted by errors coming from various sources (discretization, modeling,
iterative solution strategy) which need to be controlled in order to certify the numerical accuracy of the
method and permit its transfer and intensive use in industrial activities related to robust design. In other
words, several numerical parameters are inherent to the accuracy of the non-intrusive local-global cou-
pling method (such as the number of iterations between local and global problems, the location and size
of zones on which the local model should be implemented, or the mesh size used to perform computations
with this latter model), and these parameters need to be carefully selected in order to get relevant simu-
lation results in terms of output values used for decision-making. In the current literature, and contrary
to other multiscale or multi-model methods [55,1,56,52,46,20], there are very few works dealing with error
estimation and adaptivity for non-intrusive local-global couplings. The very recent work detailed in [28] is
probably the most advanced one in this context ; it constructs a cheap and global (i.e. in the energy norm)
a posteriori error estimator based on an explicit residual technique. This estimator enables to control
discretization and convergence (or algebraic) errors, and it may be used in practice to drive both mesh
adaptation in the local model zone (supposed to have a fixed definition in [28]) and iteration stopping.
Nevertheless, currently available verification tools for non-intrusive local-global couplings do not provide
a quantitative error assessment with computable bounds. Moreover, they do not consider modeling and
pollution errors which are major concerns in model coupling ; this is a drawback for robust design.
In the present work, we wish to go much further in the certification of the non-intrusive local-global
coupling method, so that the quality of simulation results can be fully controlled and the method can
be confidently applied for industrial purposes [42]. We thus develop advanced tools, in terms of fully
computable a posteriori error estimator and indicators, in order to assess all error sources and drive
effective adaptive procedures. These are constructed from verification approaches which have been exten-
sively studied and implemented for a posteriori error estimation and mesh adaptation in the context of
the finite element method [86,2,54,19] ; more specifically, we refer here to the residual functional. In this
context, we develop verification tools which are dedicated to non-intrusive multiscale couplings and which
require low implementation efforts. These tools can be seen as extensions of the pioneering ones develo-
ped in [68] for modeling error estimation, and that were initially applied to heterogeneous materials in
the context of the hierarchical modeling method [64,66,85], before being implemented in other multiscale
contexts [92,70,82,78,18,91]. The numerical strategy that we propose is also mainly devoted to the control
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of localized scalar quantities of interest defined from the local model, as such quantities represent critical
outputs when resorting to non-intrusive local-global couplings. Consequently, we refer to the classical
goal-oriented error estimation framework with the introduction of an adjoint problem [80,4,67] whose
solution acts as a filter to capture only part of the error that impacts the quantity of interest.
In addition, error indicators are developed to separate contributions of each individual error source, inclu-
ding modeling error with pollution effects. They are computed at each step of the iterative and adaptive
local-global coupling process. They thus feed a greedy adaptive algorithm that aims at automatically
and iteratively meeting a given error tolerance with minimal computing effort, tuning at best the nume-
rical model (mechanical model and mesh) as well as parameters of the coupling algorithm (number of
local-global iterations). In particular, the local-global iterations are stopped when the convergence error
(associated with goal-oriented unbalance at the coupling interface) becomes insignificant compared to
other error contributions ; this is an alternative to classical stopping criteria based on the decrease of a
norm of the interface residual, and it avoids useless and costly iterations which would not improve the
quality of the solution outputs. Eventually, the verification procedure indicates where to put the final
coupling interface (according to the level of modeling error), and which discretization should be used in
the local model zone (according to the level of discretization error), so that a trade-off is obtained between
solution accuracy and numerical cost.
We emphasize that the non-intrusive feature of the local-global coupling substantially facilitates the im-
plementation of the error estimation and adaptive procedures, as mesh refinement in the local model
zone and modifications in the geometry of this zone can be performed independently of the global model.
Moreover, it brings flexibility in the analysis of various scenarios for optimal and certified modeling.
Throughout the paper, we assume that the continuous fine-scale model is free of error, that boundary
conditions are perfectly known (no variability or uncertainty in their definition), that interface data are
fully transmitted from one model to the other (using geometrically compatible meshes in particular),
and that error sources coming from rounding of loading/geometry representation are negligible. For the
sake of simplicity and clarity, the theoretical and subsequent numerical developments are conducted for
linear models and local heterogeneities, even though extensions to nonlinear models are possible using
linearized operators. Performance of the overall approach is shown on several two-dimensional numerical
experiments with diversified coupling configurations and adaptivity sequences.

The remainder of the paper is organized as follows : in Section 2, we recall the basics of the non-intrusive
coupling method and we introduce useful notations ; in Section 3, we develop goal-oriented verification
tools based on the residual functional (i.e. weighted residual method) and devoted to the non-intrusive
coupling context ; Section 4 focuses on the proposed adaptive strategy ; numerical results are reported in
Section 5 ; finally, conclusions and prospects to this work are drawn in Section 6.

2. Non-intrusive coupling : context and basic implementation

2.1. Reference model

We consider a structural mechanics problem defined over a body occupying the closure of an open
bounded domain Ω ⊂ Rd (d = 1, 2 or 3 being the space dimension), with regular Lipschitz boundary ∂Ω
(Fig. 1). We assume that a given displacement field ud is prescribed on a non-zero measured part ∂uΩ ⊂
∂Ω, while given traction forces Fd are prescribed on the complementary part ∂F Ω ⊂ ∂Ω, such that ∂uΩ∩
∂F Ω = ∅ and ∂uΩ ∪ ∂F Ω = ∂Ω. A given body force field fd may also be active in Ω. In the following, and
without loss of generality, we choose ud = 0 (homogeneous Dirichlet boundary conditions). Furthermore,
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Figure 1. The reference problem and its environment.

we consider a quasi-static isothermal evolution with small perturbations regime. The material behavior is
supposed to be described by a heterogeneous linear elasticity model, with possible fast variations of the
material parameters.
The mechanical problem then consists in finding the displacement-stress pair (u, σσ) verifying :

u = 0 on ∂uΩ (kinematic constraints) div σσ + fd = 0 in Ω

σσn = Fd on ∂F Ω
(balance equations)

σσ = K εε (u) in Ω (constitutive relation)

(1)

where n is the outward unit normal vector, εε (u) =
1

2

(
Grad(u) + GradT (u)

)
is the linearized strain

tensor, and K is the heterogeneous linear Hooke operator. The weak form of this problem reads :

Find u ∈ V such that

∫
Ω

K εε (u) : εε (v) =

∫
Ω

fd · v +

∫
∂F Ω

Fd · v ∀v ∈ V (2)

where V = {v ∈ [H1(Ω)]d; v = 0 on ∂uΩ} is the appropriate functional space.

2.2. Surrogate model and intrusive iterative coupling strategy

Figure 2. Sub-structuring of the physical domain.

We assume that in the previously considered model problem (2), phenomena of interest are localized
in space. Consequently, a natural approach to reduce computational efforts consists in performing sub-
structuring and restrict the use of a high-fidelity model to localized zones inside Ω, switching to a simpler
model (in terms of material behavior, but also later in terms of mesh size) in the complementary part.
We thus initially partition the physical domain Ω in two non-overlapping zones (see Fig. 2) :
• a local zone ΩL ⊂ Ω, also denoted patch, that should encompass the support of the phenomena

of interest to be analyzed. For the sake of simplicity, the zone ΩL is assumed here to be located
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strictly inside Ω. In this zone, the initial high-fidelity model (based on the constitutive operator K)
is preserved ;

• the complementary zone Ω0 = Ω\ΩL in which a coarser concurrent model is implemented. It is
defined by substituting the initial material behavior with an homogenized linear elastic behavior
with Hooke’s operator K0.

Remark 1 In the remainder of the paper, we assume that the initial position of the patch ΩL is a priori
set from the support of phenomena of interest. An alternative, in the case where these phenomena are not
identified, would consist in using a coarse model over the whole domain Ω and determine critical zones
(by means of standard error estimates) from which the initial location of ΩL should be defined [76].

The coupling problem is here formulated in a weak form using the Lagrange multipliers method.
Introducing the interface Γ between zones ΩL and Ω0, the continuous coupling problem then consists in
finding a global displacement field uG defined in Ω0, a local displacement field uL defined in ΩL, and a
Lagrange multiplier field λ ∈M (representing reaction forces on Γ), verifying :
• a global problem over Ω0 :

Find uG ∈ V0 such that

∫
Ω0

K0 εε (uG) : εε (vG) =

∫
Ω0

fd · vG +

∫
∂F Ω

Fd · vG −
∫

Γ

λ · vG ∀vG ∈ V0

(3)
with V0 = {v ∈ [H1(Ω0)]d; v = 0 on ∂uΩ} ;

• a local problem over ΩL :

Find uL ∈ VL such that

∫
ΩL

K εε (uL) : εε (vL) =

∫
ΩL

fd · vL +

∫
Γ

λ · vL ∀vL ∈ VL (4)

with VL = {v ∈ [H1(ΩL)]d} ;
• a continuity condition on Γ : ∫

Γ

(uL − uG) · µ = 0 ∀µ ∈M (5)

This formulation naturally ensures the kinematic compatibility between global and local displacements
and the balance of tractions [45] on the interface Γ.

Using a discretization method with FE spaces VH
0 ⊂ V0 (defined from a coarse partition τH of Ω0),

Vh
L ⊂ VL (defined from an independent and usually finer partition τh of ΩL), and Mh ⊂ M (i.e. the

trace space defined from τh), the algebraic formulation of the above problem reads :
K0 0 CT

G

0 KL −CT
L

CG −CL 0




UG

UL

Λ

 =


F0

FL

0

 (6)

where UG, UL, and Λ are nodal value vectors of discretized fields uH
G , uh

L, and λh, respectively, K0 and
KL are stiffness matrices in Ω0 and ΩL, respectively, and CG and CL are coupling mortar operators.
In practice, and in order to conform with domain decomposition techniques and parallel computing, the
previous coupling problem is not solved in a monolithic way but rather by means of an iterative Dirichlet-
Neumann solver. To do so, an asymmetric local-global algorithm with alternated interface data transfer
is introduced. After initializing λ(0) = 0 (zero interface reaction), the continuous problem at iteration n

consists in finding (u
(n)
G ,u

(n)
L ,λ(n)) ∈ V0 × VL ×M verifying
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• a global problem over Ω0, with given Neumann boundary conditions on Γ, providing u
(n)
G :∫

Ω0

K0 εε (u
(n)
G ) : εε (vG) =

∫
Ω0

fd · vG +

∫
∂F Ω

Fd · vG −
∫

Γ

λ(n−1) · vG ∀vG ∈ V0 (7)

• a local problem over ΩL with given Dirichlet boundary conditions on Γ, providing (u
(n)
L , λ(n)) :

u
(n)
L|Γ = u

(n)
G|Γ∫

ΩL

K εε (u
(n)
L ) : εε (vL)−

∫
Γ

λ(n) · vL =

∫
ΩL

fd · vL ∀vL ∈ VL
(8)

The corresponding algebraic formulation reads :

K0U
(n)
G = F0 − CT

GΛ(n−1) ;

 KL −CT
L

−CL 0

U
(n)
L

Λ(n)

 =

 FL

−CGU
(n)
G

 (9)

Remark 2 We assume here that meshes τH and τh are geometrically conforming even though they do
not match on Γ, i.e. the interface is aligned with the edges of the local and global elements. As a result,
the continuity of displacements can be enforced exactly (while traction equilibrium is enforced weakly on
the interface approximation space) and a general mortar method [8] is used to transfer interface data
between local and global problems. The numerical experiments reported in Section 5 are performed in
this context. In the more general case of a non-conforming interface, the transfer would require special
attention in the implementation process, evaluating reaction forces with suitable quadrature rules, as
performed in [12] for NURBS geometry representations. Alternative matching conditions have also been
introduced in the literature for non-intrusive couplings, such as these based on a more regular Mortar
method [13], on a Nitsche method [14], or on the use of a transition mesh to address topology changes
between models [39,40,42].

2.3. Non-intrusive coupling strategy

A drawback of the previous intrusive coupling technique is that the stiffness matrix K0, that depends
on the geometrical definition of Ω0 (and thus ΩL), should be computed for each particular configuration
of the local zone ΩL. Indeed, it requires the construction of a global mesh which is conforming with the
potentially complex geometry of Ω0. Consequently, remeshing and new factorization of K0 are necessary
each time the location or shape of ΩL is changed (e.g. in case of crack propagation or optimization of
local entities). This appears to be much time consuming, in particular for large domains with many dofs
involved, and in a multi-query context. To circumvent this issue and enhance the numerical efficiency, the
key idea of the non-intrusive local-global coupling strategy is to modify the global problem (3), defining
the support of its solution uG over the whole domain Ω.
In order to define the new global problem, the homogenized linear elasticity behavior is fictively prolon-
gated to ΩL. Consequently, using additivity of the integral over Ω0 ∪ΩL, the initial global problem (3) is
recast as :

Find uG ∈ V such that∫
Ω

K0 εε (uG) : εε (vG) =

∫
Ω0

fd · vG +

∫
∂F Ω

Fd · vG −
∫

Γ

λ · vG +

∫
ΩL

K0 εε (uG) : εε (vG) ∀vG ∈ V

(10)
where nΩL

is the outward unit normal vector of ΩL. We emphasize that the corresponding solution uG,
even though defined over the whole domain Ω, is usually non-physical in ΩL and irrelevant to analyze
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local phenomena of interest correctly (all the more so when uG is approximated using a coarse mesh).
Furthermore, it is not unique in ΩL and a specific solution is in practice selected from the choice of the
initialization in the coupling algorithm. Nevertheless, these do not represent issues as uG is eventually
replaced by the local fine-scale solution uL in ΩL, so that there is no impact on the local-global solution.

Using the new discretization space VH , obtained from a coarse mesh τH defined over the whole domain
Ω, the non-intrusive procedure leads to the following change regarding the algebraic formulation of the
global problem :

K0UG = F0 − CT
GΛ =⇒ K0ΩUG = F0 − CT

GΛ + K0LUG = F0Ω − CT
GΛ + RLG (11)

where K0Ω (resp. K0L) is the invertible stiffness matrix computed over the whole domain Ω (resp. over
the subdomain ΩL) using the smooth linear operator K0, while RLG = K0LUG − F0L is the discrete
interface reaction forces coming from the fictitious part of the global model, computed in practice from
volume integrals.

Introducing again an iterative Dirichlet-Neumann solution scheme (fixed point algorithm), the non-
intrusive local-global coupling method consists in finding, at each iteration n of the process and after

initializing u
(0)
G = 0 and λ(0) = 0, the set (u

(n)
G ,u

(n)
L ,λ(n)) ∈ V × VL ×M verifying

• a global problem over Ω, with given internal reaction forces on Γ, providing u
(n)
G :∫

Ω

K0 εε (u
(n)
G ) : εε (vG) =

∫
Ω0

fd · vG +

∫
∂F Ω

Fd · vG −
∫

Γ

λ(n−1) · vG +

∫
ΩL

K0 εε (u
(n−1)
G ) : εε (vG) ∀vG ∈ V

(12)

• a local problem over ΩL with given Dirichlet boundary conditions on Γ, providing (u
(n)
L , λ(n)) :

u
(n)
L|Γ = u

(n)
G|Γ∫

ΩL

K εε (u
(n)
L ) : εε (vL)−

∫
Γ

λ(n) · vL =

∫
ΩL

fd · vL ∀vL ∈ VL
(13)

The corresponding algebraic formulation reads :

K0ΩU
(n)
G = F0 − CT

GΛ(n−1) + K0LU
(n−1)
G ;

 KL −CT
L

−CL 0

U
(n)
L

Λ(n)

 =

 FL

−CGU
(n)
G


= F0Ω − CT

GΛ(n−1) + R
(n−1)
LG

(14)

We point out that the global stiffness matrix K0Ω, as well as the global force vector F0Ω, are fixed indepen-
dently of the local model parameters (position and shape of ΩL, mesh size used in τh). They correspond
to quantities that would be initially computed considering a smooth behavior over the whole structure,
i.e. without any analysis of local complex phenomena, and using a global coarse mesh. The global stiffness
operator is therefore assembled and factorized only once.

Essentially, the non-intrusive coupling technique thus consists in alternating between local calculations
over ΩL with prescribed displacements on the coupling interface, and global correction calculations over
the whole domain Ω which include inner corrective loads (in terms of equilibrium residual, i.e. reaction
forces mismatch) in order to reduce the imbalance between concurrent models. A sketch of the associated
local-global algorithm is given in Fig. 3.

Two independent numerical codes may be used to perform the local and global calculations. It can be
shown that, under some conditions (e.g. multiscale elliptic problem, or local model operator not stiffer
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Figure 3. Illustration of the non-intrusive strategy.

than the global model one, which is the usual case in practical applications), the solution to the fixed
point (12)-(13) converges to the solution to the initial coupling problem (3)-(5). We refer to [34,22,27]
for a review on these aspects, based on a global reformulation of the non-intrusive local-global coupling
strategy that can be interpreted as a quasi-Newton algorithm on reaction force equilibrium.

Remark 3 The number of solver iterations is the price to pay in the non-intrusive coupling method com-
pared with the intrusive version. Classically, a norm on the interface residual is used as a convergence
indicator and stopping criterion. Nevertheless, we mention that convergence acceleration techniques can
be used in this framework, such as the dynamic Aitken relaxation [50,27], or the update of the glo-
bal operator (without factorizing it again) using the symmetric rank one (SR1) update [23] and/or the
Shermann-Morison and Woodbury formulas [34]. Moreover, mixed interface conditions may be considered
between local and global models [34,71,72]. All these techniques will not be implemented in the present
work.

Remark 4 Basically, the non-intrusive local-global coupling framework is merely seen as a behavior sub-
stitution in ΩL (numerical zoom), starting from an initial smooth behavior (with operator K0) defined
over the whole domain Ω. We choose here to adopt another vision, deriving the coupling problem from an
initial reference model in which the complex material behavior (with operator K) is introduced everywhere
in Ω. This enables to have a consistent definition of the reference solution, from which error measures
will be later defined.

2.4. Error definition

From the previous non-intrusive approach, and using discretization with meshes τH and τh, an ap-

proximate continuous local-global displacement field u
hH(n)
LG ∈ V can be recovered at each iteration n of

the process. It is constructed as :

u
hH(n)
LG =

 u
h(n)
L in ΩL

u
H(n)
G in Ω0

(15)

However, it should be noticed that the corresponding local-global stress field σσ
hH(n)
LG , defined as :

σσ
hH(n)
LG =

 σσ
h(n)
L = K εε (u

h(n)
L ) in ΩL

σσ
H(n)
G = K0 εε (u

H(n)
G ) in Ω0

(16)
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does not respect equilibrium in any weak sense (before convergence) across the interface Γ.

From the local-global displacement field u
hH(n)
LG ∈ V, an error field e

hH(n)
LG = u − u

hH(n)
LG ∈ V can be

defined. Such an error field describes the discrepancy between the exact solution to the reference pro-
blem (2) and the approximate local-global solution at hand. Several scalar measures of the error field may

then be used. In this paper, we will consider the measure Q(e
hH(n)
LG ) defined from a given linear quantity

of interest Q. Nevertheless, global measures could also be used, such as the measure in the energy norm

‖ · ‖ =
√∫

Ω
K εε (·) : εε (·).

In the non-intrusive coupling framework, error sources are of three types :
• modeling error due to the use of a surrogate model in Ω0, associated with a smooth material operator
K0 and a fixed (i.e., not adaptive) coarse mesh τH . It may generate pollution effects when dealing
with the accuracy of quantities of interest defined inside ΩL. The amplitude of this error source can
be reduced by increasing the size of the critical zone ΩL, and it vanishes when ΩL = Ω ;

• discretization error due to the use of a mesh τh in order to approximate the solution of the local
problem (13). The amplitude of this error source can be reduced by decreasing the mesh size h in
τh, and it vanishes when h goes to zero ;

• convergence error due to the use of an iterative local-global algorithm. The amplitude of this error
source can be reduced by increasing the number of local-global iterations, and it vanishes when n
tends to +∞.

In practical applications of the non-intrusive coupling method, ΩL and τh are usually defined empi-
rically from the a priori user experience, without any quantitative assessment of associated modeling
and discretization errors. In addition, the convergence of the local-global iterative algorithm is classically
controlled using stopping criteria (or convergence indicators) based on the magnitude of a norm on the
interface residual. This procedure may be very pessimistic and may mobilize unnecessary computing re-
source, as : (i) the error tolerance on outputs of interest may be fulfilled even though the full local-global
solution has not converged, so that the iterative algorithm could be stopped earlier without sacrificing the
accuracy on these outputs ; (ii) the convergence error, even large, may rapidly become negligible compared
to other error sources, so that further iterations become useless to decrease the overall error.
Consequently, it is of interest to design tools that provide for a quantitative assessment of error measures
as well as individual error contributions coming from various sources. Such tools could then be effectively
used to drive an automated adaptive algorithm that optimally defines ΩL, τh, and the required number of
iterations (for a prescribed error tolerance), so that numerical performance in terms of computational cost
is substantially enhanced. This is the topic of the following sections, in which we develop fully computable
error estimators and indicators.

3. Verification tools based on weighted equilibrium residuals

3.1. Weak forms and residual functional

The reference problem (2) can be recast as : find u ∈ V such that

a(u,v) = l(v) ∀v ∈ V (17)

with
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a(u,v) =

∫
Ω

K εε (u) : εε (v) ; l(v) =

∫
Ω

fd · v +

∫
∂F Ω

Fd · v (18)

Based on this weak form, we introduce the residual functional R : V × V → R :

R(w,v) = l(v)− a(w,v) (19)

which will be used for error estimation. The property (17) directly yields R(u,v) = 0 for any v ∈ V.

Further introducing the following notations :

aL(u,v) =

∫
ΩL

K εε (u) : εε (v) ; a0Ω(u,v) =

∫
Ω

K0 εε (u) : εε (v) ; a0L(u,v) =

∫
ΩL

K0 εε (u) : εε (v)

bΓ(λ,u) =

∫
Γ

λ · u ; lL(v) =

∫
ΩL

fd · v ; l0(v) =

∫
Ω0

fd · v +

∫
∂F Ω

Fd · v

(20)
we also define additional weak forms for problems introduced in Section 2 :
• the continuous weak form of the local-global non-intrusive coupling (without iterative fixed-point

solution scheme at this stage), coming from (4), (5), and (10), reads : find (uG,uL,λ) ∈ V×VL×M
such that

a0Ω(uG,vG)− a0L(uG,vG) + aL(uL,vL)− bΓ(λ,vL − vG) + bΓ(µ,uL − uG)

= l0(vG) + lL(vL) ∀(vG,vL,µ) ∈ V × VL ×M
(21)

or in a more condensed writing :

aLG ((uG,uL,λ), (vG,vL,µ)) = lLG(vG,vL,µ) ∀(vG,vL,µ) ∈ V × VL ×M (22)

This provides the approximate solution uLG ∈ V defined as uLG =

 uL in ΩL

uG in Ω0

;

• introducing the FE space VH , associated with coarse mesh τH over Ω, the partially discretized
version of (22) reads : find (uH

G ,uL,λ) ∈ VH × VL ×M such that

aLG

(
(uH

G ,uL,λ), (vH
G ,vL,µ)

)
= lLG(vH

G ,vL,µ) ∀(vH
G ,vL,µ) ∈ VH × VL ×M (23)

This provides the approximate solution uH
LG ∈ V defined as uH

LG =

 uL in ΩL

uH
G in Ω0

;

• introducing the FE spaces Vh
L, andMh, associated with the mesh τh used in ΩL, the fully discretized

version of (22) reads : find (uH
G ,u

h
L,λ

h) ∈ VH × Vh
L ×Mh such that

aLG

(
(uH

G ,u
h
L,λ

h), (vH
G ,v

h
L,µ

h)
)

= lLG(vH
G ,v

h
L,µ

h) ∀(vH
G ,v

h
L,µ

h) ∈ VH × Vh
L ×Mh (24)

This provides the approximate solution uhH
LG ∈ V defined as uhH

LG =

 uh
L in ΩL

uH
G in Ω0

;

• eventually, introducing the fixed-point scheme, the weak form at iteration n stemming from (12)-(13)

reads : find (u
H(n)
G ,u

h(n)
L ,λh(n)) ∈ VH × Vh

L ×Mh such that

a0Ω(u
H(n)
G ,vH

G ) + aL(u
h(n)
L ,vh

L)− bΓ(λh(n),vh
L) + bΓ(µh,u

h(n)
L − u

H(n)
G )

= l0(vH
G ) + lL(vh

L) + a0L(u
H(n−1)
G ,vH

G )− bΓ(λh(n−1),vH
G ) ∀(vH

G ,v
h
L,µ

h) ∈ VH × Vh
L ×Mh

(25)
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or in a more condensed writing :

a
(n)
LG

(
(u

H(n)
G ,u

h(n)
L ,λh(n)), (vH

G ,v
h
L,µ

h)
)

= l
(n)
LG(vH

G ,v
h
L,µ

h) ∀(vH
G ,v

h
L,µ

h) ∈ VH × Vh
L ×Mh

(26)

This provides the approximate solution u
hH(n)
LG ∈ V defined in (15), and which is the available

computed field when resorting to the non-intrusive local-global coupling framework.

We emphasize again that global solutions uG (in (21)-(22)) and uH
G (in (23)-(24)) are not unique in

ΩL, but u
H(n)
G (in (25)-(26)) is. However, non-uniqueness is not an issue as : (i) global solutions are

eventually replaced by fine-scale local solutions ΩL in the definition of the overall local-global solutions ;
(ii) contributions of global solutions in ΩL vanish in the term a0Ω(·, ·)− a0L(·, ·) of the residual.

3.2. The weighted residual method

In this section, we focus on the local error measure Q(u)−Q(u
hH(n)
LG ) defined according to a given scalar

quantity of interest Q(u) that is a specific (and usually fine-scale) feature of the solution u. We assume
here that Q : V → R is linear, even though nonlinear quantities of interest could also be considered with
minor changes (see [68]). We also naturally assume that the quantity Q refers to features of u located
in the initial configuration of ΩL. We then develop goal-oriented error estimation in a similar way as
in [66,68], and based on the definition of an adjoint problem.

3.2.1. Adjoint problem and error representation
We introduce the adjoint problem of (17), associated with Q, referring to [73,77,4] for an overview on

the theoretical bases on this problem. It consists in finding ũ ∈ V such that

a(v, ũ) = a∗(ũ,v) = Q(v) ∀v ∈ V (27)

a∗ being constructed from the adjoint model operator. In the present case, the model operator is self-
adjoint so that a∗ = a.

From the adjoint solution ũ, it is straightforward that for any approximation uapp ∈ V of u, the error
Q(u)−Q(uapp) can be represented as :

Q(u)−Q(uapp) = Q(u− uapp) = a(u− uapp, ũ) = R(uapp, ũ) (28)

Then introducing any approximation ũapp ∈ V of the adjoint solution ũ, the error representation also
reads :

Q(u)−Q(uapp) = R(uapp, ũapp) +R(uapp, ũ− ũapp) (29)

Remark 5 The quantity of interest is usually defined in a global way by means of extraction functions. It
is written under the form :

Q(u) =

∫
Ω

σσΣ : εε (u) +

∫
Ω

fΣ · u +

∫
∂F Ω

FΣ · u +

[∫
Ω

K εε (uΣ) : εε (u)−
∫

Ω

uΣ · f
]

(30)

where σσΣ, fΣ, FΣ, and uΣ are extractors. These are defined explicitly or implicitly (depending on the
quantity Q), and they can be mechanically interpreted as pre-stress, body force, traction force, and pre-
displacement, respectively, in the loading of the adjoint problem. The field uΣ, vanishing on ∂F Ω, enables
to extract components of the stress vector σσ(u)n on ∂uΩ (reaction forces).
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3.2.2. Residual-based error estimator in the non-intrusive coupling method
Using the previous error representation, we now develop a computable error estimate on Q(u) when

using the non-intrusive local-global coupling strategy. From (28), and noticing that u
hH(n)
LG ∈ V, we first

write :

Q(u)−Q(u
hH(n)
LG ) = R(u

hH(n)
LG , ũ) (31)

For the term in the right-hand side to be computable, the adjoint solution ũ should be replaced by
an approximate solution ũapp as described in (29). Nevertheless, a relevant approximation should be

computed so that R(u
hH(n)
LG , ũ) ≈ R(u

hH(n)
LG , ũapp) (i.e. R(u

hH(n)
LG , ũ− ũapp) ≈ 0 can then be neglected in

this case). This is the saturation assumption. In practice, this means that in order to catch the various
error sources accurately, the approximation space used to compute ũapp should be richer than that used

for u
hH(n)
LG . Considering ũapp in the same approximation space as u

hH(n)
LG would lead to a poor error

estimate of the error on Q.

Remark 6 A typical and well-known case illustrating the previous statement is the mere finite element
approximation ufem of the solution u of (17) in a subspace Vfem ⊂ V. The Galerkin orthogonality
R(ufem,v) = 0 for all v ∈ Vfem indicates that the discretization error estimate R(ufem, ũapp) is mea-
ningless when ũapp is searched in Vfem. Considering a richer space V+

fem ⊂ V (with finer mesh size) to

compute ũapp, the result R(ufem, ũapp) = Q(u+
fem) − Q(ufem) with u+

fem ∈ V
+
fem also shows that the

estimate catches all the error on Q(u) except the part Q(u)−Q(u+
fem).

For the considered non-intrusive local-global coupling method, enriching the approximation space for
the solution of the adjoint problem means : (i) sufficiently enlarging the zone ΩL in which the original
high-fidelity model is preserved (this enrichment is referred to with subscript “L+” in the following) ; (ii)
sufficiently refining the mesh τh used in this zone (this enrichment is referred to with superscript “h+”
in the following) ; (iii) be sufficiently close to convergence in the iterative algorithm (referred to with

superscript “∞” in the following). Consequently, after computing ũ
h+H(∞)
L+G ∈ V using an enriched non-

intrusive local-global coupling method, with local part ũ
h+(∞)
L+ ∈ Vh+

L+ , an overall and fully computable
error estimate of the error on Q reads :

ηtotQ = R(u
hH(n)
LG , ũ

h+H(∞)
L+G ) (32)

Remark 7 Due to the specific loading of the adjoint problem, which is concentrated inside ΩL, it is expected

that the iterative local-global algorithm converges very fast when computing ũ
h+H(∞)
L+G .

Remark 8 In order to further reduce the computational cost without sacrificing too much the quality
of the error estimate, it would be possible to approximate the residual functional R (initially defined
from the reference model) considering the enriched approximation space used to solve the adjoint problem.
Nevertheless, such an approximation does not prevent from projections between meshes for the computation

of R(u
hH(n)
LG , ũ

h+H(∞)
L+G ). This alternative will not be investigated here.
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4. Adaptive strategy

4.1. Residual-based error indicators

The estimate (32) comprises all error sources. As described in Section 2.4, these are threefold : modeling,
discretization, convergence. Indeed, introducing solution fields defined in Section 3.1, the error on Q can
be split as :

Q(u)−Q(u
hH(n)
LG ) =

[
Q(u)−Q(uH

LG)
]︸ ︷︷ ︸

∆mod
Q

+
[
Q(uH

LG)−Q(uhH
LG)

]︸ ︷︷ ︸
∆dis

Q

+
[
Q(uhH

LG)−Q(u
hH(n)
LG )

]
︸ ︷︷ ︸

∆conv
Q

(33)

where ∆mod
Q , ∆dis

Q , and ∆conv
Q correspond to modeling, discretization, and convergence parts of the error,

respectively. We develop below some error indicators on each of these parts.

They are defined as follows :
• the indicator on convergence error, denoted by ηconvQ , is constructed from a converged approximate

adjoint solution ũ
hH(∞)
LG ∈ V with no enrichment in terms of mesh τh and local zone ΩL used. It

reads :
ηconvQ = RLG(u

hH(n)
LG , ũ

hH(∞)
LG ) (34)

where the residual RLG is defined from operators aLG and lLG associated with the local-global
coupling problem (i.e., reference problem providing for uH

LG and uhH
LG) :

RLG(u
hH(n)
LG , ũ

hH(∞)
LG ) =l0(ũ

H(∞)
G ) + lL(ũ

h(∞)
L )

− a0Ω(u
H(n)
G , ũ

H(∞)
G ) + a0L(u

H(n)
G , ũ

H(∞)
G )− aL(u

h(n)
L , ũ

h(∞)
L )

(35)

The indicator is such that ηconvQ −→
n→+∞

0. It should provide a quantitative indication on the conver-

gence error ∆conv
Q , enabling to define a relevant stopping criterion for the local-global iterative

solver.
• the indicator on discretization error, denoted by ηdisQ , is constructed from a converged approximate

solution ũ
h+H(∞)
LG ∈ V computed with a finer local mesh τh

+

alone, while the shape of ΩL remains

unchanged compared to that used for the computation of u
hH(n)
LG . It reads :

ηdisQ = RLG(u
hH(n)
LG , ũ

h+H(∞)
LG )− ηconvQ (36)

and is such that ηdisQ −→
h→h+

≈ 0. It should provide a relevant quantitative indication on the discreti-

zation error ∆dis
Q provided h+ is small enough.

• eventually, the indicator on modeling error, denoted by ηmod
Q , is constructed from an approximate

solution ũ
hH(∞)
L+G ∈ V computed with a larger zone ΩL+ alone, while the mesh τh is unchanged

compared to that used for the computation of u
hH(n)
LG . It reads :

ηmod
Q = R(u

hH(n)
LG , ũ

hH(∞)
L+G )− ηconvQ (37)

and is such that ηmod
Q −→

ΩL→ΩL+

≈ 0. It should provide a relevant quantitative indication on the

modeling error provided ΩL+ is large enough. An alternative construction of the indicator ηmod
Q ,

giving in practice slightly different values but decreasing the number of adjoint solutions, stems
from the following (and still empirical) definition :

ηmod
Q = ηtotQ − ηconvQ − ηdisQ (38)
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Remark 9 It is worth noticing that numerical strategies which have to be implemented for the computation
of the estimator ηtotQ , as well as indicators ηconvQ , ηdisQ , and ηmod

Q , are in accordance with the non-intrusive
framework. Indeed, the definitions of the enriched spaces which are used to compute the approximate

adjoint solutions ũ
h+H(∞)
L+G , ũ

h+H(∞)
LG , and ũ

hH(∞)
L+G require modifications of Vh

L alone, while VH is kept
unchanged. This can be easily performed using the non-intrusive coupling methodology.
In addition, the non-intrusive framework applied to the solution of the adjoint problem enables to se-
lect specific error sources and analyze various modeling configurations in a suitable manner. By a flexible
introduction of additional patches to ΩL+ , located on some preselected zones (e.g. in the vicinity of geome-
trical details such as holes), the corresponding adjoint solution automatically filters targeted error sources
due to orthogonality properties described in Section 3.2.2. Therefore, the critical phenomena that affect
the accuracy on the quantity of interest, even though located far from the region over which the quantity of
interest is defined (pollution effects), are easily detected. These phenomena would then need to be further
modeled accurately, i.e. at the fine-scale level.

4.2. Adaptive algorithm

From the previously defined error estimator ηtotQ and indicators ηconvQ , ηdisQ , and ηmod
Q , it is possible to

set up a relevant adaptive algorithm in order to drive the non-intrusive coupling algorithm. We propose
to use here a greedy algorithm closely related to those proposed in [66,85,70,82,3,78,91] (so-called Goals
algorithms). The approach, which refers to goal-oriented adaptivity, aims at automatically tuning the
parameters of the local-global coupling method (shape of ΩL, mesh size in τh, number of local-global ite-
rations) in order to predict the quantity of interest Q within a preset error tolerance γtol while optimizing

the computational cost. This is achieved by generating a sequence of approximate solutions u
(k)
app so that

for some integer k0, the overall error on Q satisfies :

|Q(u)−Q(u(k0)
app )| ≤ γtol|Q(u(k0)

app )| (39)

At each iteration of the adaptive process, and before stopping the full adaptive algorithm when the error
tolerance is met (quantitative information given by ηtotQ ≤ γtol|Q(uapp)|), the goal is to reduce the major

error source which is identified comparing indicators ηconvQ , ηdisQ , and ηmod
Q . Adaptations in discretization

and modeling are conducted locally after decomposing the indicators over predefined subdomains in ΩL

and Ω0, respectively. In practice, subdomains in ΩL are chosen as elements of τh, while subdomains in Ω0

are defined from elements of the coarse mesh τH (even though larger subdomains could be used). This
decomposition is possible by observing that indicators ηdisQ and ηmod

Q correspond to residual terms defined
from space integrals.

After initializing ΩL (as a neighborhood of the region over which the quantity of interest is defined)
and τh (with similar mesh size as for τH), and after specifying the error tolerance γtol for the quantity
of interest, the proposed adaptive algorithm reads as follows :

0. Compute the adjoint solution ũ
h+H(∞)
L+G (using an appropriate enriched space) ;

1. Set n = 1 ;

2. Solve the primal surrogate problem for u
hH(n)
LG ;

3. Compute the estimate ηtotQ ;

4. If |ηtotQ /Q(u
hH(n)
LG )| ≤ γtol then STOP. Otherwise proceed to Step 5 ;

5. Compute solutions ũ
hH(∞)
L+G , ũ

h+H(∞)
LG , and indicators ηconvQ , ηdisQ , and ηmod

Q :

• if max(|ηconvQ |, |ηdisQ |, |ηmod
Q |) = |ηconvQ |, increment n+ 1→ n and go to Step 2 ;
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• if max(|ηconvQ |, |ηdisQ |, |ηmod
Q |) = |ηdisQ |, decompose ηdisQ and locally refine τh up to reaching

|ηdisQ /Q(u
hH(n)
LG )| ≤ γtol/3, then go to Step 0 ;

• if max(|ηconvQ |, |ηdisQ |, |ηmod
Q |) = |ηmod

Q |, decompose ηmod
Q and locally enlarge ΩL up to reaching

|ηmod
Q /Q(u

hH(n)
LG )| ≤ γtol/3, then go to Step 0.

This adaptive algorithm prevents from useless local-global iterations for the primal problem (when
discretization or modeling error is larger than convergence error). It also indicates, at the end of the
adaptive process, a suitable definition of ΩL and τh for reaching the error tolerance.

5. Numerical results

In this section, we perform a series of 2D numerical experiments to show the performance of the proposed
verification strategy. Several linear elasticity problems (with plane stress assumption) and quantities of
interest are considered. In all cases, the local (fine-scale) model is initially preserved in a critical region of
the structure that corresponds to an encompassing neighborhood of the region over which the quantity
of interest is defined.

5.1. Quasi-1D slender structure in tension

In this first example, a simple slender structure under traction loading is considered ; the objective is
to illustrate the splitting of error sources and the adaptive procedure. We assume that the beam-like
structure, of unit length (L = 1) and width b = 0.1, is clamped on its left end and that a uniform traction
load F = 1 is applied on its right end (Fig. 4). The beam is made of a linear isotropic elastic material,

Figure 4. Initial configuration of the local-global coupling.

and we assume that the Young modulus E varies along the longitudinal coordinate. Indeed, its nominal
value E0 = 1 is weakened in some local regions in order to enforce the occurence of local phenomena
that may need to be captured using a local-global coupling. The local weakening of the Young modulus
is modeled in terms of Gaussian functions, and two configurations are considered for the evolution of
E(x) as described in Fig. 5. In order to simplify notations in the remainder of this section, Case 1 and
Case 2 will refer to the configurations shown in Fig. 5(a) and Fig. 5(b), respectively. The Poisson ratio is
assumed to be constant and is set to ν = 0.
Regarding the numerical solution, the global mesh τH is made of 16 quadratic macro elements which

are placed along the structure and the thickness of each element corresponds to that of the beam (i.e.
there is only one element across the thickness for the mesh associated with the global model). The same
transverse mesh size (one element across the thickness) applies for the local mesh τh. The problem is
solved using a non-intrusive coupling algorithm as detailed in Section 2 with :

— a global problem defined all along the structure Ω and in which a constant Young modulus E0 = 1
is considered ;

16



0 0.5 1
x

0.2

0.4

0.6

0.8

1

E(
x)

(a) Young Modulus for Case 1.

0 0.5 1
x

0.2

0.4

0.6

0.8

1

E(
x)

(b) Young Modulus for Case 2.

Figure 5. Two examples of evolution of the Young modulus E along the longitudinal direction.

— a local problem defined in a sub-zone ΩL that corresponds to a subset of macro elements of τH ,
and in which the variation of the Young modulus E is considered. A finer mesh τh may also be
considered in this zone if need be.

An example of the associated coupling configuration is shown in Fig. 4.

The quantity of interest Q which is chosen to illustrate the adaptive procedure is the average of
the longitudinal displacement ux in the subregion ωQ =]13/16, 15/16[×]0, b[ of the structure, that is

Q(u) =
1

|ωQ|

∫
ωQ

ux. The associated adjoint problem is also solved using a non-intrusive method so that

the global adjoint model is not changed when the local adjoint model is modified (and consequently local
error analysis can be easily performed). Its loading consists of a uniform horizontal body force fΣ = 8/b
applied in ωQ.
The initial local patch for the primal problem is placed in the subregion 13/16 ≤ x ≤ 15/16 (i.e. ΩL =
ωQ) ; it has the size of two macro elements (Fig. 6). The relative error tolerance γtol is set to 5%. In
order to perform Step 3 of the adaptive procedure and find the global error estimate ηtotQ (as defined in
(32)), a larger patch is needed to solve the adjoint problem and catch error sources. In order to reduce
the computational time, this adjoint problem is in practice replaced with a set of adjoint problems with
smaller patches that can be solved in parallel thanks to the non-intrusive coupling method. Even though
the resulting combination of adjoint solutions does not coincide with the one that would be obtained with
a monolithic numerical approach, it leads to similar results in terms of error estimation due to orthogo-
nality properties mentioned in Section 3.2.2. To that extent, six adjoint problems are defined with a local
zone ΩL+ that contains a patch in the region ]13/16, 15/16[ and a second patch with varying locations
depending on the adjoint problem number, as explained in Fig. 6(a).
After solving each adjoint problem (with enough iterations to ensure the convergence of the local-global
coupling, the global error estimate ηtotQ after convergence of the primal local-global coupling can be eva-
luated for Cases 1 and 2 ; this estimate is defined as a sum of error contributions computed from the
individual adjoint problems defined above. The distribution of the estimate per macro element is shown
in Fig. 6(b) and Fig. 6(c). The main corresponding error source can be here interpreted as the modeling
error source (as the mesh in the local zone is quite fine and the coupling algorithm has converged here).
We observe that for Case 1 (Fig. 6(b)), the error is concentrated in the region ]11/16, 13/16[ whereas for
Case 2 (Fig. 6(c)), it is rather concentrated in the region ]3/16, 7/16[. These results are in good agreement
with the respective evolutions of the Young modulus E in both cases. Indeed the local zone of the primal
problem being initially placed in the region ]13/16, 15/16[ (while taking E0 = 1 in the remainder of the
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structure), modeling errors are large in the area where the exact value of E is far from E0, and they
impact the quantity of interest.

(a) Different locations of a second patch

in the adjoint solution.
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(b) Error map for Case 1.
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(c) Error map for Case 2.

Figure 6. Adjoint solution strategy (left), and initial global error map for Case 1 (center) and Case 2 (right).

We now implement the adaptive procedure introduced in Section 4. The error estimator ηtotQ and the

different error indicators ηconvQ , ηdisQ , and ηmod
Q are computed at each iteration. In Fig. 7, the associated

values normalized by the value of the quantity of interest (under the form |•/Q(u
hH(n)
LG )|) are reported for

each adaptive step. The number n of iterations in the local-global coupling algorithm is indicated on the
graphs (red digits), and the evolution of the size of the local zone ΩL in the primal problem is also given
at the bottom of the plots. This representation illustrates again that when the indicator on modeling
error ηmod

Q is the highest, the local zone ΩL is extended (e.g. an additional patch is added at Step 1, and
then enlarged at Step 3, for Case 2). For these examples, results show that discretization error in ΩL is
low and has almost no influence on the quantity of interest. It is also interesting to note that, in both
cases, there is no need to model the small decrease of the Young modulus for a tolerance of 5% ; only the
highest peak in Fig.5(a) and Fig.5(b) needs to be taken into account. Nevertheless, further computations
for a tolerance of 1% would require to model this small decrease and to refine the mesh in ΩL.
Additionally, the comparison with the reference error (computed from an overkill solution and represen-
ted by the black curves in Fig. 7) enables to verify that ηtotQ is a relevant estimate of the overall error on Q.

The conclusion of this study is that ideal coupling configurations (with respect to the given error
tolerance γtol = 5% on the quantity of interest) are :

— for Case 1, a local zone ΩL defined by a unique patch in the region ]11/16, 15/16[ with no specific
refinement of τh and 4 iterations (n = 4) in the coupling algorithm, according to Fig. 7(a) ;

— for Case 2, a local zone ΩL defined by patches in regions ]3/16, 7/16[ and ]13/16, 15/16[, with no
specific refinement of τhand 3 iterations (n = 3) in the coupling algorithm, according to Fig. 7(b).

Remark 10 Keeping this simple example, other quantities of interest can further benefit from the adaptive
procedure. Considering for instance the sub-zone ωQ =]13/16, 15/16[, we may consider :

— the average of the traction stress component σxx in ωQ, the adjoint loading being then a pre-stress

σσΣ =
1

|ωQ|
K

 1 0

0 0

 =
1

|ωQ|
.

E

1− ν2

 1 0

0 ν

 in ωQ, or equivalently a body force fΣ = −∇ · σσΣ in ωQ

and tractions σσΣn on the boundary ∂ωQ of ωQ ;
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(a) Local patch locations. (b) Local patch locations.

Figure 7. Evolution of the error estimator and indicators at each adaptive step for Case 1 (left) and Case 2 (right). The

reference error is computed using an overkill solution (no coupling) of the primal problem.

— the average of the traction strain component εxx in ωQ, the adjoint loading being then a pre-stress

σσΣ =
1

|ωQ|

 1 0

0 0

 in ωQ, or equivalently tractions σσΣn on the boundary ∂ωQ of ωQ.

In these two cases, the algorithm indicates that no adaptive step is needed as stress and strain fields do
not depend much on the upstream configuration. Consequently, the quantities of interest can be accurately
computed with very little numerical effort.

5.2. 2D plate in traction with local weakening inclusions

We now consider a square plate (size L× L with L = 1) in which localized weakening of the material
stiffness is considered. The structure, represented in Fig. 8, is clamped on its left side and subjected
to a uniform traction on its right side ; other boundaries are free. The global mesh τH is made of 100
(10×10) first-order quadrangular elements. Local variations of the Young modulus E(x, y) take the form of
Gaussian functions in five zones which are smaller than a macro element. They act as inclusions inside the
material where the Young modulus is lower than its nominal value E0 = 1. Two cases are here considered :
(i) low weakening with minimal Young’s modulus value Emin = 0.45 ; (ii) high weakening with minimal
Young’s modulus value Emin = 0.0026. The impacted macro elements are shown in Fig. 8(b), while the
variation of E inside the structure is shown in Fig. 8(c) for a large contrast (i.e. high weakening). The
Poisson ratio is fixed and set to ν = 0.3. The reference solutions (where the exact material behavior and
a very fine mesh are considered over the whole domain Ω) are given in Fig. 9 for these two cases, in terms
of component εxx of the strain field.
The quantity of interest is the average longitudinal displacement on the right edge x = L where the
traction loading is applied. The goal of the adaptation procedure is to find the optimal configuration
for the coupled problem regarding this quantity of interest, and with respect to a given error tolerance.
This tolerance is set to γtol = 0.5% (this value enables to detect the small impact of the modified Young
modulus on the predicted value of the quantity of interest).
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(a) Considered structure with
boundary conditions.

(b) Position of the zones with de-
generated Young modulus. The

impacted macro elements, numbered

{25, 44, 58, 83, 89}, are the same for the
highly and slightly degenerated cases.

(c) Evolution of the Young modulus in-
side the structure for the highly degene-

rated case.

Figure 8. Considered problem with local variations of the Young modulus.

Figure 9. Reference solution (component εxx of the strain field) for low (left) and high (right) contrast in the Young

modulus field.

5.2.1. Analysis of the adaptive algorithm
We show here the adaptivity results when considering a small or large contrast in the local change of

the Young modulus. The initial configuration of the coupled problem is such that the local zone ΩL is
composed of elements 91 to 100 on which the traction loading is applied (see Fig. 8(b)) ; the discretization
in this local zone (mesh τh) is similar to that used for the global mesh τH .

We first show results for a small modification of the Young modulus (Emin = 0.45) in Fig. 10. Starting
from the initial solution given in Fig. 10(a), where we observe effects of the clamping on left corners
when using a coarse mesh, the adaptive procedure is performed. In Fig. 10(c), the values of the different
relative estimator and indicators (i.e. normalized by the approximate value of the quantity of interest)

are given at each adaptation step. These are |ηtotQ /Q(u
hH(n)
LG )|, |ηconvQ /Q(u

hH(n)
LG )|, |ηdisQ /Q(u

hH(n)
LG )|, and

|ηmod
Q /Q(u

hH(n)
LG )|.

We observe that 3 adaptation steps are performed : the first two deal with model adaptation by adding
two macro elements (first element 83 then element 89) in the primal local zone ΩL, and the last one
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increases the number n of iterations in the coupling algorithm. The error tolerance is then reached, and
the obtained approximate local-global solution is given in Fig. 10(b). The discretization error is again
very low, and the corresponding normalized indicator converges to zero very rapidly even though no
refinement of τh is performed. In this final coupling configuration : (i) only elements 83 and 89 (close
to the right-hand side of the structure and relying on the fine-scale Young modulus) are added to ΩL ;
(ii) two iterations are performed in the non-intrusive local-global coupling algorithm (i.e. n = 2) ; (iii)
no mesh refinement is necessary in ΩL. Even though the approximate solution shown in Fig. 10(b) is
quite different from that given in Fig. 9 (left), it is accurate enough for the prediction of the quantity of
interest. In particular, some of the local variations of the Young modulus have very little impact on the
quantity of interest and do not need to be represented.

(a) Primal coupled solution at initial step. (b) Primal coupled solution after adaptation.

(c) Evolution of error indicators along the adaptive pro-
cess.

Figure 10. Results for a low local variation of the Young modulus : (a) and (b) represent the field of the εxx strain
component at steps 0 and 4, respectively, of the adaptive process ; (c) gives the evolution of the different error indicators at

each adaptation step.

Remark 11 A similar example was run using an even smaller contrast (Emin = 0.8). In this case, the
adaptive procedure shows that the major error source, which is modeling error, is located in elements 1 and
10 which are corner elements where the Dirichlet boundary condition are applied and where large gradients
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occur (stress concentration). Two additional patches with refined mesh should thus be incorporated in ΩL

in order to decrease the error on the quantity of interest effectively.

We now show results for a large modification of the Young modulus (Emin = 0.0026). Starting from
the same initial configuration of the coupled problem, the adaptive procedure is performed and results
are shown in Fig. 11. The values of the different relative indicators are given at each adaptation step in
Fig. 11(c). We observe that 7 adaptation steps are now required to reach the error tolerance : five are
related to model adaptation by adding macro elements inside the local zone ΩL, and two steps increase
the number of iterations in the coupling algorithm. In the first three steps, the error is mainly due to
modeling and local evaluations indicate that elements 89, 83, and 58 should be successively included in the
local model. The other macro elements (44 and 25) which are the support of a change in Young’s modulus
are added to the local zone ΩL in steps 5 and 7. Consequently, the algorithm indicates that the local zone
should here cover all elements which contain an inclusion in order to reach the error tolerance on the
quantity of interest. Nevertheless, the local weakening of the Young modulus do not need to be described
precisely as no mesh refinement is required for τh. We also notice (looking at Step 8 on Fig. 11(c)) that
mesh refinement would be the next adaptation step if a lower error tolerance was chosen.
The approximate solution obtained at the end of the adaptive process is reported in Fig. 11(b) ; it is
interesting to see that it is sufficient to predict the quantity of interest accurately even though it remains
a coarse approximation of the exact strain field shown in Fig. 9 (right).

5.2.2. Heterogeneous local variation of the Young modulus
We now consider a case where a zone on which the Young modulus is decreased has a larger area and

impacts more than one macro element of the global mesh τH . The associated configuration is shown in
Fig. 12(a), and the contrast is such that Emin = 0.45.

For this example, eleven adaptive steps are required to reach a tolerance γtol = 1% on the quantity of
interest, as shown in Fig. 12(b), and these are mostly related to model adaptation. In order to detail the
adaptive process, we represent in Fig. 13 the spatial distribution of the indicator ηmod

Q on modeling error

per macro element of τH , the position of the local patches constituting ΩL (grey zones), and the macro
element (in black) that was included in the local zone ΩL at the current adaptation step. At the end of
the adaptive process, the configuration of the coupling problem is such that ΩL is made of the element
set {91 − 100, 58, 59, 57, 25, 83, 68, 48, 89} (elements are listed in the order they are included in ΩL), 3
iterations are performed in the local-global coupling algorithm, and no refinement is needed.

Eventually, for this last configuration of the Young modulus distribution, we consider the control of
the error on another quantity of interest Q. It is the average of the strain component εxx in the macro
element 68 (which is in the neighborhood of the large weakened zone). The local zone ΩL initially consists
of macro elements 58 and 68. Applying the adaptive process for this quantity indicates that the main
error sources are initially due to coupling iterations and local discretization so that the mesh τh in the
local zone ΩL needs to be refined in order to reach the tolerance γtol = 2%. This tolerance, obtained
after 4 iterations of the adaptive algorithm, also requires n = 3 local-global iterations but no extension
of ΩL. We show in Fig.14 several features of the goal-oriented adaptation strategy : the adjoint solution
(that exhibits large localized gradients in the vicinity of the region of interest) is shown in Fig. 14(a), the
evolution of error estimator and indicators along the adaptive process are given in Fig. 14(b), while the
final local mesh τh and the final approximate local-global solution (requiring n = 3 local-global iterations)
are shown in Fig. 14(c) and Fig. 14(d), respectively.
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(a) Primal coupled solution at initial step. (b) Primal coupled solution after adaptation.

(c) Evolution of error indicators along the adaptive pro-

cess.

Figure 11. Results for a large local variation of the Young modulus : (a) and (b) represent the field of the εxx strain

component at steps 0 and 7, respectively, of the adaptive process ; (c) gives the evolution of the different error indicators at

each adaptation step.

5.3. Bending plate with holes

In this final application, we consider a plate with a regular (periodic) distribution of 160 holes with
constant radius r = 0.15, and submitted to a bending loading. The dimensions of the plate and boundary
conditions are detailed in Fig. 15. The Young modulus is E = 1 and the Poisson ratio is ν = 0.3. The
reference solution, in terms of εyy component of the strain field, is given in Fig. 16(a) ; all the 160 holes
are considered in this case, and an overkill computation is performed.

Using the local-global coupling framework, the solution is approximated considering :
— a global model made of the plate without any hole and with an homogenized Young modulus

E0 = (1− πr2)E (effective modulus obtained from a weighted average). The global mesh τH used
for this model is composed of 8×20 first-order quadrangle elements ;

— a local model in a zone ΩL ⊂ Ω made of a set of patches, each patch representing a squared
domain including a hole (Fig. 15(b)). The size of one local patch is 1×1 (that is, the size of a
macro element), the Young modulus is E = 1, and the unstructured mesh is composed of first-order
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(a) Larger weakening zone : the local decrease of the
Young modulus also impacts the neighborhood of ele-

ment 58.

(b) Evolution of error indicators along the adaptive pro-
cess.

Figure 12. Local weakened zone inside the structure (a) and adaptivity results (b).

triangular elements.

In the adaptive process, we consider that the local mesh τh is fine enough so that discretization error
in ΩL is neglected. Consequently, the adaptive procedure aims at setting the optimal number n of itera-
tions in the coupling procedure as well as selecting the holes which need to be represented using a patch
(definition of the size of ΩL). The quantity of interest is the average of the vertical displacement on the
right edge (x = 20) of the structure. Naturally, the initial local zone ΩL is placed in the vicinity of this
edge (see Fig. 18(a)). It is made of the layer of 8 macro elements of τH which are connected to the right
edge of Ω ; out of the 8 associated holes, the other holes are not represented. We show in Fig. 16(b) the
approximate solution obtained when considering this coupling configuration.

Setting the error tolerance to γtol = 2%, the adaptive process is performed, starting from the previous
coupling configuration with one iteration in the local-global algorithm. Using the non-intrusive frame-
work, potential critical zones are analyzed by placing an additional patch in each macro element of Ω0

when solving the adjoint problem, in order to catch the associated error sources. The obtained set of
adjoint problems is then solved in parallel and enables to detect zones where the modeling error is the
highest.

Remark 12 For the computation of residuals, a fine projection grid is used and elements of this grid which
are inside holes are marked and discarded in the computation.

The adaptation results are shown in Fig. 17, where the evolutions of the relative error estimator
and indicators (in terms of iteration and modeling error sources) are shown along the adaptive process
(Fig. 17(a)), as well as the final approximate coupled solution verifying the tolerance on the quantity
of interest (Fig. 17(b)). This solution is obtained after 63 iterations of the adaptive process ; it requires
n = 3 iterations in the coupling algorithm and an enlarged local zone ΩL taking into account pollution
effects from the coarse global model. The adaptive process can be detailed as follows :

— from Step 1 to Step 16, modeling error is predominant so that patches are added to ΩL. The size
of this zone at Step 16 is shown in Fig. 18(b) ;

— at Step 17, an additional iteration is performed in the coupling algorithm ;
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(a) Initial distribution (b) After Adapt.1 (c) After Adapt.3

(d) After Adapt.6 (e) After Adapt.8 (f) Final distribution.

Figure 13. Distribution of the indicator on modeling error at different steps of the adaptation procedure. In the top figures

of each step, the local zone ΩL is in grey and the newly added elements in the local zone are in black.

— from Step 18 to Step 62, news patches are added to ΩL. The size of this zone at Step 62 is shown
in Fig. 18(c) ;

— at Step 63, an additional iteration is performed in the coupling algorithm and the error reaches the
preset tolerance γtol.

We emphasize that we chose here to add only one patch to ΩL at each iteration of the adaptive process,
so that the required number of iterations to reach the error tolerance is quite large. An alternative to
decrease the number of iterations would be to add several patches in the same time (selecting macro
elements of τH in which modeling error is larger than a threshold). Nevertheless, optimality of the final
coupling configuration may be lost with this procedure, and this is why we chose not to apply it in the
paper.

Eventually we now consider as the quantity of interest the average of the stress component σxx in a local
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(a) Stress component σxx of the adjoint problem. (b) Evolution of error indicators along the adaptive pro-
cess.

(c) Final mesh used to approximate
the solution in the local-global cou-

pling process.

(d) Primal coupled solution after adaptation.

Figure 14. Results when considering as a quantity of interest the average of the strain component εxx in the vicinity of the

large weakened zone : influence on the adjoint solution (a), and final stress field in the structure after applying the adaptive
algorithm.

zone ωQ ⊂ Ω that corresponds to the upper-left macro element of τH . For this quantity, the loading of the
adjoint problem consists of a pre-strain inside ωQ. Starting from an initial configuration where ΩL = ωQ,
and setting an error tolerance γtol = 2%, adaptation results are reported in Fig. 19. The evolutions
of the relative error estimator and indicators along the adaptive process are shown in Fig. 19(a) ; they
indicate that the preset error tolerance is reached after 4 iterations of the adaptive algorithm, with n = 2
local-global iterations, and with an enlarged local zone ΩL. The final configuration of ΩL is displayed
in Fig. 19(b), and the final approximate local-global solution is shown in Fig. 19(c). It is interesting to
notice that for this last case, only 3 holes out of 160 really need to be represented in order to reach the
error tolerance on the quantity of interest, so that much computing resources and meshing effort can be
saved.
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(a) Configuration of the studied problem. (b) Zoom on the local mesh used

to represent each hole.

Figure 15. Description of the bending plate problem. The reference geometry (a) is composed of 160 holes that may be
each represented by a patch (b) in the numerical approximation.

6. Conclusions and prospects

We presented in this paper a new strategy to control the accuracy of local-global coupling strategies
with respect to some quantities of interest. This strategy, based on residual functionals and adjoint-
based techniques, enables to compute right at the right cost. It defines a fully computable error estimate
(quantitatively certifying the quality of the approximation) as well as error indicators which are used
in an adaptation process. These indicators enable to split error sources between iterations (i.e. lack of
convergence at the coupling interface), modeling, and discretization so that useless over-computations
are avoided (e.g. the iterative solver is usually stopped before reaching convergence in terms of the
usual interface equilibrium). It is important to notice that the strategy is made consistent with the non-
intrusive framework of the coupling ; it can thus be performed when coupling two different codes, and local
analyses for error sources (by adding local patches when solving the adjoint problem) can advantageously
benefit from this non-intrusive framework. Consequently, the adjoint solution does not require prohibitive
computing resources but is rather conducted by defining individual and manageable problems (that differ
by the position of local patches) which can be all solved in parallel at a global cost similar to that of
the primal coupling problem. Also, the proposed strategy can be extended to nonlinear problems using
linearized operators, even though the error estimator and indicators may not be fully robust in some
cases. It thus appears as an attractive numerical tool for practical engineering applications.
Further developments should address the application to large structures with complex nonlinear material
behaviors (such as damage), as well as the computation of robust (e.g. mathematically guaranteed) error
bounds on quantities of interest. Another interesting study would consist in assessing the impact of an
interface error (e.g. approximate data transfer coming from incompatible meshes) on outputs of interest.
All these points will be the topics of forthcoming research works.
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