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Current and Optimal Dimensions Predictions for a Porous
Micro-Electrode
Tien D. Le[a] and Didier Lasseux*[b]

The expression of the current delivered by a cylindrical porous
micro-electrode operating a single heterogeneous reaction and
mass diffusion of the reagent is analytically derived in this work
from a complete solution of the diffusion/reaction macroscopic
problem. This solution is valid regardless of the aspect (thick-
ness to inner radius) ratio. It encompasses the hybrid solution
reported elsewhere, valid only when this ratio remains small
compared to unity, and, consequently, the case of a planar

electrode as well. The asymptotic form of the solution in this
latter case is also provided. The complete solution is used to
predict the optimal thickness of the electrode and its optimal
inner radius (i. e. the supporting wire radius) corresponding to
the best compromise between a minimum electrode volume
and a maximum current per unit volume. This work hence
provides a complete optimization procedure that can be used
as predictive tools for the design of porous electrodes.

1. Introduction

The development of miniaturized electrodes has been the
subject of intense interest for the past decade, in particular for
bio-implantable electro-devices.[1] In order to reduce their size,
micro- or nanoporous materials are particulary attractive due to
their high specific surface area available for the heterogeneous
redox reactions, hence producing a much larger current than a
flat electrode of the same size.[2] An abundant literature has
been dedicated to the study of these devices, both from
theoretical and experimental points of view. Many different
operating conditions can be envisaged for these electrodes[3–6],
namely without any catalyst[7,8] or with an embedded enzyme
to catalyze the redox reactions which may occur in the direct
electron transfer[9] or mediated electron transfer mode.[10] A
classical procedure to obtain a porous material relies on a
Langmuir-Blodgett templating method related to self-assembly
of particles. This is followed by electrodeposition of a conduct-
ing material. After dissolving the particles, a synthetic porous
electrode composed of interconnected pores is obtained which
porosity and internal architecture can be tuned.[2,11, 12]

The coupled process of transport and electrochemical
reaction occurring during voltammetry experiments for porous
electrodes has been modelled in both cases with or without
catalysis.[13–15] Recently, a multiscale model for a porous
electrode operating a single reaction was developed[7], provid-
ing a macroscopic model and a closure problem which solution
allows determining the effective parameter (effective diffusion
coefficient). Such a model was validated by comparing its
predictions with 3D direct numerical simulations at the pore

scale similar to those reported recently.[16] It was also success-
fully compared with experimental data. The advantage of such
an approach is that the ensuing macroscale model, which
contains the necessary information from the microscale, is
much simpler to solve than the original one at the scale of the
microstructure, avoiding cumbersome direct numerical simula-
tions at this scale. Further, an optimization procedure, based on
the macroscopic model to estimate the optimal thickness of
cylindrical porous electrodes, has been investigated.[17] It was
derived under the assumption that the electrode thickness is
much smaller than its inner radius, although the diffusion layer
thickness surrounding the electrode is not. This yielded the so-
called hybrid model. However, such an assumption can fail in
practice and it is hence of major interest to derive a prediction
of the optimal thickness in the general case.

In the present work, an accurate complete solution of the
upscaled model in its general form is proposed in order to
predict the current delivered by a cylindrical electrode in the
steady regime and to estimate its optimal thickness and optimal
inner radius without any assumption on its microstructure and
dimensions. This solution is expressed in terms of the Bessel’s
functions of the first and second kinds; it is valid whatever the
thickness to inner radius ratio and is hence general.

Predictions of this model are compared to those obtained
from the hybrid model in the case of a face-centered cubic,
cubic and body-centered cubic structures of the porous
material. Moreover, an analytical solution is also derived for
planar electrodes which conveniently matches the complete
solution for cylindrical electrodes in the limit of an extremely
large radius compared to the thickness. Finally, the optimal
radius of the supporting wire that leads to the minimum
volume of the electrode is derived. This represents a very
important result, leading to a complete optimization process of
the macroscopic dimensions of the electrode.

The paper is organized as follows. In Section 2, the upscaled
model for the coupled electrochemical reaction and transport
in a porous micro-electrode is briefly recalled. A complete
analytical solution of the macroscopic model for a cylindrical
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geometry is proposed in Section 3 without any restriction on
the electrode dimensions. Such a solution is compared to that
of the hybrid model developed in Ref. [17] to predict the
optimal electrode thickness. In Section 4, an analytical solution
of the macroscopic model and for the optimal thickness of a
planar electrode is proposed. Section 5 is dedicated to the
derivation of the optimal radius of the cylindrical wire
supporting the electrode, which, along with its optimal thick-
ness, provides a complete framework for its macroscopic
optimization. Concluding remarks are drawn in Section 6.

2. Recall of the upscaled model

In this section, the upscaled model for a porous electrode
operating a single reduction reaction, as proposed in previous
works[7,17], is briefly recalled to further develop its solution. This
model is derived from the pore-scale initial boundary value
problem (IBVP) describing the coupled diffusion and heteroge-
neous reaction of the species of interest. Diffusion of this
species, A, (of molar concentration cA) dissolved in the solution
saturating the electrode’s pore space, denoted Ωf, is governed
by Fick’s law.[18] It is beyond the scope of this article to provide
the details for this governing law to apply here. The reader is
referred to Ref. [19] for the assumptions and constraints that
support it. At the pore solid/fluid interfaces, I sf , a single
reaction reducing A is considered for which the electron transfer
mechanism is described by the Butler-Volmer’s relation[20] (see
Figure 1).

The IBVP at the pore scale can be formulated as follows

@cA
@t ¼ = � ðDA=cAÞ in Wf (1a)

B:C:1 @ n � DA=cA ¼ k0aAcA at I sf (1b)

B:C:2 cA ¼ GAðr; tÞ r 2 Afe; 8 t (1c)

I:C: cA ¼ F A rð Þ r 2 Wf ; t ¼ 0 (1d)

In these equations, DA is the molecular diffusion coefficient
of species A, n denotes the unit normal vector at I sf , pointing
out of Ωf, and k0 is the standard rate constant of the reaction.

Moreover, aA ¼ exp @anFðE@E0Þ
RT

� �
where α, n, E and E0 are the

electron transfer coefficient, the number of transferred elec-
trons, the electrode potential and the standard potential
respectively, F, R and T representing the Faraday’s constant,
ideal gas constant and temperature. In this work, T is assumed
to be constant and the conduction of electrons in the solid
phase is supposed to be extremely fast so that the potential in
this phase can be readily considered as uniform. It should be
noted that in the boundary condition B.C.2, Afe=Ωf\Ωe is the
entrance and/or exit boundaries of the fluid phase, Ωf, from/
into the diffusion layer surrounding the electrode, denoted Ωe.

The above pore-scale IBVP can be upscaled using the
volume averaging method[21] to obtain a model at the macro-
scopic scale. To do so, a separation of length-scales is assumed
between the characteristic pore length-scale, ‘p, and the
characteristic macroscopic length scale, L, of the system. In
addition, it is assumed that an intermediate scale r0 can be
exhibited satisfying ‘p � r0 � L such that an averaging domain,
V, of measure V and size r0 can be used to average the pore-
scale IBVP. The domain V is usually chosen so as to contain all
the necessary microstructural information in order to be a
representative elementary volume (REV) of the porous medium
and of the physical process at play. In this way, the macroscopic
model is expressed in terms of the intrinsic average concen-
tration of species A, denoted hcAif . It is defined in V in which
the fluid phase occupies a domain Vf , of measure Vf, as

hcAif ¼
1
V f

Z
Vf xð Þ

cAdV (2)

The averaging procedure is then carried out in three main
steps. The averaging operator of Eq. 2 is first applied to the
pore-scale IBVP, and in order to interchange time and space
derivations with integration, the general transport theorem[22]

and the averaging theorem[23] are employed. When the porous
medium is rigid and homogeneous, they can be respectively
expressed as

@y

@t

� �f

¼ @ yh if
@t (3a)

ryh if¼ r yh ifþ 1
Vf

Z
Asf

ny dA (3b)

In the latter, Asf , of measure Asf, represents the portion of
I sf contained in V. In a second step, the physical variables ψ
(here y ¼ cA) are spatially decomposed under the form
y ¼ hyif þ ~y,[24] ~y representing the spatial fluctuations of ψ
with respect to its average hyif . This decomposition is
introduced in the averaged equations which can be usually
simplified on the basis of the scale hierarchy. This yields an
unclosed model in which both hyif and ~y are present. In a third
step, the (initial) boundary value problem for ~y is derived and
this is obtained by subtracting the unclosed macroscopic
equations from their pore-scale analogues. The equations for ~yFigure 1. Pore-scale configuration.



are then simplified on the basis of the length scale constraints.
These constraints further allow obtaining a formal solution
expressed in terms of closure variables by making the problem
on ~y periodic over a periodic unit cell, at least as large as the
REV. For simplicity, this periodic unit cell is identified as the REV
in the remainder of this work. The formal solution for ~y is
introduced in the unclosed macroscopic equations, on the one
hand, and in the problem for ~y, on the other hand, yielding the
closed macroscopic model and the closure problem(s) for the
closure variables, respectively. The closed model involves
effective coefficients that are determined from the solution of
the closure problem(s).

When the procedure described above is applied to the IBVP
given in Eqs. 1, the following macroscopic mass conservation
equation is obtained[7,17]

ef
@ cAh if
@t ¼ = � efDeff � = cAh ifE �@ k0aAau cAh if in Ω (4)

Here, Ω denotes the macroscopic domain occupied by the
electrode whereas ɛf and av are the porosity and specific area,
respectively defined by

ef ¼
V f

V ; au ¼
Asf

V (5)

In addition, in Eq. 4, Deff is the effective diffusion tensor
which is computed from the solution of an intrinsic closure
problem in a periodic REV (see Eqs. (16) reported in a previous
work.[7]) An example of a REV, of size ‘R � r0, is depicted in
Figure 2 for a FCC structure constitutive of a porous electrode.

It should be noted that the second term on the right hand
side of Eq. 4 originates from the heterogeneous reduction
reaction of species A indicated in the pore-scale boundary
condition in Eq. 1b that is now reflected in the macroscopic
mass conservation equation. The current delivered by the
electrode can then be expressed from the average concen-
tration as[7]

I ¼ @nk0FaAau

Z
W

hcAifdV (6)

To obtain the solution on hcAif in Ω, macroscopic boundary
and initial conditions corresponding to the pore-scale ana-
logues in Eqs. 1c and 1d must be specified. In practice, the
electrode is immersed in the fluid saturating the pores. The
mass transfer of species A in the surrounding bulk fluid, which
is assumed to obey Fick’s second law (Eq. 1a), gives rise to a
diffusion layer, of thickness LN, next to the fluid-electrode
boundary. The concentration at the outer edge of this boundary
layer remains constant over time and is denoted c0A which is
assumed to be the uniform concentration value in the whole
system at t ¼ 0. At the boundary between the electrode and
the diffusion layer, continuity of both the concentration and the
flux can be reasonably assumed as was investigated earlier.[7] A
resistance to mass transfer may be considered at the fluid-
electrode boundary. However, this mechanism would contrib-
ute to hinder the penetration of species A inside the electrode
and would hence lead to predict an optimal thickness smaller
than that in the absence of this mechanism. In the following
the existence of mass transfer resistance is ignored with the
idea that this leads to the maximum expected value of the
optimal electrode thickness. Moreover, in order to determine
this optimal thickness, the stationary regime is to be considered
for which the penetration depth of the diffusion/reaction front
has settled down inside the electrode.

The solution of the coupled diffusion-reaction macroscopic
equation 4, considering the diffusion layer in the bulk fluid next
to Ω, was proposed for a cylindrical electrode in the stationary
regime.[17] However, this solution was restricted to the case
where the thickness of the electrode remains small compared
to its inner radius, although this assumption may not apply to
the outer boundary layer thickness. This led to a so-called
hybrid model. In practice, the electrode can be thick enough for
this assumption to fail and it is hence of major importance to
reconsider the problem in a more general case by deriving a
solution referred to as the complete solution (or Bessel’s
solution). This is the purpose of the following section.

3. Cylindrical electrode

The cylindrical electrode under consideration is made of a
porous material deposited on a conducting cylindrical wire of
radius R1. Its thickness is Le and its external radius R2 ¼ R1 þ Le.
The diffusion layer outside the electrode is supposed to have an
external radius R3 ¼ R2 þ LN. A schematic cross section of the
configuration, with the normalized characteristic radial dimen-
sions denoted with the superscript *, is depicted in Figure 3.
The reference dimension used to normalize the radial coor-
dinate is the characteristic size, ‘R, of the periodic unit cell (the
REV) of the porous medium. The wire center is positioned at
r� ¼ 0.

Using the initial concentration c0A, that is supposed to be
uniform in the whole system at t ¼ 0, as the reference
concentration, and assuming that steady state is reached, the
macroscale problem takes the following formFigure 2. Unit cell of a FCC structure with the characteristic dimensions. The

gray area corresponds to the fluid domain while the solid phase is not
represented. Spherical pores are connected through windows of diameter dc.



r�2
d2hcA�if
dr�2

þ r�
dhcA�if
dr�

¼ f2r�2hcA�if R1
� � r� � R2

� (7a)

d
dr� r�

dcA
�

dr�

� �
¼ 0 R2

� � r� � R3
� (7b)

B:C:1 : Deff
� dhcA�if

dr� ¼ dcA
�

dr� r� ¼ R2
� (7c)

B:C:2 : hcA�if ¼ cA
� r� ¼ R2

� (7d)

B:C:3 :
dhcA�if
dr� ¼ 0 r� ¼ R1

� (7e)

B:C:4 : cA
� ¼ 1 r� ¼ R3

� (7 f)

In B.C.1 and B.C.2, continuity of both the flux and the
concentration is assumed at the porous electrode-diffusion
layer interface (r� ¼ R2

�). At the electrode-wire interface,
r� ¼ R1

�, a zero flux is considered whereas a Dirichlet boundary
condition is used at the external boundary of the diffusion layer
(r� ¼ R3

�) where the initial concentration, c0A, is imposed. In Eq.
7c, Deff

� ¼ efDeff=DA (Deff ¼ Deff I for an isotropic structure) and
in Eq. 7a, φ is the Thiele modulus defined as

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ki au

�

Deff
�

r
(8)

where Ki is the kinetic number

Ki ¼ k0aA‘R
DA

(9)

3.1. Hybrid model

When Le
�=R1

� � 1, Eq. 7a can be simplified to the following
form

d2hcA�if
dr�2 @ f2hcA�if ¼ 0; R1

� � r� � R2
� (10)

In the absence of any other assumption (in particular if
Le

� þ LN
� is not assumed to be exceedingly small compared to

R1
�), Eqs. 7b to 7 f remain unchanged. This yields the hybrid

model which solution is given by[17]

hcA�if ¼ a1 cosh f r� @ R1
�ð Þð Þ R1

� � r� � R2
� (11a)

cA
� ¼ b1 ln r� þ c1 R2

� � r� � R3
� (11b)

with

a1 ¼ Deff
� fsinh fLe�ð ÞR2

�lnðR3
�=R2

�Þ þ cosh fLe�ð Þð Þ@1 (12a)

b1 ¼
coth fLe

�ð Þ
Deff

�R2
� f

þ lnðR3
�=R2

�Þ
� �@1

(12b)

c1 ¼ 1@ b1 lnðR3
�Þ (12c)

Moreover, the current per unit volume can be expressed as

I
Ve

¼ @ nFk0aAauc
0
A

fLe�½cothðfLe�Þ þ Deff
�fR2

� lnðR3
�=R2

�Þ� (13)

where Ve is the volume of the electrode immersed in the
reactive solution, i. e., the active electrode volume.

3.2. Complete solution

At this point, no special hypothesis is made on the electrode
dimensions and Eqs. 7 are kept as such. The solution of Eq. 7a is
given by a linear combination of the modified zeroth order
Bessel’s functions of the first and second kinds, I0 and K0, as

[25]

cA
�h if¼ A1I0ðfr�Þ þ B1K0ðfr�Þ; R1

� � r� � R2
� (14)

The coefficients A1 and B1 can be determined by making use
of the boundary conditions 7c, 7d, 7e and 7f. When this
conditions are used, one obtains

A1 ¼ @ K1 fR1
�ð Þ

I1 fR1
�ð Þ B1 (15a)

B1 ¼ @ K1 fR1
�ð Þ

I1 fR1
�ð Þ I0 fR2

�ð Þ þ K0 fR2
�ð Þ

�
þDeff

� fR2
� ln

R3
�

R2
� @ K1ðfR1

�Þ
I1ðfR1

�Þ I1ðfR2
�Þ @ K1 fR2

�ð Þ
� ��@1 (15b)

where I1 and K1 are the first order modified Bessel’s functions of
the first and second kinds, respectively.

In the external diffusion layer, the concentration is given by

Figure 3. Cross section of a cylindrical electrode of external dimensionless
radius R2

� made of a porous material (gray area) deposited on a cylindrical
wire of dimensionless radius R1

� and surrounded by the diffusion layer which
external dimensionless radius is R3

� .



cA
� ¼ A2 ln r� þ B2; R2

� � r� � R3
� (16)

with

A2 ¼
1

lnðR2
�=R3

�Þ A1I0 fR2
�ð Þ þ B1K0 fR2

�ð Þ @ 1ð Þ (17a)

B2 ¼ 1@ A2 ln R3
� (17b)

When the solution given in Eq. 14 is introduced in Eq. 6, the
current per unit active electrode volume, Ve, takes the following
expression

I
Ve

¼ @ C
R2

�2 @ R1
�2

Z R2
�

R1�
A1I0ðfr�Þ þ B1K0ðfr�Þ½ �r�dr�

¼ @ C
R2

�2 @ R1
�2 ðA1F1 þ B1F2Þ

(18)

with C, F1 and F2 respectively given by

C ¼ 2nk0FauaAc
0
A (19a)

F1 ¼
Z R2

�

R1�
I0 fr�ð Þr�dr� ¼ 1

f
R2

�I1 fR2
�ð Þ @ R1

�I1 fR1
�ð Þð Þ (19b)

F2 ¼
Z R2

�

R1�
K0ðfr�Þr�dr� ¼

1
f
ðR1

�K1ðfR1
�Þ @ R2

�K1ðfR2
�ÞÞ

(19c)

In the following, numerical evaluation of the above solution
on the current versus the scanning potential is compared to
that of the hybrid model. The parameters used to compute
these solutions are given in Table 1. They correspond to those
used for the validation of the macroscopic model with direct
numerical simulations of the microscale model and experimen-
tal data.[7,17] The electrochemical reaction considered here is
typically the reduction of H2O2 to H2O. Moreover, the face-
centered cubic (FCC) structure is assumed as the periodic REV
of the porous medium constitutive of the electrode (see
Figure 2). This structure is uniquely defined by the sphere
diameter, ds � ‘p, and the pore connection window size, dc.

[7]

The REV of the FCC structure corresponds to 4 half-layers (HL)
of spherical pores.

The current versus the potential obtained from both the
hybrid model and Bessel’s solution is represented in Figure 4 (a)
for three different electrodes made of 5HL, 15HL and 30HL of
pores. As can be observed from this figure, the two solutions
are almost identical when the potential is sufficiently large,
although the hybrid model tends to underestimate the
magnitude of the current. The discrepancy between the two
models becomes significant below a threshold value of the
potential which increases with the electrode thickness. This is
made clear in Figure 4 (b) representing the absolute value of
the relative error between the two models (the Bessel’s solution
is taken as the reference) showing that this relative error can

reach about 12% for the thickest electrode under consideration
when the potential is close to 0 V.

Numerical simulations on other microstructures, namely
cubic (C) and body-centered cubic (BCC) which unit cells are
represented in Figure 5, are also carried out using the
parameters given in Table 1. The resulting values of ɛ, av, Deff

�

and ‘R are reported in Table 2. In Figure 6, the current versus
the scanning potential obtained for different electrode thick-
nesses computed with the complete solution and the hybrid
model are represented for the C (Figure 6 (a)) and BCC (Figure 6
(b)) structures. As already observed for the FCC structure, a
significant difference between the two models exists in
particular for a thick electrode, and this is a general feature for
any microstructure. Again, the hybrid model accuracy fails

Table 1. Parameters used for the solutions of the hybrid and complete
models.

Parameter[7,17] Symbol Value Unit

Ideal gas constant R 8.314 Jmol@1K@1

Faraday’s constant F 96485 Cmol@1

Number of electron
transferred

n 2 –

Electron transfer
coefficient

α 0.482 –

Standard rate constant k0 1.7�10@17 cms@1

Standard potential
vs. E0Ag=AgCl

E0 1.56 V

Temperature T 298 K
Bulk concentration c0A 10 molm@3

Diffusion coefficient DA 10–9 m2s@1

Spherical pore diameter ds ¼ ‘p 1.17 μm
Pore connection
window size

dc 0:15ds m

Size of the periodic
unit cell

‘R 1.64 μm

Porosity ɛf 0.763 –
Specific surface area aυ 3.567�106 m@1

Normalized effective
coefficient

Deff
� 0.364 –

Wire radius R1 25 μm
Diffusion layer thickness LN 100 μm

Table 2. Properties of C and BCC structures used in the simulations.

Parameter[7] Symbol Value Unit

C

Porosity ɛf 0.541 –
Specific surface area aυ 2.68�106 m@1

Normalized
effective diffusion
coefficient

Deff
� 0.142 –

Size of the periodic
unit cell

‘R 1.16 μm

BCC

Porosity ɛf 0.703 –
Specific surface area aυ 3.44�106 m@1

Normalized effective
diffusion coefficient

Deff
� 0.236 –

Size of the periodic
unit cell

‘R 1.34 μm



when the thickness to inner radius ratio is not small enough
compared to 1.

The analysis can now be focused on the optimal electrode
thickness using the same approach as the one recently
investigated.[17] To begin with, it is instructive to illustrate the
electrode efficiency with the reagent concentration profile. In
Figure 7, hcA�if obtained from Eq. 14 with Le

�=30 and parame-
ters of Table 1 is represented within the electrode
ðR1

� < r� < R2
�) for Ki=10@4 and Ki=10@3. This figure clearly

shows that the penetration depth of the concentration front
inside the electrode decreases as the kinetic number increases,
i. e. when reaction becomes more significant so that species A is
consumed in the vicinity of the electrode/diffusion layer inter-
face. As a result, a large part of the electrode (about half of it in
Figure 7 for Ki ¼ 10@3), in the region far enough from this
interface, does not contribute much to the current production.
This observation is an evidence that an optimal thickness can
be determined and this is carried out as follows.

Figure 4. (a) Current versus the scanning potential obtained from the hybrid
model and Bessel’s solution for the 5HL, 15HL and 30 HL electrodes. (b)
Absolute value of the relative error between the two solutions taking the
Bessel’s solution as the reference.

Figure 5. Unit cell of the C and BCC structures.

Figure 6. Current versus the scanning potential obtained from the hybrid
model and Bessel’s solution for the 5HL, 15HL and 30 HL electrodes: (a) cubic
structure (C) (b) body-centered cubic structure (BCC).



The current per unit volume expressed in Eq. 18 decreases
with the electrode thickness, Le

�, in two characteristic regimes
(see Figure 8): a rapid decrease at small electrode thicknesses
followed by a slow convergence to zero at very large values of
Le

�. This suggests defining the optimal thickness, Le
�op, as the

crossover between these two regimes. Practically, this value is
obtained at the intersecting point of the tangent to I=Vej j at
Le

�0 with I=Vej j=0. The value of Le
�0 should be taken as the

minimum thickness that is experimentally achievable, i. e.,
Le

�0 � 1. The value of Le
�op can hence be obtained from the

following expression

Le
�op ¼ @ I=Vej jLe�0

@ I=Vej j
@Le�

���
Le�0

þ Le
�0

(20)

The derivative of the current per unit volume with respect
to Le

� involved in this last relationship can be determined
analytically from Eq. 18. It is given by

@ I=Vej jð Þ
@Le�

¼ 2R2
�

R2
�2 @ R1

�2
I
Ve

þ C
R2

�2 @ R1
�2

@A1

@Le�
F1 þ

@B1

@Le�
F2 þ R2

�hcA�if
��
R2�

� � (21)

As a result, the optimal electrode thickness can be
estimated analytically once the electrode features are provided,
namely ‘R; av

�; Deff
� and R1

�. Once these porous medium
properties are fixed, the value of Le

�op can be computed as it
only depends on the conditions at which it is supposed to
operate, i. e., Ki and LN

�. In the case of the FCC structure
considered so far, and with the parameters reported in Table 1,
together with Le

�0 ¼ 1, Le
�op was computed from Eq. 20 for Ki

values up to 2� 10@3. The corresponding results are reported in
Figure 9(a) considering two values of the diffusion layer thick-
ness, namely LN=100 μm and LN=200 μm. As expected, Le

�op

increases when LN decreases. This is due to the fact that a
thinner diffusion layer (i. e. imposing a Dirichlet boundary
condition closer to the fluid porous layer interface) allows a
more efficient penetration of the reagent inside the porous
electrode so that a thicker active layer is permitted. In addition,
the optimal thickness obtained with the hybrid model reported
elsewhere[17] is also represented in this figure.

As can be observed on this figure, the difference between
the predictions of the two models remains very small. This is
highlighted in Figure 9(b) representing the relative error
between the two predictions, taking the Bessel’s solution as the
reference. Indeed, the largest difference is for the smallest
values of Ki (i. e. for the largest values of E) and small values of
the diffusion layer thickness. For the case under study, this
difference does not exceed 6%.

These results show that the hybrid model remains robust if
one is willing to estimate the optimal thickness of the electrode
although it can significantly underestimate the current, in
particular for the smallest values of the potential when the
condition 2Le

�=ðR1
� þ R2

�Þ � 1 is not satisfied.
The normalized optimal thickness predicted for the other

microstructures (C and BCC), compared to the FCC structure, is
represented in Figure 10. Clearly, the dependence of Le

�op on Ki
is similar whatever the structure. This brings to the general
conclusion that, whatever the microstructure, the optimal
thickness decreases rapidly with the kinetic number and tends
to a constant value for large values of Ki. Quantitatively, the
comparison of the optimal thickness of the three structures
must be made with care as Le

�op and Ki are based on ‘R which is
not the same from one structure to another. For this purpose, a
representation where ‘p ¼ ds (identical for C, BCC and FCC) is
used as the reference length is given in the inset of Figure 10. It

Figure 7. Normalized concentration profile of species A in the electrode for
two values of the kinetic number. The dimensionless electrode thickness is
Le

�=30 the other parameters being those in Table 1.

Figure 8. Variation of the current per unit volume, j I/Ve j , obtained from
Eq. 18 versus the electrode’s dimensionless thickness, Le

�, in the case of a
FCC microstructure for Ki=10@3 and LN=100 μm. The other parameters
used to compute the current per unit volume are provided in Table 1. The
optimal thickness, Le

�°p is obtained from the intersection of the tangent to
this graph at Le

� ¼ Le
�0 with the axis j I/Ve j =0. See text for the details.



shows that the optimal thickness for the BCC and FCC
structures is almost the same (it is slightly larger for the former),
but is larger for the C structure. The physical explanation of this
behavior can be deduced after examining the reduced sensi-
bility of Le

�op to av and Deff
� that are reported in Figure 11. It

should be noted that the reduced sensibility of Le
�op to the

parameter u is defined as u@Le
�op=@u. This figure shows that the

reduced sensibility to av is negative (i. e. Le
�op increases when av

decreases) and is much larger in magnitude than that to Deff
�.

Consequently, the contrast on Le
�op between the three

structures can be interpreted only considering av. Since av is not
markedly different for the BCC and FCC structures (although
slightly smaller for the former) but significantly smaller for the C
structure (see Tables 1 and 2), the expected variation of Le

�op

with respect to the structure is exactly that observed in
Figure 10 and mentioned above.

Figure 9. (a) Optimal thickness versus the kinetic number for two values of
the diffusion layer thickness, obtained from the Bessel’s solution and hybrid
model (b) Absolute relative error between the two approaches taking the
values obtained with the Bessel’s solution as the reference. FCC structure.
Parameters are those reported in Table 1.

Figure 10. Optimal thickness versus the kinetic number for C, BCC and FCC
structures. LN=100 μm. For all structures, dc and ds are the same (see Table 1)
featuring different values of e, aυ, Deff

� and ‘R (see the values in Table 1 for
the FCC and in Table 2 for the C and BCC structures respectively). All other
parameters are the same and are reported in Table 1. Inset: Lope made
dimensionless by the spherical pore diameter, ‘P=ds, versus the pore kinetic
number, Kip=

k0aA‘p
DA

for the three structures.

Figure 11. Reduced sensibility of Lope to a) aυ and b) Deff
� for the three structures C, BCC and FCC.



Finally, it is of interest to investigate which structure, among
the three considered here, is the most efficient in terms of
current production. Results of the current per unit length, L, of
the electrode at its optimal thickness are represented in
Figure 12 for the C, BCC and FCC structures versus Ki. From this
figure, it can be readily concluded that the FCC structure
produces the largest current per unit length. In addition to the
fact that it also allows the thinner optimal thickness, this
structure is the most advantageous one among the three
simple cases envisaged here. In what follows, results are only
illustrated for a FCC structure.

4. Planar electrode

For the sake of completeness, the case of a planar electrode is
now investigated by providing the analytical solution for the
current and optimal thickness. In this situation, the porous
material is deposited onto a plane solid surface, as in the cases
envisaged by Barnes et al.[15] and Cai et al.,[26] for instance.
Assuming that the extension of the electrode in both directions
of the plane are much larger than the electrode thickness, the
model reduces to one dimension, in the z-direction orthogonal
to the plane. Using the same dimensionless variables as in
section 4, the problem can be formulated as follows

@2hcA�if
@z�2 @ f2hcA�if ¼ 0 0 � z� � Le

� (22a)

@

@z�
@cA

�

@z�

� �
¼ 0 Le

� � z� � Le
� þ LN

� (22b)

B:C:1
@hcA�if
@z�

¼ 0 z� ¼ 0 (22c)

B:C:2 hcA�if ¼ cA
� z� ¼ Le

� (22d)

B:C:3 Deff
� @hcA�if

@z� ¼ @cA
�

@z� z� ¼ Le� (22e)

B:C:4 cA
� ¼ 1 z� ¼ Le

� þ LN
� (22f)

The analytical solution to the above system of equations is
given by

cA�h if¼ a2 cosh fz�ð Þ 0 � z� � Le� (23a)

cA
� ¼ b2z

� þ c2 Le
� � z� � Le

� þ LN
� (23b)

where the coefficients a2, b2 and c2 have the following
expressions

a2 ¼ cosh fLe
�ð Þ þ Deff

� fLN
�sinh fLe

�ð Þ½ �@1 (24a)

b2 ¼ coth fLe
�ð Þ

Deff
� f

þ LN
�h i@1

(24b)

c2 ¼ 1@ b2 Le
� þ LN

�ð Þ (24c)

Using Eq. 23a in Eq. 6, the current per unit volume, Ve, can
be written as

I=Ve ¼ @ nFk0aAauc
0
A

fLe� coth fLe�ð Þ þ Deff
� fLN�½ � (25)

Its derivative with respect to Le
� can then be expressed as

@ I=Vej j
@Le�

¼ @ nFk0aAauc
0
A

f

f 1@ coth2 fLe
�ð Þð ÞLe� þ coth fLe

�ð Þ þ Deff
�fLN

�

coth fLe�ð ÞLe� þ Deff
� fLN�Le�½ �2

(26)

From these two last relationships, the optimal thickness can
be determined by making use of Eq. 20. The results of this
prediction is represented in Figure 13 considering a FCC
structure, LN=100 μm Le

�0 ¼ 1 and Ki up to 2� 10@3, all the
other parameters being those reported in Table 1. As a
validation, the solution of the complete model in the limit
R1 ! 1 is also reported in this figure, showing that, in this
limit, the two predictions perfectly match, as expected. This
confirms that the complete solution is a general one, whatever
the electrode dimensions.

On the basis of this general result, the analysis can be
carried on to determine the optimal radius, R1

�op, of the
supporting wire and this is the objective of the following
section.

5. Optimal wire radius, R1
�op

A comparison of the results reported in Figure 13 with those in
Figure 9(a) indicates that, all parameters being the same, the
optimal thickness of the planar electrode is smaller than that of

Figure 12. Current per unit length, L, of the electrode at its optimal thickness
for the three structures C, BCC and FCC versus Ki. Parameters are those
reported in Table 1.



a cylindrical electrode having a finite radius. The contrast
between the two is more significant when Ki decreases. This
suggests to further analyze the dependence of Le

�op upon the
wire radius, R1

�, for a given set of the physico-chemical
parameters. More particularly, it is of interest to investigate the
variation of the volume (per unit length, L) of the electrode at
its optimal thickness, Vop

e =L, with respect to R1
�. Such a variation

is illustrated in Figure 14, considering two values of Ki, namely
Ki ¼ 5×10@4 and Ki ¼ 10@3, taking LN=100 μm, all other
parameters being those reported in Table 1 and a FCC
structure.

This figure clearly shows that Vop
e =L exhibits a minimum

which means that there exists a particular value of R1
�, denoted

R1
�op, which minimizes the volume of material necessary to

achieve the optimal thickness. This is extremely important
keeping in mind that the porous medium is usually made of
expensive materials using complex procedures. In Figure 15,
R1

�op is represented versus Ki in the range 10@4 � Ki � 10@3 for
LN=100 μm. As can be seen on this graph, the optimal wire
radius decreases when Ki increases. Moreover, R1

�op seems to
very weakly depend on LN, as indicated by Figure 16 where R1

�op

is represented versus LN ranging from 100 μm to 400 μm for
Ki ¼ 5×10@4 and Ki ¼ 10@3.

This suggests that the value of R1
�op can be determined

regardless of the value of LN, i. e. as only a function of Ki when
the microstructural parameters are fixed.

This last analysis completes the optimization procedure of
the electrode macroscopic dimensions as its thickness and
supporting wire diameter can be predicted in order to obtain
the optimal current per unit volume when the operating
conditions and the microstructure of the porous material are
known. This represents a major result of this work.

Figure 13. Optimal thickness versus the kinetic number obtained for planar
electrode and cylindrical electrode taking R1! 1. LN=100 μm. FCC
structure. All the parameters are those reported in Table 1.

Figure 14. Variation of the volume (per unit length, L) of the electrode at its
optimal thickness, Vop

e /L, versus the dimensionless wire radius, R1
�, for

Ki=5×10@4 and Ki=10@3, taking LN=100 μm (see Table 1 for the other
parameters). FCC structure.

Figure 15. Variation of the dimensionless optimal wire radius, R1
�op, versus Ki

for LN=100 μm (see Table 1 for the other parameters). FCC structure.

Figure 16. Variation of the dimensionless optimal wire radius, R1
�op, versus LN

for Ki=5×10@4 and Ki=10@3 (see Table 1 for the other parameters). FCC
structure.



6. Conclusion

In this work, steady-state solutions of the macroscopic model
describing the coupled process of electrochemical heteroge-
neous reaction and diffusion are developed for cylindrical and
planar porous micro-electrodes.

The complete solution developed here provides a more
accurate prediction of the current delivered by the electrode
versus the applied potential than the hybrid model reported
earlier which is recovered in the limit of a thickness to inner
radius ratio much smaller than unity and which remains valid in
this limit. Moreover, the complete solution also matches the
one developed in the case of a planar electrode in the limit of
exceedingly large radii. This makes the complete solution a
general one, whatever the dimensions and microsctructure of
the electrode, the characteristics of the latter being reflected in
the porosity, specific area and effective diffusion coefficient.
The use of this complete solution is strongly recommended
particularly when the constraint on the dimensions is not
satisfied.

More importantly, it is shown that an optimal radius of the
supporting wire exists for a given set of the physico-chemical
parameters defining the operating conditions of the electrode.
This optimal radius is derived as to satisfy the minimum volume
of the porous material required to ensure the optimal current
per unit volume. This represents a salient result of the present
work.

Together with the prediction of the current delivered by the
electrode, the solution derived here allows for the determi-
nation of the electrode optimal dimensions in terms of its
thickness and inner radius. This provides a complete and
effective operational procedure of optimization of the macro-
scopic characteristics of cylindrical electrodes operating a single
reduction reaction as a predictive tool for their practical design.
As a final remark, it should be noticed that the approach
developed here may be advantageously employed for the
optimal design of other electrochemical devices devoted to
energy production which architecture and operating conditions
share similarities with those envisaged in this work.
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