

Towards a complex alignment evaluation dataset

Elodie Thiéblin, Ollivier Haemmerlé, Nathalie Jane Hernandez, Cassia

Trojahn dos Santos

▶ To cite this version:

Elodie Thiéblin, Ollivier Haemmerlé, Nathalie Jane Hernandez, Cassia Trojahn dos Santos. Towards a complex alignment evaluation dataset. 12th International Workshop on Ontology Matching co-located with the 16th International Semantic Web Conference (OM@ISWC 2017), Oct 2017, Vienna, Austria. pp.217-218. hal-02603952

HAL Id: hal-02603952 https://hal.science/hal-02603952

Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: https://oatao.univ-toulouse.fr/22205

Official URL

http://ceur-ws.org/Vol-2032/om2017_poster6.pdf

To cite this version:

Thiéblin, Elodie and Haemmerlé, Ollivier and Hernandez, Nathalie and Trojahn, Cassia *Towards a complex alignment evaluation dataset.* (2017) In: 12th International Workshop on Ontology Matching co-located with the 16th International Semantic Web Conference (OM@ISWC 2017), 21 October 2017 - 21 October 2017 (Vienna, Austria).

Towards a complex alignment evaluation dataset

Élodie Thiéblin, Ollivier Haemmerlé, Nathalie Hernandez, Cassia Trojahn

IRIT & Université de Toulouse 2 Jean Jaurès, Toulouse, France {firstname.lastname}@irit.fr

Keywords: complex alignments, evaluation dataset, complex dataset

1 Motivation and background

Simple ontology alignments, largely studied, link one entity from a source ontology to one entity of a target ontology. One of the limitations of these alignments is, however, their lack of expressiveness which can be overcome by complex alignments. Different approaches for generating complex alignments have emerged in the literature [4,5,6]. However, there is a lack of datasets on which they can be evaluated.

Ontology matching is the process of generating an alignment. An alignment A between a source o1 and a target o2 ontologies is a set of correspondences [2]. Each correspondence is a triple $\langle e_{o1}, e_{o2}, r \rangle$. e_{o1} and e_{o2} are the members of the correspondence: they can be single ontology entities or constructions of these entities using constructors or transformation functions. r is a relation (e.g., \equiv , \leq , \geq) between e_{o1} and e_{o2} . We consider two types of correspondences:

- simple correspondence when both e_{o1} and e_{o2} are single entities: e.g. $\forall x$, $o1:Person(x) \equiv o2:Human(x)$ is a simple correspondence.
- **complex** correspondence when at least one of e_{o1} or e_{o2} is a construction of entities, i.e. involving at least a constructor or a transformation function. For example, $\forall x, y, o1: priceInDollars(x, y) \equiv \exists y1, o2: priceInEuro(x, conversion(y))$ is a complex correspondence with a transformation function (conversion that states that $y1 = changeRate \times y$). $\forall x, o1: AcceptedPaper(x) \equiv \exists y, o2: Paper(x) \land o2: acceptedBy(x, y)$ is a complex correspondence with constructors.

A complex alignment contains at least one complex correspondence.

2 The evaluation dataset

The proposed dataset is based on the OntoFarm dataset [9] composed of 16 ontologies on the conference organisation domain and simple reference alignments between 7 of these ontologies. This dataset has been widely used in the ontology alignment evaluation domain [8]. The dataset proposed here is a first version of an extension of the OntoFarm dataset including complex correspondences. 3 out of the 7 ontologies of the reference alignments have been manually aligned (*cmt*, *conference* and *edas*), resulting in 3 alignments: *cmt-conference*, *cmt-edas* and *conference-edas*. The methodology applied to create the complex dataset consists in manually finding an equivalent construction of target entities for each source entity. All correspondences have a single entity member and an other member that is either a single entity (simple correspondence) or a construction (complex correspondence). The correspondences are diverse for they can be classified with 8 different correspondence patterns or compositions of them [7]. In the 3 alignments, the dataset contains 51 complex correspondences. The alignments are expressed in First Order Logic and in EDOAL¹. The resulting alignments were translated into OWL axioms as an ontology merging process. The HermiT reasoner [3] was used to check the consistency of the merged ontology. The dataset is available online at http://doi.org/10.6084/m9.figshare.4986368.v4 under a CC-BY License.

3 Conclusion and future work

We have proposed a complex coherent dataset with complex correspondences between 3 ontologies of the OntoFarm dataset. As perspectives, the dataset will be extended with other ontologies of this dataset. The confidence of a correspondence (a value associated with a correspondence to express its confidence degree) could be added to the dataset. This could express, as in [1], the consensus level of experts on each correspondence. Finally, we aim at using this dataset for the purpose of evaluating complex matchers.

References

- Cheatham, M., Hitzler, P.: Conference v2. 0: An uncertain version of the OAEI Conference benchmark. In: ISWC. pp. 33–48. Springer (2014)
- 2. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer Berlin Heidelberg (2013)
- Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2 reasoner. Journal of Automated Reasoning 53(3), 245–269 (2014)
- Jiang, S., Lowd, D., Kafle, S., Dou, D.: Ontology matching with knowledge rules. In: Transactions on Large-Scale Data-and Knowledge-Centered Systems XXVIII, pp. 75–95. Springer (2016)
- Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and building ontologies of linked data. In: ISWC. pp. 598–614. Springer (2010)
- Ritze, D., Meilicke, C., Šváb Zamazal, O., Stuckenschmidt, H.: A pattern-based ontology matching approach for detecting complex correspondences. In: 4th ISWC workshop on ontology matching. pp. 25–36 (2009)
- 7. Scharffe, F.: Correspondence Patterns Representation. Ph.D. thesis, Faculty of Mathematics, Computer Science and University of Innsbruck (2009)
- Zamazal, O., Svátek, V.: The Ten-Year OntoFarm and its Fertilization within the Onto-Sphere. Web Semantics: Science, Services and Agents on the World Wide Web 43, 46–53 (Mar 2017)
- Šváb, O., Svátek, V., Berka, P., Rak, D., Tomášek, P.: Ontofarm: Towards an experimental collection of parallel ontologies. Poster Track of ISWC 2005 (2005)

¹http://alignapi.gforge.inria.fr/edoal.html