
HAL Id: hal-02604135
https://hal.science/hal-02604135

Submitted on 16 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The lock holder and the lock waiter pre-emption
problems: nip them in the bud using informed spinlocks

(I-Spinlocks)
Boris Teabe, Vlad-Tiberiu Nitu, Alain Tchana, Daniel Hagimont

To cite this version:
Boris Teabe, Vlad-Tiberiu Nitu, Alain Tchana, Daniel Hagimont. The lock holder and the lock
waiter pre-emption problems: nip them in the bud using informed spinlocks (I-Spinlocks). European
Conference on Computer Systems (EuroSys 2017), Apr 2017, Belgrade, Serbia. pp.286-297. �hal-
02604135�

https://hal.science/hal-02604135
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/22297

To cite this version:

Djomgwe Teabe, Boris and Nitu, Vlad-Tiberiu and Tchana, Alain-
Bouzaïde and Hagimont, Daniel The lock holder and the lock waiter
pre-emption problems: nip them in the bud using informed spinlocks
(I-Spinlocks). (2017) In: European Conference on Computer
Systems (EuroSys 2017), 23 April 2017 - 26 April 2017 (Belgrade,
Serbia).

Open Archive Toulouse Archive Ouverte

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22297

The lock holder and the lock waiter pre-emption problems:
nip them in the bud using informed spinlocks (I-Spinlock)

Boris Teabe Vlad Nitu Alain Tchana Daniel Hagimont
Toulouse University, France

first.last@enseeiht.fr

Abstract
In native Linux systems, spinlock’s implementation relies
on the assumption that both the lock holder thread and lock
waiter threads cannot be preempted. However, in a virtual-
ized environment, these threads are scheduled on top of vir-
tual CPUs (vCPU) that can be preempted by the hypervisor
at any time, thus forcing lock waiter threads on other vC-
PUs to busy wait and to waste CPU cycles. This leads to
the well-known Lock Holder Preemption (LHP) and Lock
Waiter Preemption (LWP) issues.

In this paper, we propose I-Spinlock (for Informed Spin-
lock), a new spinlock implementation for virtualized envi-
ronments. Its main principle is to only allow a thread to
acquire a lock if and only if the remaining time-slice of its
vCPU is sufficient to enter and l eave the critical section.
This is possible if the spinlock primitive is aware (informed)
of its time-to-preemption (by the hypervisor).

We implemented I-Spinlock in the Xen virtualization sys-
tem. We show that our solution is compliant with both para-
virtual and hardware virtualization modes. We performed
extensive performance evaluations with various reference
benchmarks and compared our solution to previous solu-
tions. The evaluations demonstrate that I-Spinlock outper-
forms other solutions, and more significantly when the num-
ber of core increases.

Keywords spinlocks; multi-core; scheduler; virtual ma-
chine

1. Introduction
The last decade has seen the widespread of virtualized en-
vironments, especially for the management of cloud com-
puting infrastructures which implement the Infrastructure as
a Service (IaaS) model. In virtualized systems, a low level

DOI: http://dx.doi.org/10.1145/3064176.3064180

kernel called the hypervisor is running on the real hardware
and provides the illusion of several hardwares (called virtual
machines - VM) on top of which guest operating systems
can be run.

In operating systems, spinlock is the lowest-level mutual
exclusion mechanism for synchronizing access to shared
data structures in the kernel on multicore architectures. Its
implementation has a significant impact on performance and
scalability of operating systems and applications [28, 29]. In
native Linux systems, spinlock’s implementation relies on
the assumption that the locking primitive is not preemptable
on its execution core.

However, in a virtualized environment, even if the guest
OS scheduler does not allow preemption within the lock-
ing primitive, the guest OS (and more precisely its vCPUs)
can be preempted by the hypervisor at any time, leading to
the well-known Lock Holder Preemption (LHP) and Lock
Waiter Preemption (LWP) issues. The LHP problem arises
when a lock holder running on a vCPU is preempted by the
hypervisor, thus forcing other lock waiter threads running on
other vCPUs from the same VM to perform useless spinning
and to waste CPU cycles. The LWP problem arises when a
lock waiter (with a ticket, tickets enforcing an order among
waiters) is preempted, thus forcing other waiters with higher
ticket numbers to busy wait even if the lock was freed.

Several research works addressed these issues. Many
of them consist in detecting the problematic busy waiting
threads and scheduling the vCPUs of these threads out, in or-
der to reduce wasted cycles. [1] proposes to monitor pause
instructions from the hypervisor in order to detect busy wait-
ing vCPUs. [5, 6, 7] introduce a hypercall in paravirtual
systems, enabling the lock primitive to release the processor
when busy waiting is detected. [8, 9] propose to enforce
the simultaneous execution (coscheduling) of all vCPUs of
the same VM, thus avoiding LHP and LWP. [10, 11, 25]
propose to reduce the time-slice so that a preempted vCPU
is rescheduled quickly. All these works tolerate LHP and
LWP, but aim at limiting the side effects of LHP and LWP.
Comparatively, our solution aims at limiting and almost can-
celling the occurrences of LHP and LWP.

In this paper, we propose I-Spinlock (for Informed Spin-
lock), a new spinlock implementation for virtualized envi-
ronments. The main principle is to only allow a thread
to acquire a lock if and only if its time-to-preemption
is sufficient to wait for its turn (according to its ticket
number), enter and leave the critical section. Therefore,
I-Spinlock prevents LHP and LWP instead of detecting
them and limiting their effects. In order to implement it,
the spinlock primitive has to be aware (informed) of its
time-to-preemption (provided by the hypervisor). We im-
plemented I-Spinlock in the Xen virtualization system [31].
We performed extensive performance evaluations with var-
ious reference benchmarks (Kerbench, Pbzip2 and Ebizzy)
and compared our solution to previous solutions. First, the
evaluation results show that I-Spinlock does not compromize
fairness and liveness and it does not incur any overhead on
performance. Second, I-Spinlock is able to almost cancel
LHP and LWP, leading to significant performance improve-
ments compared to standard Linux ticket spinlocks. Finally,
we compared our prototype with four existing solutions:
para-virtualized ticket spinlock [6], preemptable ticket spin-
lock [5], time slice reduction solution [10] and Oticket [7].
The obtained results show that I-Spinlock outperforms all
these solutions: up to 15% for para-virtualized ticket spin-
lock, up to 60% for preemptable ticket spinlock, up to 25%
for time slice reduction, and up to 8% for Oticket when the
number of core increases.

In summary, this paper makes the following contribu-
tions:

• We introduce I-Spinlock, a new spinlock implementation
which avoids LHP and LWP in both types of virtualiza-
tion (paravirtual and hardware-assisted);

• We implemented I-Spinlock in the Linux kernel and the
Xen virtualization system;

• We performed extensive evaluations of I-Spinlock with
reference benchmarks and compared it with four exiting
solutions. The evaluations show that I-Spinlock outper-
forms exiting solutions.

The rest of the article is organized as follows. Section 2
presents the necessary background to understand our contri-
butions and our motivations. A review of the related work is
presented in Section 3. Section 4 presents our contributions
while Section 5 presents evaluation results. The conclusion
is drawn in Section 6.

2. Background and Motivations
2.1 Spinlocks in OSes
Spinlocks are the lowest-level mutual exclusion mechanism
in the kernel [12]. They have two main characteristics: busy
waiting [16] (the blocked thread spins while waiting for the
lock to be released) and non pre-emption of both the blocked
threads and the one holding the lock. This is why spinlocks

are generally used for short duration locking. The critical
section is supposed to be rapidly freed by the holder thread
running on a different core. Spinlocks have a great deal of in-
fluence on safety and performance of the kernel. Therefore,
several studies have investigated their improvement in Linux
kernels [28, 29, 24], which is the research context of this
paper. The rest of this section presents the two main spin-
lock improvements in Linux systems, embodied in kernel
versions ≤ 2.6.24 and kernel versions ≥ 2.6.25.
Spinlocks in kernel versions ≤ 2.6.24. In these versions, a
spinlock is implemented with an integer (hereafter noted l)
which indicates whether the lock is available or held. The
lock is acquired by decrementing and reading the value of l
(with an atomic instruction). If the returned value is zero, the
thread acquires the lock. Otherwise, the thread is blocked. l
is set to one when the thread releases the lock. During the
blocked state, the thread spins testing l. It stops spinning
when l becomes positive. The main shortcoming of this im-
plementation is unfairness. Indeed, there is no way to ensure
that the thread which has been waiting the longest time ob-
tains the lock first. This can lead to starvation. This issue was
addressed in Linux kernel versions greater than 2.6.24.
Spinlocks in kernel versions ≥ 2.6.25. In these versions,
spinlocks are implemented with a data structure called ticket
spinlock, which includes two integer fields namely head and
tail. These fields in a lock are respectively initialized to one
and zero. Each time a thread attempts to acquire the lock, it
first increments the value of tail and then makes a copy of it.
This operation is called taking a ticket and the ticket num-
ber is the value of this copy. The acquisition of the lock by
a thread is allowed if its ticket number is equal to the lock’s
head. The release of the lock is followed by the incremen-
tation of its head. This way, the lock is acquired in a FIFO
(First In First Out) order.

2.2 Scheduling in virtualized systems
In a virtualized environment, the underlying hardware is
managed by the hypervisor, which is in charge of multiplex-
ing hardware resources. For CPU management, the sched-
uler of the hypervisor is responsible for assigning virtual
CPUs (vCPUs) to physical CPUs (pCPUs), see Fig. 1. Gen-
erally, this allocation is realized in a round-robin way. When
scheduled on a pCPU, a vCPU runs during a period of time
(called time slice, e.g. 30ms in Xen [22]) before being pre-
empted. As a result, scheduling in a virtualized system is per-
formed at two levels: guest OS-level and hypervisor-level.
The latter has the last word in the sense that it controls
the hardware. Fig. 1 illustrates a situation where VM1’s
thread t1 is given access to the processor, leaving VM2’s
thread (t2) out, although it has been scheduled in by VM2’s
scheduler. This situation seriously impacts guest OS perfor-
mance [11, 10], especially when they run applications which
perform a lot of spinlocks. The next section presents the is-
sues related to this situation. For the sake of conciseness, the

Figure 1. Scheduling in a virtualized system: This figure
shows that scheduling in a virtualized system is performed
at two levels: the guest OS level and the hypervisor level.
The latter has the last word in the sense that it controls the
hardware. For instance, VM1’s thread t1 is given access to
the processor, leaving VM2’s thread (t2) out, whereas it is
scheduled in by VM2’s scheduler.

rest of the document assimilates a vCPU to the thread it runs.

2.3 Spinlock issues in virtualized systems
2.3.1 Description
To improve the performance of spinlock applications, the OS
ensures that a thread holding a lock cannot be preempted.
This caution is ineffective in a virtualized system since vC-
PUs are in their turn scheduled atop pCPUs, which are man-
aged by the hypervisor. The hypervisor makes no distinction
between vCPUs which are performing spinlocks and the oth-
ers. Two issues can result from this situation, namely: the
lock holder preemption problem and the lock waiter preemp-
tion problem. Before presenting these two problems, we first
introduce some notations. Let us consider V = {v1, .., vn}
the list of vCPUs which attempt to acquire the same lock.
V is sorted by ascending order of vCPU’s ticket numbers. It
implies that v1 is the vCPU which actually holds the lock,
according to the ticket spinlock assignation policy (FIFO).
The Lock Holder Preemption (LHP) problem. It occurs
each time v1 is scheduled out by the hypervisor, meaning
that all vi, i > 1, will consume their entire time-slice to
carry out busy waiting until v1 is rescheduled-in again.
The Lock Waiter Preemption (LWP) problem. The LWP
problem occurs each time a vi, 1 < i < n, is scheduled-out
and all vk, k < i have already used the lock. This situation
prevents all vj , j > i, to obtain the lock although it is free.
They will consume their entire time-slice to carry out busy
waiting until vi is scheduled-in and can free the lock. This is
because ticket spinlock enforces that the lock is acquired in
a FIFO order, see Section 2.1.

2.3.2 Assessment
We realized a set of experiments in order to assess the above
problems. We experimented with two benchmarks namely
kernbench [17] and pbzip2 [14]. Each experiment consists
in running the benchmark in two VMs on the same pool of

Benchmarks #vCPUs #PSP Spinning Total (%)
cycles cycles

4 2151 2.223E8 2.3E11 0.01
Kernbench 8 17057 5.452E11 6.3E11 87.9

12 74589 6.70E11 7.7E11 87.01
4 140 1.3E8 2.67E11 0.4

Pbzip2 8 1542 5.1E10 1.94E11 26.1
12 40114 5.4E11 6.41E11 84.5

Table 1. Impact of the LHP and the LWP problems on
two representative benchmarks (Kernbench and Pbzip2
benchmarks): #PSP is the total number of Problematic Spin
Preemption (#LHP+#LWP) during the experiment, while
Spinning cycles and Total cycles are respectively the total
CPU cycles burned due to spinning and the total CPU cycles
consumed by the execution. (%)=Spinningcycles

Total cycles × 100.

CPUs with various numbers of vCPUs on our Dell machine
(see Section 5.1 experimental environment informations).
The two VMs run atop the same physical machine. We
collected three metrics:

• the total number of Problematic Spin Preemption (noted
PSP). It is the addition of the number of LHP and the
number of LWP during the experiment.

• the total number of CPU cycles used for spinning. It
corresponds to the wasted CPU time.

• the total number of CPU cycles used by the experiment.
It corresponds to the execution time of the benchmark.

A LHP is detected if a thread acquires a lock in a quantum
and releases it in a different quantum. A LWP is detected
whenever a thread takes a ticket for a lock in a quantum and
acquires the lock in a different quantum. The results of these
experiments are reported in Table 1. Several observations
can be made. First, the total number of PSP is significant.
Second, it increases with the number of vCPUs. Third, the
VM can spend a significant time spinning (up to 87.9%).
Previous research studies [11, 10] led to the same conclu-
sions. The next section presents the related work.

3. Related work
Several research studies have investigated the LHP and the
LWP issues. The basic idea behind all these studies is to
detect problematic spinning situations in order to limit them.
According to the proposed detection approach, the related
work can be organized into three categories.

3.1 Hardware approaches
Description. Hardware based solutions were first introduced
in [1]. The authors proposed a way for detecting spinning
vCPUs by monitoring the number of pause instructions (the
”Pause-Loop Exiting” in Intel Xeon E5620 processors [19]
and ”Pause Filter” in AMD processors) executed by the
guest OS in busy waiting loops. They consider that a vCPU
which executes a high number of pause instructions is spin-
ning. Therefore, the hypervisor can decide to preempt such

vCPUs.
Limitations. Unfortunately, even with this feature in place,
it remains difficult to accurately detect spinning vCPUs [10].
In addition, even though the hypervisor has detected and pre-
empted a spinning vCPU, it is tricky to decide on the next
vCPU which should get the processor [20]. Indeed, it should
be a vCPU which really needs the processor (not for spin-
ning). [10] demonstrated that hardware based solutions have
mixed effects: they improve some application’s performance
while degrading others.

3.2 Para-virtualized approaches
Description. Para-virtualized approaches try to address the
issues by modifying the spinlock implementations directly in
the guest OS kernel. In [2], the authors focused on the LHP
problem. The guest OS kernel is modified (new hypercalls
are introduced) in order to inform the hypervisor that a lock
is acquired. Thus, the hypervisor prevents its preemption
for the duration of the lock (it aims at implementing at the
hypervisor level the non pre-emption characteristic of spin-
locks in native kernels). [5] focused on the LWP problem and
presented preemptable ticket spinlocks, a new ticket spinlock
implementation. Preemptable ticket spinlocks allow an out
of order lock acquisition when the earlier waiters are pre-
empted. [6, 4] also proposed another spinlock implementa-
tion called para-virtualized ticket spinlocks (based on ticket
spinlock) which addresses both the LHP and the LWP prob-
lems. Unlike typical ticket spinlock implementations, a para-
virtualized ticket spinlock consists of two phases namely ac-
tive and passive. When a vCPU tries to acquire a lock, it
enters the active phase first. In this phase, the vCPU takes a
ticket number and starts spinning. The number of spinning
iterations is limited (a parameter configured at kernel com-
pilation time). If the vCPU does not acquire the lock dur-
ing these iterations, it moves to the passive phase. In this
phase, the vCPU performs a yield instruction in order to re-
lease the processor (the vCPU is put in a sleep state). This
instruction is para-virtualized, meaning that its execution is
performed at the hypervisor-level. Subsequently, the hyper-
visor schedules-out the spinning vCPU. The latter will only
be scheduled-in when the vCPU preceding it (according to
the ticket number order) releases the lock. Notice that the
lock release primitive is also para-virtualized, allowing the
hypervisor to know when a lock is freed. Oticket [7] showed
that this solution does not scale when the number of vCPUs
sharing the same lock becomes too large. This comes from
the utilization of hypercalls (for lock release and yield oper-
ations) which is known to introduce a significant overhead.
To minimize the number of hypercalls, [7] proposed to in-
crease the duration of the active phase for some vCPUs, i.e.,
those whose ticket number is close to the one of the vCPU
which actually holds the lock.
Limitations. First, some of these solutions [2, 5] do not ad-
dress the two issues at the same time. Second, almost all
of these solutions tolerate LHP and LWP, and prefer to sus-

pend vCPUs that would be spinning otherwise. Suspended
vCPUs do not work for the VM and therefore impact its
performance. Also, the increase of vCPU wake up opera-
tions may significantly degrade overall performance [30, 7].
Third, most of these solutions are only applicable to para-
virtualized VMs. Hardware-assisted VMs are not taken into
account because these solutions need to invoke some func-
tions implemented in the hypervisor, and this is done via hy-
percalls which are not present in Hardware-assisted VMs.

3.3 Hypervisor scheduler based approach
Description. Solutions in this category advocate to take ac-
tion in the hypervisor scheduler, rather than the guest OS.
Solutions based on co-scheduling [8, 9, 26, 27] are situ-
ated in this category. It consists in enforcing the simulta-
neous execution of all vCPUs of the same VM. The pre-
emption of a VM’s vCPU implies the preemption of all
its vCPUs. By doing so, the LHP and the LWP problems
cannot occur. Another hypervisor-level solution is proposed
in [10, 11, 25]. They propose to reduce the time-slice so
that a preempted vCPU does not wait for a long time before
being rescheduled-in. By this way, the spinning duration is
reduced.
Limitations. Although co-scheduling addresses both the
LHP and the LWP problems, it introduces several other is-
sues (CPU fragmentation, priority inversion, and execution
delay) [21]. These issues are more penalizing than the LHP
and the LWP issues. Concerning time-slice reduction tech-
niques, they increase the number of context switches, which
is significantly degrading performance for CPU intensive
applications [10, 11].

3.4 Position of our work and similar approach in
non-virtualized system

In this paper, we adopt a different approach. Instead of try-
ing to minimize the side effects caused by the LHP and
the LWP issues, we try to prevent their occurrence as done
by [32]. [32] proposed to minimize undesirable interactions
between kernel level scheduling and user-level synchroniza-
tion by providing each virtual processor with a ”two-minute
warning” prior to preemption. This two-minute warning
avoids acquiring a spin-lock near the end of the virtual pro-
cessor quantum, by yielding the processor voluntarily rather
than acquiring a lock after the warning is set. If the warn-
ing period exceeds the maximum length of a critical section,
the virtual processor will generally avoid preemption while
holding a spin-lock. Furthermore, if the warning is triggered
while the lock is held, a flag is positioned to indicate to the
other threads that they should not spin for the lock but rather
block.

We use a similar approach in the context of virtual-
ized systems. Our solution works with both modified (para-
virtualized) and unmodified (HVM) guest OSes.

Figure 2. I-Spinlock illustration. We consider a VM con-
figured with four vCPUs which try to access the same lock.
The x-axis shows the different steps of I-Spinlock execution.
The y-axis shows the consumption of each vCPU’s quantum.

4. Informed Spinlocks (I-Spinlock)
This paper addresses both the LHP and the LWP issues. To
this end, we introduce a new spinlock implementation call
Informed-Spinlock (I-Spinlock for short).

4.1 Description
Before the presentation of our idea, let us summarize the two
issues we address. The LHP issue occurs when the vCPU
of a thread holding a lock is preempted by the hypervisor
scheduler (hereafter scheduler). The LWP issue occurs when
the vCPU of a thread having a ticket is preempted and all its
predecessors obtained the lock. Therefore, we can say that a
problem occurs when the vCPU of a thread holding either a
lock or a ticket is preempted. In order words, the LHP and
the LWP issues are philosophically similar. Their origin is
the fact that a thread is allowed to acquire a lock/ticket
while the remaining time-slice of its vCPU is not suffi-
cient for completing the critical section. Therefore, the ba-
sic (but powerful) idea we develop in this paper consists in
avoiding this situation. To this end, we propose to only al-
low a thread to acquire a ticket if and only if the remain-
ing time-slice of its vCPU is sufficient to enter and leave
the critical section. Notice that this constraint on ticket ac-
quisition (instead of lock acquisition) is sufficient because a
thread takes a ticket before acquiring a lock.

To achieve its goal, I-Spinlock introduces a new metric
(associated with each vCPU) called lock completion capa-
bility (lock cap for short) which indicates the capability of
its thread to take a ticket, wait its turn, acquire the lock, ex-
ecute the critical section and release the lock before the end
of the quantum. Notice that the quantum is set by the hyper-
visor. Given a vCPU v, its lock cap is computed as follows:

lock cap(v) = r ts(v)− (lql + 1)× csd (1)

where r ts(v) is the remaining time-slice of v before its
preemption, lql is the total number of threads waiting for
the lock (they already have tickets) and csd is the critical
section duration. Having this formula, I-Spinlock works as
follows. Every time a thread attempts to take a ticket, the
guest OS kernel first computes the lock cap of its vCPU. If
the obtained value is greater than zero (the vCPU has enough
time before its preemption), the thread is allowed to take a
ticket. Otherwise, it is not allowed and it has to wait for the
next quantum of its vCPU. Such threads are called incapable
threads in I-Spinlock. Our approach is similar to the one
presented in [32] for non virtualized system, called ”two-
minute warning”1. I-Spinlock follows the same direction by
applying this approach to virtualized environments. Figure 2
illustrates the functioning of I-Spinlock stage by stage with
a simple example. To this end, we consider a VM configured
with four vCPUs (noted vCPU0-vCPU3). We assume that
csd is the quarter of the quantum length. Initially (stage a),
the lock is free. vCPU0 and vCPU1 threads attempt to take
a ticket. vCPU0’s thread is the first to take the ticket, thus
the lock. vCPU1’s thread takes the second ticket number
because its lock cap indicates that its remaining time-slice
is enough for completing the critical section before being
preempted. It enters a busy waiting phase. vCPU2’s thread,
followed by vCPU3’s thread, attempt to take a ticket. Since
lock cap(vCPU2) shows that it is not able to complete the
critical section within its remaining time-slice, its thread is
not allowed to take a ticket. Subsequently, vCPU2’s thread
is marked incapable (Section 4.2 details the actions taken by
incapable threads). This is not the case for vCPU3’s thread
which takes ticket number 3 (stage b). At stage c, vCPU2
starts a new quantum, resulting into a positive value for its
lock cap. Then vCPU2’s thread can take a ticket.

We can see that, theoretically, a kernel which uses I-
Spinlock does not suffer from neither the LHP nor the LWP
issues. However, implementing this solution raises two main
challenges which are summarized by the following ques-
tions:

• r ts(v): how can the guest OS be informed about the re-
maining time-slice of its vCPUs, knowing that this infor-
mation is only available at the hypervisor-level?

• csd: how can the guest OS estimate the time needed to
complete a critical section, knowing that they are not all
identical?

Availability of the remaining vCPU time-slice (r ts(v))
in the guest OS. We don’t consider the hypervisor as a
completely black box as it is traditionally the case, see Fig. 4.
I-Spinlock implements a memory region shared between
the hypervisor and the guest OS, resulting in a gray box
hypervisor. This way, the hypervisor can share information
with guest OSes. In our case, this information is limited

1 [32] provided to user-level threads two-minute warning before preemp-
tion.

 10

 11

 12

 13

 14

 15

4 8 12 16 20 24

cs
d

 (
2

n
 C

y
cl

es
)

#vCPUs

 10

 11

 12

 13

 14

 15

4 8 12 16 20 24

cs
d

 (
2

n
 C

y
cl

es
)

#vCPUs

 10

 11

 12

 13

 14

 15

4 8 12 16 20 24

cs
d

 (
2

n
 C

y
cl

es
)

#vCPUs

 10

 11

 12

 13

 14

 15

4 8 12 16 20 24

cs
d

 (
2

n
 C

y
cl

es
)

#vCPUs

 10

 11

 12

 13

 14

 15

4 8 12 16 20 24

cs
d

 (
2

n
 C

y
cl

es
)

#vCPUs

 10

 11

 12

 13

 14

 15

4 8 12 16 20 24

a) Kernbench b) Pgbzip2 c) Ebizzy

HP machine

Dell machine

cs
d

 (
2

n
 C

y
cl

es
)

#vCPUs

Figure 3. Estimation of the critical section duration (csd). We have experimented with three reference benchmarks namely
Kernbench, Pgbzip2, and Ebizzy. These experiments have been carried out on several machine types and almost the same
results have been obtained. Here we present the results for two of them namely DELL (top) and HP (bottom). The average
csd is about 212 Cycles, corresponding to what is reported in the literature [3]. In order to cover all cases, I-Spinlock uses 214

Cycles as the estimated csd.

to the vCPU end of quantum time. This is not critical for
the security of neither the hypervisor nor VMs. Therefore,
each time a vCPU is scheduled-in, the hypervisor scheduler
set into the shared memory region the exact time when the
vCPU will be scheduled-out. This is called the preemption
time. By doing so r ts(v) can be computed in the guest OS
each time a thread wants to take a ticket. The computation
of r ts(v) is given by the following formula:

r ts(v) = preemption time− actual time; (2)

where actual time is the actual time (when the thread is
taking the ticket).
Computation of the critical section duration (csd). As
previous research studies [3, 2], we estimate csd by calibra-
tion. To this end, we realised a set of experiments with differ-
ent benchmarks (kernbench, Ebissy and Pgbzip2, presented
in Section 5) with various numbers of vCPUs. The exper-
iments have been carried out on different modern machine
types and we observed the same results. Figure 3 presents
the obtained results for two machine types: DELL and HP
(their characteristics are presented in Section 5). First, we
acknowledge that the average csd is about 212 cycles. This
corresponds to what was reported by other studies, realized
on other machine types [3, 2]. In order to cover all critical
section durations, I-Spinlock uses 214 cycles as the estimated
csd (corresponds to 6µsec on our machines). This value is
larger than the maximum measured csd (Figure 3). By doing
so, we minimize the number of false negative among inca-
pable threads. Intensive evaluations confirmed that this value
works well, also for other machine types (see Section 5).

In addition, We experimented a machine learning solution
which dynamically computes csd based on previous values.
The evaluation results showed no improvement.

Figure 4. Availability of the remain vCPU time-slice
(r ts(v)) in the guest OS. I-Spinlock uses a share mem-
ory between the hypervisor and the guest OS. The former
is granted the write right while the latter has only the read
right.

4.2 Implementation
Although our solution can be applied to every virtualization
system, this section presents the implementation of a proto-
type within Xen 4.2.0 [31] (the most popular open source
virtualization system) and Linux kernel version 3.13.0. This
implementation involves both the hypervisor and the guest

OS kernel. The former is concerned by the implementa-
tion of the shared memory region while the latter is con-
cerned by the implementation of I-Spinlock itself. Our am-
bition is to provide an implementation which works with
both HVM (Hardware Virtual Machine) and PV (ParaVir-
tual) guest OSes. The HVM implementation is called HVM
I-Spinlock while the PV implementation is called PV I-
Spinlock.

4.2.1 Shared memory implementation
Our implementation takes advantage of the shared memory
mechanism which already exists in Xen (as well as other
virtualization systems). I-Spinlock especially exploits the
share info data structure.
Xen share info data structure. Xen uses a shared memory
page (called share info) to provide VMs with some hard-
ware informations such as the memory size, necessary for
the kernel boot process. Each VM has its own share info
which is used once by the hypervisor (at VM creation time)
and the guest OS (at kernel boot time). The way in which the
mapping of share info is established differs between PV
and HVM. In PV, share info is allocated by the hypervisor
and appears at a fixed virtual address in the guest kernel’s
address space. The corresponding machine address is com-
municated to the guest kernel through the xen start info
data structure. In HVM mode, the guest has full control over
its physical address space. It can allocate the share info
data structure in any of its physical page frames. The chosen
physical address is communicated from the guest kernel to
the hypervisor.
Utilization of share info in I-Spinlock. Instead of adding
new additional shared pages between the hypervisor and the
guest OS, we exploit the unused part of share info as fol-
lows. The hypervisor scheduler is modified so that each time
a vCPU is scheduled-in, its end of quantum time is stored in
the share info data structure of its VM. The end of quan-
tum time is expressed as a number of CPU cycles. Each
vCPU has a dedicated entry in share info. The entire mod-
ification we performed in the hypervisor consists of about 10
lines of codes.

4.2.2 Ticket and Lock acquisition
Our implementation acts as an amelioration of ticket spin-
locks in Linux. The listing of Fig. 5 presents the patch that
should be applied to the kernel, interpreted as follows. Rou-
tine arch spin lock is invoked every time a thread attempts
to perform a spinlock. The vCPU end of quantum time,
stored in the shared page by the hypervisor, is read at line 16.
Using this information, the remaining time-slice (r ts(v)) is
computed at line 18, according to equation 2. The number of
vCPUs waiting for the lock (lql) is computed at line 20. lql
is obtained by subtracting the tail value of the lock from its
head value. The lock cap of the vCPU is computed at line
22. If it is lower than zero, the thread is marked incapable.
An incapable thread can take two possible paths depend-

1 # d e f i n e AVERAGE HOLD TIME (1 << 15)
2 / * Get t h e a c t u a l t ime * /
3 + u i n t 6 4 t rdtsc (vo id)
4 +{
5 + u n s i g n e d i n t hi , lo ;
6 + __asm__volatile (” r d t s c ” : ”=a ” (lo) , ”=d ” (hi)) ;
7 + r e t u r n ((u i n t 6 4 t) hi << 32) | lo ;
8 +}
9

10 vo id arch_spin_lock (arch_spinlock_t *lock)
11 {
12 s t r u c t __raw_tickets inc = { . tail = TICKET_LOCK_INC

} ;
13 / * S h a r e i n f o page * /
14 + s t r u c t shared_info *s = HYPERVISOR_shared_info ;
15 / * Compute t h e remain t i m e s l i c e * /
16 + u i n t 6 4 t time=rdtsc () ;
17 + u i n t 3 2 t cpu= cpuid () ;
18 + u i n t 6 4 t remaining_slice= s−>vcpu_info [cpu] .

time_slice−time ;
19 / * Compute t h e number o f t h r e a d s w a i t i n g f o r t h e

l o c k * /
20 + u i n t 8 t dist = lock−>tickets . head − lock−>tickets .

tail ;
21 / * Compute t h e vCPU ’ s l o c k c a p * /
22 + i n t 6 4 t lock_cap= remaining − (dist + 1) *

AVERAGE_HOLD_TIME ;
23 / * Decide i f t h e t h r e a d i s a l l o w e d t o t a k e a t i c k e t

* /
24 + i f (lock_cap < 0)
25 + {
26 / * The t h r e a d i s n o t a l l o w e d . I t s h o u l d w a i t t h e

n e x t quantum t o t a k e a t i c k e t * /
27 + # i f d e f CONFIG_HVM_SPINLOCKS

28
29 + u64 slice_ID = s−>vcpu_info [cpu] . slice_ID ;
30 + do
31 + {
32 + cpu_relax () ;
33 + }w h i l e (slice_ID==s−>vcpu_info [cpu] . slice_ID) ;
34 + # e l s e
35 + __halt_cpu (cpu) ;
36 + # e n d i f
37
38 + }
39 inc = xadd(&lock−>tickets , inc) ;
40 i f (likely (inc . head == inc . tail))
41 go to out ;
42 f o r (; ;)
43 {
44 do
45 {
46 i f (ACCESS_ONCE (lock−>tickets . head) ==inc . tail)
47 go to out ;
48 cpu_relax () ;
49 }
50 out :
51 barrier () ;
52 }

Figure 5. Implementation of I-Spinlock in the guest OS.
This is the patch that should be applied to the Linux kernel.
This implementation is compatible with both HVM and PV
modes.

ing on the virtualization mode. It performs a busy waiting
in the case of HVM guest OSes (lines 29-33) or it releases
the processor in the case of PV guest OSes (line 35). The re-
lease of the processor is possible in the PV mode because its
supports the hypercall framework. Therefore instead of en-
tering in a busy waiting phase (HVM mode), the incapable
thread invokes a hypercall (PV mode) which tells the hyper-
visor to schedule-out the vCPU. By doing so PV I-Spinlock
avoids the waste of CPU cycles unlike HVM I-Spinlock. The
evaluation results show that this optimisation makes PV I-
Spinlock more efficient than HVM I-Spinlock.

One may think that our solution could lead to no improve-
ment if the vCPU is pre-empted before the end of its time-
slice (e.g. the hypervisor preempts the vCPU in order to treat
an IO interrupt). This issue can be easily handled by inform-
ing the VM with the minimal duration of the quantum in-
stead of the time-slice (this parameter is called ratelimit in
Xen).

5. Evaluations
This section presents the evaluation results of I-Spinlock. We
evaluate the following aspects:

• starvation and unfairness risks: the capability of I-Spinlock
to avoid both starvation and unfairness.

• effectiveness: the capability of I-Spinlock to address both
the LHP and the LWP issues.

• genericity: the capability of I-Spinlock to take into ac-
count both PV and HVM guest OSes.

• overhead: the amount of resources consumed by I-Spinlock.
• scalability: the capability of I-Spinlock to deal with

heavy lock contention guest OSes.
• positioning: the comparison of I-Spinlock with other so-

lutions.

We first present the experimental environment before the
presentation of the evaluation results.

5.1 Experimental environment
To demonstrate the robustness of I-Spinlock, it has been
evaluated with different benchmark types, running on dif-
ferent machine types. We used both micro- and macro-
benchmarks that have been used in many other works [5]
(they perform a lot of spin-locks).
Benchmarks.

• A micro-benchmark, developed for the purpose of this
work. It starts n threads which attempt to access x times
the same memory area which is the critical session. The
number of threads is the number of vCPUs of the VM.
The performance of the application is given by two met-
rics namely the average execution time of all threads and
the standard deviation. This benchmarks is built to per-
form a lot of parallel locking, so to produce a lot of lock
contention.

Experimental procedure and configurations
We run two instances of the same benchmark in two VMs,
both in either Hardware-assisted (HVM) or Para-virtual
configurations. We use HVM VMs when evaluating HVM IS
and PV VMs when evaluating PV IS. All vCPUs share the
same pool of physical CPUs (pCPUs) during the experiments.
Abbreviations
TSL Ticket Spinlock
HVM IS HVM I-Spinlock
PV IS PV I-Spinlock
PTS Preemptable Ticket Spinlock
TS Time Slice
PV TS Para virtual Ticket Spinlock
OT Oticket

Table 2. Experimental setup: experimental procedure and
configurations, and adopted abbreviations.

• Kernbench [17] is a CPU intensive benchmark which
consists of parallel Linux kernel compilation processes.
Its performance is given by the duration of the entire
compilation process (expressed in seconds).

• Pbzip2 [14] is a parallel implementation of bzip2 [15],
the block-sorting file compressor command found in
Linux systems. It uses pthreads and achieves near-linear
speedup on SMP machines. Its performance is given by
the duration of the compression (in seconds).

• Ebizzy [18] generates a workload resembling common
web application server workloads. It is highly threaded,
has a large in-memory working set, and allocates and
deallocates memory frequently. Its performance is mea-
sured as the sustained throughput (records/second).

Hardware.
The experiments were carried out on two machine types
running the same Linux distribution (ubuntu server 12.04):

• Dell: 24 cores (hyper threaded), 2.20 GHz Intel Xeon E5-
2420, 16 GB RAM, 15 MB LLC.

• HP: 8 cores, 3.2 GHz Intel core i 7, 16 GB RAM, 8 MB
LLC

The results obtained from the two machines are almost the
same. Therefore, this section only presents the DELL ma-
chine results.
Experimental procedure.
Unless otherwise specified, each experiment is realized as
follows. We run, two instances of the same benchmark in
two VMs. The execution is then repeated with different num-
bers of vCPUs. All vCPUs share the same pool of physical
CPUs (pCPUs). All benchmarks are configured to use an in-
memory filesystem (tmpfs) to alleviate the side effect of I/O
operations. Also all the experiments were repeated 5 times.
Table 2 summarizes the abbreviation use in this section.

 0

 5

 10

 15

 20

 25

4 8 12 16 20 24

A
v
rg

 v
C

P
U

s
w

ai
ti

n
g

#vCPUs

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 8 12 16 20 24

E
x
e
c
 t

im
e
 (

u
se

c
).

#vCPUs

Figure 6. Evaluation of the starvation and the fair-
ness risks. This experiment was realized with the micro-
benchmark. (top) The average number of vCPUs of the same
VM waiting for the lock (lql). (bottom) The average ex-
ecution time of all threads, including the standard devia-
tion. These results show that I-Spinlock ensures fairness
and avoids starvation, as the standard deviation of execution
times is kept small, even if lock contention is high.

5.2 Starvation and unfairness risks
Ticket spinlock uses the first-come first-served (FCFS for
short) lock allocation policy to avoid starvation in the one
hand and to ensure fairness on the other hand. Knowing that
I-Spinlock breaks down the FCFS policy, one could legit-
imately ask how I-Spinlock deals with starvation and fair-
ness. This section discusses and evaluates these aspects (we
will see in Section 5.5.1 that this is an issue for other solu-
tions).
The FCFS policy is implemented in ticket-spinlocks by im-
posing each thread to take a ticket before trying to acquire
a lock. This is not completely broken down in I-Spinlock
because it is still applied to threads except those which are
marked incapable. Therefore, only incapable threads are
concerned by starvation and unfairness risks. We explain in
the rest of this paragraph that this situation is not problem-
atic. To this end, we show that in I-Spinlock, an incapable
thread will not wait for a long time before taking a ticket.
Indeed, the combination of two factors allow I-Spinlock to
naturally avoid starvation and unfairness. First, when the in-
capable vCPU gets back to the processor, it is allocated a
new quantum and the incapable thread will run first. This
is because the guest OS scheduler cannot preempt the inca-
pable thread since it is in the spinlock routine. This is the tra-
ditional functioning of the kernel scheduler towards threads
which perform spinlocks. The second factor is the fact that
the quantum length of a vCPU is far greater than the dura-
tion of the critical section (csd), resulting to a positive value
of lock cap at the beginning of any quantum. Indeed, the
quantum length is in the order of millisecond (e.g. 30msec

in Xen [22] and 50msec in VMware [23]) while csd is in
the order of microsecond (214 cycles which corresponds to
6µsec on our machine), see Fig. 3 in Section 4.1). There-
fore, the probability to have a negative lock cap at the be-
ginning of the vCPU quantum is practically nil. It could only
be otherwise in the case of a VM with quantum length×1000

6
vCPUs having a ticket (corresponding to the value of lql in
equation 1). This represents about 5000 active vCPUs in a
Xen guest OS and about 8333 vCPUs in a VMware guest
OS, which is practically impossible (it is rather in the or-
der of hundreds). To validate this demonstration we experi-
mented with the micro-benchmark which generates a lot of
lock contention. We are interested in three metrics namely:
the value of lql, the average execution time of all threads and
the standard deviation. These results are shown in Fig. 6.
We can make the following observations. First, due to the
number of lock contention, lql can be as large as the num-
ber of vCPUs (Fig. 6 top). Second, in each experiment, all
threads run within almost the same duration (Fig. 6 bottom),
since the standard deviation is almost nil. This means that
threads fairly acquire the lock within a reasonable latency.
In summary, I-Spinlock guarantees that a previous incapable
thread will always get the ticket during the next quantum of
its vCPU, thus avoiding starvation and unfairness.

5.3 Effectiveness
The metric which allows to evaluate the effectiveness of
I-Spinlock is the number of Problematic Spin Preemption
(PSP). We collected the value of this metric in three situa-
tions: standard ticket spinlock (the base line noted TS, HVM
I-Spinlock (noted HVM IS), and PV I-Spinlock (PV IS).
Figure 7 presents the results of these experiments. The top
curve presents the normalized (over the base line) perfor-
mance of the studied benchmarks while the bottom curve
presents the total number of PSP. We can see on the bot-
tom curve that with ticket spinlocks, the impact of both the
LHP and the LWP issues increases with the number of vC-
PUs (corresponding to heavy lock contention guest OSes).
I-Spinlock does not suffer from these issues (the number
of PSP is far much smaller), resulting into no performance
degradation (top curve). We can also notice that the number
of PSP with I-Spinlock is kept constant when the number
of vCPUs increases, which demonstrates the scalability of
I-Spinlock. PV IS performs a little better (with less PSP)
than HVM IS because incapable threads waste CPU cycles
in the HVM mode while they release the processor in the
PV mode (see Section 4.2.2). Finally, notice that I-Spinlock
cannot totally prevent PSP as several threads may compute
their lock cap at the same time and their lql values may be
erroneous.

5.4 I-Spinlock overhead
We evaluated the overhead of both HVM IS and PV IS in
terms of the number of CPU cycles each of them needs. To

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24

N
o

rm
al

iz
ed

 p
er

f.

#vCPUs

TSL HVM IS PV IS

 1

 10

 100

 1000

 10000

 100000

1x10
6

4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24

a) Kernbench b) Pgbzip2 c) Ebizzy

#
P

S
P

 (
L

o
g

 s
ca

le
)

#vCPUs

Figure 7. Effectiveness of I-Spinlock. We evaluate the performance and the number of Problematic Spin Preemption (PSP)
for three benchmarks with three spinlock implementations: standard ticket spinlock (the base line), HVM I-Spinlock, and PV
I-Spinlock. The top curve presents the normalized (over the base line) performance while the bottom curve presents the total
number of PSP. We can see that both HVM I-Spinlock and PV I-Spinlock significantly reduce the number of PSP with a
important impact on performance. Also, the number of PSP is kept constant when the number of vCPUs increases, which
demonstrates the scalability of I-Spinlock.

this end, we ran a single kernbench in a 24 vCPUs VM. We
ran the VM alone in order to avoid the LHP and LWP issues
(which are not the purpose of the experiment here). Figure 8
(a) shows the number of CPU cycles needed for acquiring
a lock while Figure 8 (b) depicts the normalized execution
time of the benchmark. The normalization is realised over
the ticket spinlock results. We can observe that the number
of CPU cycles used by either HVM IS or PV IS is slightly
higher than the number of CPU cycles used by ticket spin-
lock. This comes from the additional operations introduced
by I-Spinlock, see the implementation in Section 4.2. From
Figure 8 (b), we can see that the impact of this overhead is
negligible because both I-Spinlock and ticket spinlock lead
to the same results here. In summary, the overhead of our
solution is almost nil.

5.5 Comparison with other solutions
We compared I-Spinlock with existing solutions, discussed
in the related work section.

5.5.1 HVM compatible solutions
We compared HVM IS with the two main existing HVM
compatible solutions namely preemtable ticket spinlock
(noted PTS) [5] and time sliced [10] (noted TS). Figure 9

 0

 50

 100

 150

 200

TSL HVM IS
PV IS

#
C

P
U

 c
y
cl

es

 0

 0.2

 0.4

 0.6

 0.8

 1

TSL HVM IS
PV IS

N
o
rm

al
iz

ed
 p

er
f.

Figure 8. Overhead estimation. (a) We evaluated the num-
ber of CPU cycles needed to acquire a lock in both I-
Spinlock and ticket spinlock. (b) We can see that the former
is slightly larger than the latter But this slight difference does
not incur any overhead.

top presents the normalized performance of kernbench, nor-
malized over HVM IS. Let us start by analysing PTS’s re-
sults. PTS provides almost the same performance as HVM
IS with small VM sizes (4 and 8 vCPUs). However, it does
not scale with bigger VMs (#vCPUs> 12). This is explained
by the fact that PTS allows an out of order lock acquisition
when the earlier waiters are preempted. Therefore, the more
the number of vCPUs (increasing lock contention), the more
there are threads trying to acquire the same lock simulta-
neously without established order. This brings PTS back

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 12 16 20 24

N
o

rm
al

iz
ed

 p
er

f.

#vCPUs

TS HVM IS PTS

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 12 16 20 24

N
o

rm
al

iz
ed

 p
er

f.

#vCPUs

 10

 100

 1000

 10000

4 8 12 16 20 24

#
P

S
P

 (
L

o
g

 s
ca

le
)

#vCPUs

Figure 9. Comparison of HVM I-Spinlock (HVM IS)
with two existing HVM compatible solutions: PTS [5]
and TS [10]. (top) Performance of the kernbench VM (in
which solutions are implemented). (middle) Performance of
a collocated (CPU bound, the y-cruncher [13] benchmark)
VM, which can suffer from spinlock solutions which are ap-
plied to kernbench. (bottom) Total number of PSP. HVM IS
provides the best performance without impacting collocated
VMs.

to the old implementations of spinlock (see Section 2.1)
where the fastest thread will always acquire the lock, result-
ing to possible starvations. Also, PTS does not address the
LHP problem. Regarding TS [10], we observe that it slightly
outperforms HVM IS when the number of vCPU is low
(#vCPUs<16). We can observe that the #PSP does not have
a huge effect on TS. This is because with a small time slice,
the time wasted spinning by vCPUs due to PSP is reduced.
However as we said in the related work (Section 3), TS’s
approach consists in reducing the vCPU time slice. This in-
creases the number of context switches, which is known to
be negative for CPU bound VMs [11, 25]. Fig. 9 middle
shows the performance collocated of a VM which runs sev-
eral instances of a CPU bound application (y-cruncher [13]).
We observe a performance degradation of up to 13% for the
CPU bound application when TS [10] is used. In summary,
HVM IS provides better results compared to both PTS [5]
and TS [10].

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 12 16 20 24 28 30 32 34 36

N
o

rm
al

iz
ed

 p
er

f.

#vCPUs

PV TS OT PV IS

 10

 100

 1000

 10000

4 8 12 16 20 24 28 30 32 34 36

#
P

S
P

 (
L

o
g

 s
ca

le
)

#vCPUs

Figure 10. Comparison of PV I-Spinlock (PV IS) with
two existing PV compatible solutions (PV TS [6] and
OT [7]). (top) The normalized performance of kernbench
(normalized over PV TS). (bottom) The number of PSP for
each solution.

5.5.2 PV solutions
We also compared PV IS with the two main existing PV
compatible solutions namely para-virtualized ticket spin-
lock [6] (noted PV TS) and Oticket [7] (noted OT). Figure 10
top presents the normalized performance of kernbench, nor-
malized over PV TS. We can notice that all solutions provide
almost the same results with low contention scenarios (low
number of vCPUs). This is not the case with heavy lock
contention scenarios where only our solution provides better
results. This is explained by the fact that the number of PSP
increases linearly with the number of vCPUs in other solu-
tions while it is almost constant in PV IS. The increase of the
number of PSP incurs more hypercall (during lock release
and yield) which significantly impact performance for PV
TS and OT [7].

6. Conclusion
This article presented I-Spinlock, a new spinlock imple-
mentation targeting virtualized systems. In such environ-
ments, spinlocks are victims of two major flaws, lock holder
preemption (LHP) and the lock waiter preemption (LWP),
which lead to wasted CPU cycle and performance degra-
dation. I-Spinlock is able to avoid both LHP and LWP in
both hardware virtualization (HVM I-Spinlock) and para-
virtualization (PV I-Spinlock). The main principle of I-
Spinlock is to allow a thread to acquire a ticket if and
only if the remaining time-slice of its vCPU is sufficient
to wait for its turn (according to its ticket number), enter

and leave the critical section, thus preventing any LHP or
LWP. Both versions of I-Spinlock (HVM I-Spinlock and
PV I-Spinlock) were implemented in the Xen system. In or-
der to demonstrate its effectiveness, we experimented and
evaluated I-Spinlock with several benchmarks (Kerbench,
Pbzip2, Ebissy). We compared I-Spinlock with the ticket
spinlock, paravirtualized ticket spinlock and time slice re-
duction approach, and showed that our solution outperforms
those solutions.

Acknowledgements
We sincerely thank Katryn S McKinley and the anonymous
reviewers for their feedback.

References
[1] P. M. Wells, K. Chakraborty, G. S. Sohi, “Hardware support

for spin management in overcommitted virtual machines,” Pro-
ceedings of the 15th international conference on Parallel archi-
tectures and compilation techniques (PACT), 2006 .

[2] V. Uhlig, J. LeVasseur, E. Skoglund, U. Dannowsk, “Towards
Scalable Multiprocessor Virtual Machines,” Proceedings of the
3rd conference on Virtual Machine Research And Technology
Symposium (VM), 2004

[3] T. Friebel, “How to deal with lock-holder preemption,” Pre-
sented at the Xen Summit North America, 2008.

[4] K. Raghavendra, J. Fitzhardinge, “Paravirtualized ticket spin-
locks,” May 2012

[5] J. Ouyang, J. R. Lange, “Preemptable Ticket Spinlocks: Im-
proving Consolidated Performance in the Cloud,” Proceedings
of the 9th ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments (VEE), 2013

[6] J.Ouyang, “https://lwn.net/Articles/556141/, ”

[7] S. Kashyap, C. Min, T. Kim, “Opportunistic Spinlocks: Achiev-
ing Virtual Machine Scalability in the Clouds,” ACM SIGOPS
Operating Systems Review, 2016

[8] J. Ousterhout, “Scheduling techniques for concurrent systems,”
IEE Distributed computer System, 1982

[9] VMware, “I. Vmware(r) vsphere(tm): The cpu scheduler in
vmware esx(r) 4.1,” 2010

[10] J. Ahn, C. H. Park, J. Huh, “Micro-Sliced Virtual Processors
to Hide the Effect of Discontinuous CPU Availability for Con-
solidated Systems,” Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2014

[11] T. Boris, A. Tchana, D. Hagimont, “Application-specific
quantum for multi-core platform scheduler,” Proceedings of
the Eleventh European Conference on Computer Systems (Eu-
rosys), 2016

[12] J. Corbet, ”https://lwn.net/Articles/267968/,”

[13] y-cruncher: A Multi-Threaded Pi-Program,
”http://www.numberworld.org/y-cruncher/”

[14] J. Gilchrist, “http://compression.ca/pbzip2/,” 2015

[15] bzip2, “ http://www.bzip.org/,” 2015

[16] R. Love, “Linux Kernel Development, Third edition,” 2005

[17] Kernbench, “http://freecode.com/projects/kernbench,” 2009

[18] Ebizzy, “http://sourceforge.net/projects/ebizzy/,” 2009

[19] Intel, “Intel 64 and IA-32 Architectures Software Developers
Manual, Software Developers Manual, Intel, 2010.

[20] K. T. Raghavendra, “Virtual Cpu Scheduling Techniques for
Kernel Based Virtual Machine (Kvm),” Proceeding of the
Cloud Computing in Emerging Markets (CCEM) 2013

[21] O. Sukwong, H. S. Kim, “Is co-scheduling too expensive for
smp vms,” Proceedings of the Eleventh European Conference
on Computer Systems (Eurosys), 2011

[22] Credit Scheduler, “http://wiki.xen.org/wiki/Credit Sched-
uler”, consulted on September 2015

[23] The CPU Scheduler in VMware vSphere 5.1,
“https://www.vmware.com/files/pdf/techpaper/VMware-
vSphere-CPU-Sched-Perf.pdf,”

[24] J. M. Mellor-Crummey, M. L. Scott “Algoritms for scalable
Synchronization on Shared-Memory Multiprocessors”, ACM
Transactions on Computer Systems (TOCS), 1991

[25] S. Wu, Z. Xie, H. Chen, S. Di, X. Zhao, H. Jin “Dynamic
Acceleration of Parallel Applications in Cloud Platforms by
Adaptive Time-Slice Control”, IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2016

[26] C. Weng, Q. Liu, L. Yu, and Minglu, “Dynamic Adaptive
Scheduling for Virtual Machines,” Proceedings of the 20th in-
ternational symposium on High performance distributed com-
puting (HPDC), 2013

[27] A. Menon, J. R. Santos, Y. Turner, “Diagnosing Performance
Overheads in the Xen Virtual Machine Environment”, Proceed-
ings of the second ACM SIGPLAN/SIGOPS international con-
ference on Virtual execution environments (VEE), 2005

[28] Mckenney, PE. Appavoo, J. Kleen, A. Krieger, O. Russel,
R. Sarma and Soni, “Read-Copy Update,” In Ottawa Linux
Symposium (OLS), 2002

[29] MCS locks and qspinlocks,
“https://lwn.net/Articles/590243/,” 2014

[30] X. Ding, Phillip, B. Gibbons and M. Kozuch, J. Shan,
“Gleaner: Mitigating the Blocked-Waiter Wakeup Problem for
Virtualized Multicore Applications,” Proceedings of the 2014
USENIX conference on USENIX Annual Technical Conference
(ATC), 2014

[31] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, Alex
Ho, R. Neugebauer, I. Pratt, A. Warfield, “Xen and the art of
virtualization,” Proceedings of the nineteenth ACM symposium
on Operating systems principles Pages (SOSP) 2003

[32] D. Marsh, L. Scott, J. LeBlanc, P. Markatos, “First-Class
User-Level Threads,” Proceedings of the Thirteenth ACM sym-
posium on Operating systems principles Pages (SOSP) 1991

