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Abstract. We analyse alternative extensions of stable models for non-
disjunctive logic programs with arbitrary Boolean formulas in the body,
and examine two semantic properties. The first property, we call atom
definability, allows one to replace any expression in rule bodies by an
auxiliary atom defined by a single rule. The second property, well -
supportedness, was introduced by Fages and dictates that it must be
possible to establish a derivation ordering for all true atoms in a sta-
ble model so that self-supportedness is not allowed. We start from a
generic fixpoint definition for well-supportedness that deals with: (1) a
monotonic basis, for which we consider the whole range of intermediate
logics; and (2), an assumption function, that determines which type of
negated formulas can be added as defaults. Assuming that we take the
strongest underlying logic in such a case, we show that only Equilibrium
Logic satisfies both atom definability and strict well-suportedness.

1 Introduction

Almost 30 years ago, the introduction of the stable models [1] semantics for nor-
mal logic programs constituted the first general semantics for default negation
that was defined on any normal logic program, without limitations on the syntac-
tic dependences among atoms and rules. Since then, many extensions of stable
models have been proposed in the literature to cope with more and more general
syntactic fragments that went beyond normal logic programs. If we exclusively
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focus on propositional connectives, rule heads were soon extended to include
disjunction [2] and negative literals [3]. Going a step forward, [4] introduced a
type of rule B → H where both the body B and the head H could be a so-called
nested expression, that is, a Boolean formula allowing conjunction, disjunction
and negation, but not the implication symbol, which could not be nested. The
first extension of stable models to arbitrary propositional formulas, including
nested implications, was actually provided with the previous definition of Equi-
librium Logic [5] which, as proved in [6], is a conservative extension of nested
expressions and, as shown in [7], can be alternatively described in terms of a
formula reduct. Although Equilibrium Logic constitutes nowadays one of the
most successful and better studied logical characterisations for Answer Set Pro-
gramming (ASP), other approaches have been proposed trying to overcome some
features on which no agreement seems to have been reached so far. For instance,
one of those properties pursued by some authors is that stable models of a pro-
gram should be minimal with respect to the set of their true atoms. Although
this holds for disjunctive logic programs in all ASP semantics, the first proposals
for negation in the head (or double negation in the body) [3] already violated
minimality, this being also the case of Equilibrium Logic, which is a conservative
extension. For instance, a common way to represent a choice rule in Equilibrium
logic is using the expression:

¬¬p → p (1)

with double negation or, alternatively, its strongly equivalent disjunctive form
p ∨ ¬p that uses negation in the head. The equilibrium models of (1) are ∅
and {p}, which is not minimal. In an attempt to guarantee minimality for pro-
grams with aggregates, Faber et al. [8] (FLP) came out with a new semantics
that was generalised to arbitrary propositional formulas in [9] while keeping the
minimality criterion. For instance, the unique FLP-stable model of (1) is ∅.

Apart from minimality, another property that has been recently considered
by Shen et al. in [10] is the extension of Fages’ well-supportedness [11], orig-
inally defined for normal logic programs, to rules with a more general syntax
like, for instance, allowing Boolean formulas in the head or the body. Intuitively,
a model M is said to be well-supported if its true atoms can be assigned a
derivation ordering (via modus ponens) from the positive part of the program,
while the interpretation of negated atoms is fixed with respect to M , acting like
an assumption a priori. Fages proved that well-supported models coincide with
stable models for normal logic programs, but did not specify how to extrapo-
late well-supportedness to other syntactic classes. For instance, consider rule (1)
again and model M = {p}. If we consider that ¬¬p belongs to the “positive”
part of the program, then it should be included in the derivation ordering, as any
regular atom. However, doing so, there is no way to obtain p in a well-supported
manner, since we would have to assign ¬¬p some level strictly smaller than p
and find a different rule to justify ¬¬p, something that does not exist. On the
other hand, if ¬¬p is seen as a “negated” formula (as happens with negated
atoms), then it should behave as an assumption and its truth should be fixed



with respect to M a priori as well. For M = {p}, ¬¬p would directly hold, and
so, rule (1) would just behave as a fact for p, making it true.

In this paper, we provide a general definition of well-supportedness for pro-
grams with a head atom and a Boolean formula in the body. This definition is
parametrized in two ways: (1) the type of formulas that can be used as “assump-
tions,” that is, whose truth is fixed with respect to some model M ; and (2), the
monotonic logic that defines satisfaction of a rule body before applying the rule
to derive a new conclusion. For (1), we study three cases: negated atoms, negated
literals, and negated arbitrary formulas. For (2), we analyse the whole range of
intermediate logics, from intuitionistic to classical logic, both included. In the
paper, we prove that a group of variants collapse either into Equilibrium Logic
or Clark’s completion. To compare the different alternatives, we analyse one
more property we call atom definability. This property asserts that if we replace
occurrences of a formula ϕ in one or more rule bodies by a new auxiliary atom
a, and we define this atom with an additional rule ϕ → a, then we should get
a strongly equivalent program (modulo the original alphabet). As we will see,
this is important since semantics satisfying atom definability immediately pro-
vide a way to unfold programs with double negation into regular, normal logic
programs. We show that, among the analysed variants, only those collapsing to
Equilibrium Logic or to Clark’s completion satisfy atom definability.

2 Auxiliary Atoms and Atom Definability

In this section we introduce the property of atom definability and motivate its
importance for one of most powerful representational features of ASP: the defi-
nition of auxiliary atoms or predicates. Auxiliary atoms constitute a fundamen-
tal part of the widespread, commonly accepted, specification methodology for
problem solving in ASP called Generate, Define and Test (GDT) that we will
illustrate with a well-known example.

Example 1 (Hamiltonian cycles). Given a graph with nodes N and edges E ⊆
N × N find cyclic paths that visit each node exactly once.

INPUT: Facts {node(X) | X ∈ N} and {edge(X,Y ) | 〈X,Y 〉 ∈ E}.
OUTPUT: Facts in(X,Y ), edges forming a cyclic path that traverses all
nodes.

In what follows, we represent logic program rules as implications B → H, B
being the rule body and H the rule head. We also use ∧ and ¬ instead of commas
and not , respectively. When using a expression with variables we assume it is
an abbreviation of the conjunction of its possible ground instantiations. We also
assume finite domains, leaving the infinite case for the future extension to first-
order. A possible ASP representation of this problem would be:



edge(X,Y ) → 0 {in(X,Y )} 1 (2)
in(X,Y ) ∧ in(X,Z) ∧ Y 
= Z → ⊥ (3)
in(X,Y ) ∧ in(Z, Y ) ∧ X 
= Z → ⊥ (4)

node(X) ∧ node(Y ) ∧ ¬reach(X,Y ) → ⊥ (5)
in(X,Y ) → reach(X,Y ) (6)

in(X,Z) ∧ reach(Z, Y ) → reach(X,Y ) (7)

The GDT methodology identifies three main groups of rules:

G = non-deterministic choices that generate potential solutions. In our case, we
have the choice rule (2) so that, for each edge edge(X,Y ) in the graph, we
may freely decide to include 0 or 1 instances of fact in(X,Y ) in our solution.

T = constraints that rule out undesired solutions (the test part). In the example,
rules (3), (4), (5) check that we generate linear paths and that any pair of
nodes are mutually reachable.

D = definition of auxiliary predicates when features for G and T cannot be
directly represented in the ASP language. In the example, rules (6) and (7)
define the auxiliary predicate reach(X,Y ), the transitive closure of in(X,Y ).

Although choice rules like (2) are already included in the standard input lan-
guage ASP Core 2.0 [12] (used for the ASP solvers competition), their semantics
is actually defined in terms of auxiliary predicates. In the past, before the intro-
duction of choices, a common way to represent (2) was:

edge(X,Y ) ∧ ¬out(X,Y ) → in(X,Y ) (8)
edge(X,Y ) ∧ ¬in(X,Y ) → out(X,Y ) (9)

using another auxiliary predicate out(X,Y ). An important observation, some-
times underestimated, is that these auxiliary predicates are not a relevant part
of the problem definition. In Example 1, this problem definition involves input
predicates node and edge plus the output predicate in describing the result.
Predicates out and reach are representational resources used internally and are
not to be included in the final result, as their extent is irrelevant for the prob-
lem solution. Think, for instance, that out(X,Y ) eventually collects the edges
that are not in(X,Y ), so it does not provide new information and its use is
merely technical. Moreover, if we had to compare two different ASP encodings
of the Hamiltonian cycle problem, it seems obvious that predicates out and reach
should not be part of the language. In fact, all ASP solvers provide some option
to hide irrelevant predicates.

In the previous example, we saw a pair of features (the transitive closure and
the choice rule) whose semantics could be directly defined in terms of auxiliary
atoms. Of course, when doing so, correctness is not an issue, since the applica-
tion of auxiliary atoms is done by definition. However, one may wonder what
happens when we want to use auxiliary predicates to capture the meaning of
some expression or formula that is not an ASP extension, but is part of the
basic language from normal logic programs. Can we trust that the replacement



is correct? To illustrate this idea, consider the following common situation. We
introduced a large graph instance for which we expect to find some Hamiltonian
cycle, but the execution of the ASP solver yields no solution. In order to identify
which constraint might have been applied, we decide to replace (5) by:

unreach(X,Y ) → ⊥ (10)
node(X) ∧ node(Y ) ∧ ¬reach(X,Y ) → unreach(X,Y ) (11)

i.e., the constraint body is now captured by an auxiliary predicate unreach(X,Y )
that keeps track of pairs of disconnected nodes. We momentarily remove (10) and
find a pair of nodes in the graph for which some edge was missing by mistake.
Then, we decide to keep (10), (11) for repeating this debugging technique. Now,
can we safely replace (5) by (10)–(11) in any context?

This question is directly related to the formal property of strong equiva-
lence [6]. Let V be some vocabulary or set of atoms, and LV a syntactic lan-
guage, with signature V , for which stable models are defined. Moreover, let
SM(Γ ) denote the set of stable models for some Γ ⊆ LV . We say that two theo-
ries Γ, Γ ′ are strongly equivalent, written Γ ∼= Γ ′, iff SM(Γ ∪Δ) = SM(Γ ′∪Δ) for
any arbitrary theory Δ ⊆ LV . That is, Γ and Γ ′ provide the same results even
when joined with any arbitrary common context Δ. This definition assumes that
Γ, Γ ′ and Δ deal with the same common signature V . However, as we discussed
before, auxiliary atoms should be kept hidden inside Γ and Γ ′ and not used
for comparison. To cope with different vocabularies, we further specialise to one
of the variants considered in [13] recently named projective strong equivalence
in [14]. Suppose that the vocabularies of Γ and Γ ′ are, respectively, V ∪ U and
V ∪ U ′, where U and U ′ represent hidden local atoms. We write now SMV (Γ )
to stand for the set of stable models of Γ restricted to vocabulary V , that is
SMV (Γ ) df= {I ∩ V | I ∈ SM(Γ )}. Then, two theories Γ, Γ ′ satisfy projective
strong equivalence with respect to vocabulary V (are V -strongly equivalent, for
short), written Γ ∼=V Γ ′ iff SMV (Γ ∪Δ) = SMV (Γ ′ ∪Δ) for any theory Δ ⊆ LV .

Using this formal concept, our example amounts to asking whether the pro-
grams Γ = {(5)} and Γ ′ = {(10), (11)} are V -strongly equivalent for any vocab-
ulary V not containing unreach(X,Y ). Since (11) defines predicate unreach,
and the latter cannot be defined anywhere else in the program, we obviously
expect an affirmative answer to this question. We can even generalise this prop-
erty in the following way. We say that a syntactic language LV for vocabulary
V is implicational if it contains, at least, the implication symbol →. A program
Γ ⊆ LV from an implicational language LV is a set of implications (rules) so
that, for each rule (α → β) ∈ Γ the formulas α (the body) and β (the head) do
not contain implications1 in their turn. Given a program Γ , let Γ [ϕ/a] denote
any theory resulting from arbitrarily replacing some occurrences of formula ϕ in
the rule bodies of Γ by an atom a.

1 We allow the exception ϕ → ⊥ since, as we will see later, this corresponds to ¬ϕ in
intermediate logics.



Definition 1 (Atom definability). We say that a semantics for an implica-
tional language LV satisfies atom definability iff for any program Γ ⊆ LV , any
subformula ϕ occurring in one or more bodies of Γ and any fresh atom a 
∈ V :

Γ ∼=V Γ [ϕ/a] ∪ {ϕ → a} ��
In our example, we have replaced each ground instance of body formula ϕ =

node(c)∧node(d)∧¬reach(c, d) in (5) by a new ground atom a = unreach(c, d),
(10) being the result Γ [ϕ/a] of these replacements. On the other hand, it is easy
to see that (11) corresponds to the new rule ϕ → a. Thus, these replacements
would be V -strongly equivalent to the original formula if we chose a semantics
satisfying atom definability. In the general case, it seems clear that this is an
interesting property that one would wish to guarantee, as it is behind the intu-
itive use of auxiliary predicates. However, the consequences of such a property
may also affect the admissible semantics for other extensions going beyond nor-
mal or disjunctive logic programs. For instance, suppose that bodies with double
negation were introduced in ASP for the first time and that no previous seman-
tics for this extension were available. We could still see each doubly negated
atom ¬¬p as an expression ¬ϕ where ϕ = (¬p). Then, atom definability should
allow us simply to replace ¬¬p by ¬a providing that a is a fresh atom and we
include a rule ϕ → a in the program. This means that atom definability immedi-
ately provides a method to remove double negation. For instance, take (1) again
under this new reading: ¬ ¬p

︸︷︷︸

ϕ

→ p. Atom definability guarantees that:

¬ a → p (12)
¬p
︸︷︷︸

ϕ

→ a (13)

is strongly equivalent to (1) relative to any original signature not containing a.
In particular, as the stable models of (12)–(13) are {p} and {a}, atom defin-
ability implies that the stable models of (1) must be the result of filtering out
atom a, i.e., {p} and ∅. In other words, any argument against obtaining {p}
and ∅ as stable models of (1) becomes an argument against obtaining {p} and
{a} as regular stable models for the normal logic program (12)–(13), under the
reasonable assumption that definition of auxiliary atoms works “as expected”.

3 Formal Preliminaries

We recall some basic preliminaries and definitions that will be used in the rest
of the paper. Here, we will restrict attention to propositional formulas, leaving
first-order extensions for future work. Propositional formulas are built in the
usual way over a vocabulary or set V of atoms plus connectives ∧, ∨, → and
⊥. We regard ¬ϕ is an abbreviation of ϕ → ⊥, that � stands for ¬⊥ and that
ϕ ↔ ψ stands for (ϕ → ψ) ∧ (ψ → ϕ). A literal is an atom p (positive literal)



or its negation ¬p (negative literal). Given a conjunction of literals B, we write
B+ and B− to respectively stand for the conjunctions of positive and negative
literals in B (empty conjunctions correspond to �). As expected, a negated literal
can be either ¬p or ¬¬p. Note that, in intermediate logics, ¬¬p does not need to
be equivalent to p whereas operator → is independent from ∧ and ∨ and cannot
be defined in terms of the latter. We say that an occurrence of formula ϕ in Γ is
positive iff ϕ is in the scope of an even number of implication antecedents in Γ .
We also say that occurrence ϕ is negated in Γ iff ϕ is in the scope of negation
in Γ , that is, it is in the antecedent of some implication with ⊥ as consequent.
Note that ϕ can be both positive and negated in Γ : for instance, p is positive
and negated in (p → q) → ⊥, but q is just negated. A Boolean formula (also
known as nested expression [4]), is a propositional formula exclusively formed
with operators ∧,∨,¬ and ⊥. In other words, Boolean formulas do not contain
→ except in negations ϕ → ⊥, that is, ¬ϕ.

Let L be a propositional logic and let M |=L ϕ represent its satisfaction
relation for an interpretation M and formula ϕ. M is said to be a model of a
theory Γ , written M |=LΓ , iff it satisfies all formulas in Γ . As usual, we say that
Γ entails a formula ψ, written Γ |=L ψ, iff all models of Γ satisfy ψ. Similarly,
ϕ is a tautology, written |=L ϕ, if any interpretation is a model of ϕ. We write
CL to stand for Classical Logic. As usual, a classical interpretation M is just
a set of atoms M ⊆ V . We write IL for Intuitionistic Logic and briefly recall
its semantics. A frame is a pair 〈W, ≤〉 where W is a set of points or ‘worlds’
and ≤ is a partial order on W . An interpretation has the form 〈W, ≤, v〉 where
v : W → 2V assigns a set of true atoms to each world, satisfying v(w) ⊆ v(w′)
for all pairs of worlds w ≤ w′. We define when M = 〈W, ≤, v〉 satisfies a formula
ϕ at some world w, written M,w |=ILϕ, in the following recursive way:

– M,w |= p iff p ∈ v(w) for any atom p ∈ V
– M,w 
|= ⊥
– M,w |= α ∧ β iff M,w |= α and M,w |= β
– M,w |= α ∨ β iff M,w |= α or M,w |= β
– M,w |= α → β iff for all w′ ≥ w, M,w′ 
|= α or M,w′ |= β

Intuitionistic logic IL is strictly weaker than classical logic CL, IL ⊂ CL, since
many classical tautologies (such as p∨¬p) are not tautologies in IL. By an inter-
mediate logic we mean any logic L lying between IL and CL, IL ⊆ L ⊆ CL. The
strongest (non-classical) intermediate logic is known as the logic of Here-and-
There, HT and is defined by frames with two worlds W = {h, t} (respectively
called here and there) fixing h ≤ t. An HT model can be represented as a
pair 〈H,T 〉 with H ⊆ T corresponding to frame 〈{h, t},≤, v〉 where v(h) = H
and v(t) = T . An HT interpretation M = 〈H,T 〉 is said to be an equilibrium
model of a theory Γ iff H = T , M |=HT Γ and there is no H ′ ⊂ H such that
〈H ′, T 〉 |=HTΓ . Equilibrium logic is the logic induced by equilibrium models.

Theorem 1. Equilibrium Logic satisfies the atom definability property (Defini-
tion 1). Moreover, this property holds even when allowing nested implications in
Γ , given that the replaced occurrences of ϕ do not occur positively non-negated
in Γ .



The extension in Theorem 1 for nested implications does not hold if ϕ occurs
positively non-negated in Γ . As an example, take the program Γ consisting of
((p → q) → p) and (p → q) whose only stable model is {p, q}. Assume that
ϕ is the leftmost occurrence of p in the first formula, which occurs positively
non-negated. Then, Γ [ϕ/a]∪{ϕ → a} contains the rules ((a → q) → p), (p → q)
and (p → a) yielding no stable model. The intuition for this limitation is that
a positive, non-negated occurrence of a formula acts as a rule head in HT. In
fact, (p → q) → p is HT-equivalent to the pair of rules ¬¬q → p and ¬p → ⊥.

Although equilibrium models are defined for arbitrary propositional theories,
the syntactic fragment we will identify as logic programs in this paper will be
more limited, since we are interested in extensions of normal programs for which
we can still find a natural definition of well-supportedness. We define a Boolean
(logic) program P to be a set of rules B → p where the body B is a Boolean
formula and the head p is an atom. As usual, P is further said to be a normal
(logic) program iff all rule bodies in P are conjunctions of literals. We assume
the reader is familiar with normal programs and their stable model semantics [1].
As is well-known, equilibrium models coincide with stable models in the sense
that an interpretation M is a stable model of a normal program P iff 〈M,M〉 is
an equilibrium model of P , [5].

Clark’s completion [15] of a normal program P , denoted as COMP(P ), corre-
sponds to the union of P and the implications p → B1 ∨ · · · ∨ Bn for each atom
p ∈ V where B1, . . . , Bn are the bodies of all rules Bi → p in P for that head
atom. As usual, if no rules exist for p, then the empty disjunction corresponds
to ⊥. The intuitive reading of COMP(P ) is that each true atom in M must have
some supporting rule Bi → p in P whose body is true in M , M |= Bi. We say
that a classical interpretation M is a supported model of P iff M |=CLCOMP(P )
and, by abuse of notation, we also write COMP(P ) to represent the supported
models of P . For normal programs, it is well-known that SM(P ) ⊆ COMP(P )
but the converse does not necessarily hold. The main difference relies on the
behaviour of positive loops. For instance, take the program P1:

q ∧ ¬r → p (14)
p → q (15)

Its completion is the conjunction of P1 plus the implications (r → ⊥), (p →
q∧¬r) and (q → p). The resulting theory is classically equivalent to ¬r∧(p ↔ q)
having two supported models ∅ and {p, q} while only the former is stable. To
overcome this difference, Fages [11] strengthened supported models as follows.
A classical interpretation M is a well-supported model of a normal program P
iff there exists a strict partial order ≺ on M such that, for every atom p ∈ M ,
there is a rule (Bi → p) ∈ P that satisfies: (i) M |= Bi and (ii) q ≺ p for every
positive literal q in Bi. In the example above, the supported model M = {p, q}
is not well-supported. To see why, note that the only support for p is (14) whose
body holds in M . To be well-supported, we would need a strict order ≺ satisfying
q ≺ p for the positive literal q in the body. However, the only support for q, in
its turn, is (15) whose body also holds in M and we would also need its positive



literal to satisfy p ≺ q. If we add fact p to program P1, then the new program
P2 has a unique well-supported model {p, q} where p is supported by the fact
and q is supported by (15) with the order p ≺ q. Fages proved that the stable
models of a normal logic program coincide with its well-supported models.

4 Well-Supported Models of Boolean Programs

Extending the definition of supported models from normal to Boolean programs
is straightforward: for each true atom p in M , we must still find some rule Bi → p
in the program with true body M |= Bi to support it. So, we add the formulas
p → B1 ∨ · · · ∨ Bn collecting all bodies Bi for head p in the program – the
fact that these bodies are Boolean formulas does not affect the definition in a
substantial way. For instance, the completion of (1) would become p ↔ ¬¬p
which is a classical tautology, its supported models being ∅ and {p}.

Theorem 2. Supported models of Boolean programs satisfy atom definability.

The extension of well-supportedness to Boolean bodies, however, is not so
immediate, as it depends on the syntactic form of the rule body, treating negative
and positive literals in a different way. Given a candidate model M , an interesting
observation is that all negative literals are directly interpreted with respect to
M , regardless of the derivation order ≺ we choose. Thus, we can simply add
them to the program as a set of axioms ΔM := {¬p | p ∈ V \ M} we call
assumptions. On the other hand, for finding a supporting rule B → p for p, all
atoms in B+ must be strictly smaller than p with respect to relation ≺. Let us
define M≺p := {q ∈ M | q ≺ p}, that is, all atoms in M strictly smaller than p.
Using these ideas, we can rephrase the definition of well-supported model in a
way that does not depend on the rule body syntax:

Proposition 1. M is a well-supported model of a normal program P iff there
exists a well-founded strict partial order ≺ on M such that, for each p ∈ M ,
there is a rule (B → p) ∈ P satisfying: M≺p ∪ ΔM |=CLB. ��

The use of negated assumptions ΔM shares some resemblance with McDer-
mott and Doyle’s [16] fixpoint definition of expansion E for non-monotonic modal
logics: in that case, the epistemic negation ¬Lϕ of any formula ϕ 
∈ E can be
added as assumption. As an example of Proposition 1, consider program P3 con-
sisting of (b ∧ ¬c → d) and fact b. Its unique well-supported model is {b, d},
associated to order b ≺ d. It is easy to see that d is justified because the body of
its rule b∧¬c is classically entailed by M≺d = {b} and ΔM = {¬c}. Now, Propo-
sition 1 can be directly used to provide a definition of well-supported model for
Boolean programs by simply generalising the form of rule bodies B from con-
junctions of literals to Boolean formulas. Unfortunately, this direct extrapolation
does not satisfy atom definability. Take (1) again and consider the interpretation
M = {p}. As we only have one atom and this atom is true, M≺p ∪ΔM = ∅ while
the only possible rule is not supported ∅ 
|=CL¬¬p. However, as we explained in



Sect. 2, to respect atom definability, (1) should behave as the program (12)–(13)
after removing atom a, so {p} must be a stable model of both programs. This
example apparently creates a false dilemma: either we choose well-supportedness
or atom definability, but not both. We claim, however, that the apparent dilemma
can be resolved by allowing the concept of well-supportedness to be parametrised
in at least two different ways. A first, obvious way is to permit different logics
to characterise the monotonic entailment relation in Proposition 1; so one would
expect, for instance, that Equilibrium Logic corresponds to HT instead of CL.
Different semantics may arise from considering other logics but, as we will show,
if we focus on the whole family of intermediate logics, most variants collapse into
a pair of non-monotonic alternatives, one of them being Equilibrium Logic. A sec-
ond observation is that there is no reason a priori why the set of assumptions ΔM

should be restricted to negated atoms. As mentioned, in non-monotonic modal
logics, assumptions may involve negations of more general formulas. Given a
class of formulas C ⊆ LV , we define the corresponding set of assumptions with
respect to a classical interpretation M as ΔC

M := {¬ϕ | ϕ ∈ C, M 
|=CL ϕ} that
is, we collect the negation of all formulas of class C not satisfied by M . We are
particularly interested in three classes: the set of atoms, the set of literals and
the set of propositional formulas, respectively denoted with the superscripts at ,
lit and for . Thus, ΔM used before corresponds now to Δat

M . This leads us to the
following general definition of well-supported model.

Definition 2 (Well-supported model). Given a logic L and a class of
assumption formulas C, a set of atoms M is a LC-well-supported model (for
short, LC-model) of a Boolean program P iff there exists a strict partial order
≺ on M such that, for each p ∈ M , there is a rule (B → p) ∈ P satisfying
M≺p ∪ ΔC

M |=LB. ��
Under this new notation, [10] corresponds now to CLat -models, that is, we

use classical entailment of rule bodies and take negated atoms as assumptions.
If we consider the class of literals C = lit as assumptions, then we obtain the
following characterisations of supported and equilibrium models.

Theorem 3. If P is a Boolean program and M a classical interpretation:

(i) M is a supported model of P iff M is a CLlit -model of P .
(ii) 〈M,M〉 is an equilibrium model of P iff it is a HTlit -model of P . ��

Property (i) means that we can see Clark’s completion (supportedness) as a
degenerate case of well-supportedness. This is because Δlit

M has M as its unique
classical model, so the other part of the well-supportedness condition M≺p has
no effect at all. Property (ii), however, has a different reading. It means that
equilibrium models are well-supported if we take negated literals as assump-
tions and use HT entailment to interpret them. Remember that ¬¬p is not
HT-equivalent to p. Definition 2 gives us a new reading of their meanings: ¬¬p
corresponds to assuming that p will not eventually become false, while p must be
derived from rules under some derivation order ≺. Therefore, Equilibrium Logic



simultaneously satisfies well-supportedness (in a non-degenerate way) besides
atom definability. What happens with the rest of variants that can be obtained
from Definition 2? These variants are not completely unrelated. For instance,
well-supported models for LC are preserved for stronger logics or for more gen-
eral assumption classes, as stated below.

Proposition 2. Let M be a LC-model of a Boolean program P . Then, for any
logic M ⊇ L and any D ⊇ C, M is also an MD-model of P . ��

As we showed that CLat -models do not satisfy atom definability because
{p} is not a CLat -model of (1), by the proposition above, {p} will not be a
well-supported model of (1) in any weaker logic either, and so:

Corollary 1. For any L ⊆ CL, Lat -models do not satisfy atom definability. ��
The next result shows that, at least for intermediate logics, the remaining

combinations for monotonic logics and where C includes at least the set of literals
lit , eventually collapse into supported or equilibrium models.

Theorem 4. Let P be a Boolean program and C ⊇ lit . Then:

(i) M is a CLC-model of P iff M is a supported model of P .
(ii) For any intermediate logic L ⊂ CL:

M is a LC-model of P iff 〈M,M〉 is an equilibrium model of P . ��
That is, we obtain the same result as in Theorem 3, even if we use any non-

classical intermediate logic L from IL to HT. Again, (i) is not surprising since,
for classical logic, the set Δlit

M fixes a unique model M and the same will happen
for any C ⊇ lit . So, strictly speaking, supported models are not well-supported,
since they admit any arbitrary partial order relation ≺. This means that the
only non-monotonic candidate from Definition 2 among intermediate logics that
satisfies strict well-supportedness and atom definability is Equilibrium Logic.

5 Related Work and Conclusions

We have examined two properties, well-supportedness and atom definability,
that we suggest might be taken as desiderata for a sound methodology for gen-
eralised logic programming based on the concept of stable model. Given certain
assumptions and a range of possible underlying logics, it turns out that essen-
tially only Equilibrium Logic satisfies both conditions. This may be seen as a
new and strong argument in its favour.2

A related approach to generalising well-supportedness for Boolean programs
is pursued in [10], proposing a modification of the so-called FLP-semantics of
[8]. Though the approach we have taken here is related, it is less restrictive than
that of [10], since assumptions there are restricted to negated atoms, Δat

M in our

2 Many other properties of Equilibrium Logic, studied elsewhere, also speak in its
favour, e.g. not least the characterisation of strong equivalence, [6].



notation, and logical inference is classical, based on |=CL. A fuller analysis and
discussion of [10] is left for future work. However, we can already remark that
the semantics proposed in [10] does not satisfy atom definability.

We plan to extend this analysis to other semantics for Boolean programs
such as [17] and the ones studied in [18]. An important topic for future study is
to provide a full, first-order logical account of these desiderata.

Acknowledgements. We are very thankful to the anonymous reviewers for their
helpful comments and suggestions to improve the paper, especially for pointing out
example after Theorem 1 which led to a more accurate reformulation.
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