
HAL Id: hal-02603745
https://hal.science/hal-02603745v1

Submitted on 16 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Integer Linear-programming based Resource
Allocation Method for SQL-like Queries in the Cloud

Mohamed Mehdi Kandi, Shaoyi Yin, Abdelkader Hameurlain

To cite this version:
Mohamed Mehdi Kandi, Shaoyi Yin, Abdelkader Hameurlain. An Integer Linear-programming based
Resource Allocation Method for SQL-like Queries in the Cloud. 33rd Annual ACM Symposium on
Applied Computing (SAC 2018), Apr 2018, Pau, France. pp.161-166. �hal-02603745�

https://hal.science/hal-02603745v1
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/22218

To cite this version:

Kandi, Mohamed Mehdi and Yin, Shaoyi and Hameurlain,
Abdelkader An Integer Linear-programming based Resource
Allocation Method for SQL-like Queries in the Cloud. (2018) In:
33rd Annual ACM Symposium on Applied Computing (SAC 2018),
9 April 2018 - 13 April 2018 (Pau, France).

Open Archive Toulouse Archive Ouverte

Official URL
https://doi.org/10.1145/3167132.3167148

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22218
https://doi.org/10.1145/3167132.3167148

An Integer Linear-programming based Resource Allocation
Method for SQL-likeQueries in the Cloud

Mohamed Mehdi Kandi
IRIT Laboratory, Paul Sabatier

University
Toulouse, France
mkandi@irit.fr

Shaoyi Yin
IRIT Laboratory, Paul Sabatier

University
Toulouse, France

yin@irit.fr

Abdelkader Hameurlain
IRIT Laboratory, Paul Sabatier

University
Toulouse, France
hameurlain@irit.fr

ABSTRACT
Cloud computing has emerged as a paradigm for delivering Infor-
mation Technology services over Internet. Services are provided
according to a pricing model and meet requirements that are spec-
ified in Service Level Agreements (SLA). Recently, most of cloud
providers include services for DataBase (DB) querying dedicated to
run on MapReduce platform and a virtualized architecture. Classi-
cal resource allocation methods for query optimization need to be
revised to handle the pricing models in cloud environnements. In
this work, we propose a resource allocation method for the query
optimization in the cloud based on Integer Linear-Programming
(ILP). The proposed linear models can be implemented in any fast
solver for ILP. The method is compared with some existing greedy
algorithms. Experimental evaluation shows that the solution offers
a good trade-off between the allocation quality and allocation cost.

CCS CONCEPTS

•Computer systems organization→Cloud computing; •Com-
puting methodologies → MapReduce algorithms;

KEYWORDS
Cloud Computing, PaaS, MapReduce, Query Optimization, Resource
Allocation, Integer Linear-Programming

1 INTRODUCTION
Cloud computing became a common way to provide on-demand
Information Technology services. Cloud services are offered by a
provider who owns a hardware architecture and a set of software
tools that meet client needs. In the cloud, resources can be reserved
and released in an elastic way, which means that it is possible to

https://doi.org/10.1145/3167132.3167148

change the allocated amount at any time. The services are provided
according to a pricing model and meet a set of performance re-
quirements that are specified in Service Level Agreements (SLA). If
requirements are not met, the provider pays penalties to the client.

We are interested in cloud services for database querying (Platform-
as-a-Service database, PaaS), particularly the problem of resource
allocation. Most of the current cloud providers include services for
database querying with languages similar to SQL in which queries
run onMapReduce [2] clusters (Hive [7]). Among these services, we
mention Amazon Elastic MapReduce1, Microsoft Azure HDInsight2,
Oracle BigData Cloud service3. The proposed query languages are
usually called SQL-like4. With the above services, a SQL-like query
is transformed into a set of dependent MapReduce jobs. Each job
contains a set of parallel tasks. These tasks are submitted to an al-
locator that places them within the available resources and defines
the execution scheduling over time that respects the precedence
constraints and resource availability.

Several solutions have been proposed for resource allocation
in MapReduce paradigm [4][9][11]. The aim of most of this work
is to ensure fairness (i.e. assign resources so that all jobs get an
equal share of resources over time) and data locality (i.e. assign the
task to the node that contains its data). These methods are better
suited to classical parallel environments and do not handle cloud
constraints. In classical parallel environments, resource allocation is
efficient when it minimizes execution time and maximizes through-
put. However, in the cloud, the aim is to maximize the monetary
gain of the provider and meet the client requirements established
in SLAs. Existing methods that take into account these aspects are
generally based on greedy methods [3] that have the advantage
of quick decision-making and simplicity of their design. However,
greedy methods do not give a theoretical guarantee on the qual-
ity of the solution in terms of monetary gain, which generates a
negative effect on the provider’s gain.

Motivated by the limitations of the above methods, we propose
a resource allocation method for the execution of SQL-like queries
in the cloud. The solution consists of two phases : (1) place tasks in
available resources and (2) choose the time windows allocated to
each task. Each phase is modeled by an ILP model, so the resolu-
tion can be done with any exact ILP optimization algorithm. We
compare in the experimental section our method with a one-phase
ILP method, and some existing greedy methods [3]. We show that

1https://aws.amazon.com/fr/emr/
2https://azure.microsoft.com/fr-fr/services/hdinsight/
3https://cloud.oracle.com/bigdata
4https://docs.treasuredata.com/articles/hive

https://doi.org/10.1145/3167132.3167148

our method offers a good trade-off between the allocation cost and
the monetary cost generated by the execution of queries.

The rest of this paper is organized as follows. In section 2, we
present the considered database cloud services. Then we detail
our resource allocation method in section 3. Section 4 reports the
experimentation results, while section 5 reviews some related work
on resource allocation for MapReduce applications. Finally, we
conclude in section 6.

2 CLOUD DB SERVICE DESCRIPTION
2.1 Query Compilation and Execution
Figure 1 shows the considered architecture. SQL-like queries are
submitted through a client interface. The lexical and syntactic ana-
lyzer checks if the query is correct and generates a graph of opera-
tors (joins, projections...). Logical optimization consists in reducing
the volume of manipulated data by applying classical transforma-
tion rules of algebraic trees. Physical optimization determines the
join algorithms and join order, then generate a graph of the execu-
tion plan. The nodes of this graph are MapReduce jobs and edges
represent dependencies between them. A query is transformed into
a job graph in different ways : (1) associate a job to each join opera-
tor [7], (2) associate one job to all operators [1] or (3) decompose
the join operators into several groups and associate a MapReduce
job to each group [10]. Intra-job parallelization consists in defining
the number of Map and Reduce tasks of each job of the graph.

The provider’s cloud infrastructure consists of a set of physi-
cal machines. A hypervisor, whose role is to manage the Virtual
Machines (VMs), is installed on each physical machine. Each VM
represents a MapReduce node. It contains a set of logical resources
and a local resource allocation manager that receives allocation de-
cisions from the global manager and returns the state of resources.
Each logical resource can contain only one task at a given time. A
logical resource is an abstract representation of a certain reserved
CPU, memory and storage capacity. The global resource allocation
manager receives the graphs of execution plans and performs task
placement and scheduling given the available resources. Section 3 is
devoted to a new resource allocation method that takes into account
economic aspects.

2.2 Economic Model
We propose an economic model for a PaaS database provider. The
profit is obviously defined by:

Pro f it = Income − Expenditure (1)

We assume that O is the set of client classes, C(o) is the set of
clients belonging to the class o ∈ O and Q(c) is the set of queries
issued by the client c . We assume a query-based pricing model,
i.e: the client pays an amount of money for each submitted query.
The price of the query depends on its nature (number of operators,
manipulated data sizes...) and the client class. The income of the
PaaS provider is equal to the price of all submitted queries:

Income =
∑
o∈O

∑
c ∈C(o)

∑
q∈Q(c)

QueryPrice(q) (2)

Expenditures consist of resource costs and penalties.

Expenditure = Resources + Penalties (3)

The resources are made available to the PaaS provider by an
Infrastructure-as-a-Service (IaaS) provider in the form of VMs. VMs
are rented by the PaaS depending on the duration of use. In Equation
(4), T is the set of VM types, V(t) is the set of VMs of type t , Pricet
is the price of using a VM of type t for one time unit, Dv is the
duration of use of the VM v ∈ V(t).

Resources =
∑
t ∈T

∑
v ∈V(t)

Pricet ∗ Dv + NetworkAccess (4)

The price of penalties depends on the duration of the deadline vi-
olation (ViolationDur), the price of the query (Query− Price) and a
percentage that depends on the class of the client (PercentaдeSLA):

Penalties =
∑
o∈O

∑
c ∈C(o)

∑
q∈Q(c)

ViolationDur (q) ∗W (q) (5)

W (q) = QueryPrice(q) ∗ PercentaдeSLA(o). The resource allo-
cation models that we propose in the following are intended to
minimize expenditure (resources+penalties).

3 RESOURCE ALLOCATION METHOD
We propose a method based on Integer Linear-Programming (ILP)
for the problem of resource allocation. Given a set of logical re-
sources, the aim of our allocation method is to find a placement
and a scheduling over time that minimize monetary costs for the
PaaS cloud provider. The proposed solution adopts a two-phase
approach. First, the placement involves choosing a pool of resources
on which each task group will be executed. Then, scheduling con-
sists of choosing the time windows allocated to each task group. A
resource pool is a set of Map (or Reduce) resources with the same
characteristics and physically close to each other. A task group is a
set of Map (or Reduce) tasks that belong to the same job. We assume
that the cardinality of resource pools is equal to the cardinality of
task groups. We present in the following the ILP placement model
(section 3.1) then the ILP scheduling model (section 3.2).

3.1 Placement Model (1st phase)
The placement consists of choosing the resource pool on which
each task group is executed. We introduce the following variables:

• xi,m,a = 1 if the Map task groupm of the job i is placed on
the Map resource pool a; = 0 if not.

• yi,r,b = 1 if the Reduce task group r of the job i is placed on
the Reduce resource pool b; = 0 if not.

• za,b = the maximum amount of data transferred between
the task groups placed in the pool a and the task groups
placed in the pool b.

J is the set of jobs for all submitted queries,Mi is the set of Map
task groups of the job i , Rj is the set of reduce task groups of the
job j, A is the set of Map resource pools, B is the set of Reduce
resource pools:

xi,m,a ∈ {0, 1}, ∀i ∈ J,m ∈ Mi ,a ∈ A (6)
yj,r,b ∈ {0, 1}, ∀j ∈ J, r ∈ Rj ,b ∈ B (7)

za,b ∈ {0, 1....,UpperBound(z)}, ∀a ∈ A,b ∈ B (8)

Multiple tasks can be assigned to the same resource. The ex-
clusivity of execution is then ensured in time with the scheduling
model which will be presented in the section 3.2.

Figure 1: SQL-like query compilation and execution in the
cloud

The processor capacity CM
p (resp. memory CM

m and storage CM
s)

needed by a Map task group can not exceed the available capacity
Cp (resp.Cm andCs) in the resources of the chosen pool - equations
(9), (10), (11) -. Likewise, for Reduce tasks - equations (12), (13), (14)
-:

CM
p (i) ∗ xi,m,a ≤ Cp (a), ∀i ∈ J,m ∈ Mi ,a ∈ A (9)

CM
m (i) ∗ xi,m,a ≤ Cm (a), ∀i ∈ J,m ∈ Mi ,a ∈ A (10)

CM
s (i) ∗ xi,m,a ≤ Cs (a), ∀i ∈ J,m ∈ Mi ,a ∈ A (11)

CR
p (i) ∗ yi,r,b ≤ Cp (b), ∀i ∈ J, r ∈ Ri ,b ∈ B (12)

CR
m (i) ∗ yi,r,b ≤ Cm (b), ∀i ∈ J, r ∈ Ri ,b ∈ B (13)

CR
s (i) ∗ yi,r,b ≤ Cs (b), ∀i ∈ J, r ∈ Ri ,b ∈ B (14)

Each task group is placed on one and only one resource pool:∑
a∈A

xi,m,a = 1, ∀i ∈ J,m ∈ Mi (15)∑
b ∈B

yi,r,b = 1, ∀i ∈ J, r ∈ Ri (16)

In order to ensure inter-job parallelism, two Map (or Reduce)
task groups belonging to the same job can not be placed on the
same resource pool:∑

m∈Mi

xi,m,a ≤ 1, ∀i ∈ J,a ∈ A (17)∑
r ∈Ri

yi,r,b ≤ 1, ∀i ∈ J,b ∈ B (18)

Our placement model handle load balancing. In order to ensure an
equitable distribution of tasks between resources, we propose to
minimize the maximum number of time windows allocated in each
resource, which avoids to allocate too many task groups to one
resource pool and few to another. To model this in a linear way, we
introduce two variables α ∈ {0, 1....,T } and β ∈ {0, 1....,T } (T is
the number of considered time windows). We add the following two
constraints. The objective function that is subsequently presented
includes α and β as variables to minimize.

∑
i ∈J

∑
m∈Mi

Tmi ∗ xi,m,a +
∑
t<T

(1 − Fma,t) ≤ α , ∀a ∈ A (19)∑
i ∈J

∑
r ∈Ri

Tri ∗ xi,r,b +
∑
t<T

(1 − Frb,t) ≤ β, ∀b ∈ B (20)

With Fma,t = 1 if the Map resource pool a is initially available
at the moment t , = 0 if not, Frb,t = 1 if the Reduce resource pool
b is initially available at the moment t , = 0 if not, Tmi is the local
response time of Map tasks of job i , Tri is the local response time
of a Reduce task of job i . The family of variables z satisfies the
following condition:

xi,m,a = 1 and yj,r,b = 1 ⇒ za,b ≥ Qi, j

∀i, j ∈ J,m ∈ Mi , r ∈ Rj ,a ∈ A,b ∈ B,Qi, j > 0 (21)

Qi, j is the amount of data transferred between a task of job i and
a task of job j. This condition can be expressed linearly as follows:

Qi, j ∗ xi,m,a +Qi, j ∗ yj,r,b − za,b ≤ Qi, j ,

∀i, j ∈ J,m ∈ Mi , r ∈ Rj ,a ∈ A,b ∈ B,Qi, j > 0 (22)

The economic parameter influenced by task placement is the cost
of using resources and communication. The following objective
function includes processor, memory, storage and network costs.
Reducing the use of these resources allows to release the under-used
VMs and thus decrease expenditure.Wproc (weight of processor
usage),Wmem (weight of memory usage),Wstor (weight of storage
space usage) are deduced from economic model according to the
influence of the processor, memory and storage capacity on the
price of VMs. The objective function of the placement model is:

f =
∑
i ∈J

∑
m∈Mi

∑
a∈A

Cmap (a) ∗Tmi ∗ xi,m,a

+
∑
i ∈J

∑
r ∈Ri

∑
b ∈B

Cr educe (b) ∗Tri ∗ yi,r,b (23)∑
a∈A

∑
b ∈B

Ccom (a,b) ∗ za,b +Wr ep ∗ (α + β)

Wr ep is the weight of the load balancing, Ccom (a,b) =Wcom ∗

Dist(a,b),Cmap (a) =Wproc ∗Cp (a)+Wmem ∗Cm (a)+Wstor ∗Cs (a)
andCr educe (b) =Wproc ∗Cp (b) +Wmem ∗Cm (b) +Wstor ∗Cs (a),
Dist(a,b) is the distance between the resource pool a and b,Wcom
is the weight of communication. The formulation of the problem
to solve is:

minimize f

subject to (6), (7), (8), (9), (10), (11), (12), (13), (14), (15),
(16), (17), (18), (19), (20), (22)

3.2 Scheduling Model (2nd phase)
The optimal configuration of the previous placement model is con-
sidered as an input for the scheduling model that we present in this
section. We now look for the time windows allocated to each task
group. The following variables are introduced:

• vi,m,t = 1 if the Map task groupm of the job i started at or
before time t ; = 0 if not.

Figure 2: Task placement under MapReduce

• wi,r,t = 1 if the Reduce task group r of the job i started at
or before time t ; = 0 if not.

So we have:

vi,m,t ∈ {0, 1}, ∀i ∈ J,m ∈ Mi , t < T (24)
wi,r,t ∈ {0, 1}, ∀i ∈ J, r ∈ Ri , t < T (25)

vi,m,t ≤ vi,m,t+1, ∀i ∈ J,m ∈ Mi , t < T (26)
wi,r,t ≤ wi,r,t+1, ∀i ∈ J, r ∈ Ri , t < T (27)

The economic parameter influencing the task scheduling over
time is penalty cost. The goal is therefore to find the combination
of variable families v an w that minimize the cost of penalties.
A cumulative penalty weightWi is associated to each execution
time window after the deadline. For example, the provider may
propose two offers : (1) minimum and (2) premium. It is clear that
the violation of the SLAs of the offer (2) is less tolerated than offer
(1). So if a job i is in offer (1) and the job j is in offer (2) then
Wj >Wi . Each query has a deadline, which is specified in the SLA.
The accumulation of penalties starts from the moment when the
execution of the query jobs exceeds this deadline. The objective
function to minimize is the following (Di is the deadline of job i , F
is the set of final jobs of the submitted queries):

д =
∑
i ∈F

∑
Di−T ri<t<T

Wi ∗ max
r ∈Ri

(1 −wi,r,t) (28)

This objective function is not linear. To have a linear form, we
introduce a family of variables γ such that:

γi,t ∈ {0, 1}, ∀i ∈ J, t < T (29)
1 −wi,r,t ≤ γi,t ∀i ∈ J, r ∈ Ri , t < T (30)

The objective function can be formulated linearly as follows:

д′ =
∑
i ∈F

∑
Di−T ri<t<T

Wi ∗ γi,t (31)

For a given job, Reduce tasks can not start before the end of the
Map tasks. This constraint can be expressed linearly:

vi,m,t−Tmi ≥ wi,r,t , ∀i ∈ J,m ∈ Mi , r ∈ Ri , t −Tmi ≥ 1 (32)
wi,r,t ≤ 0, ∀i ∈ J,m ∈ Mi , t −Tmi < 1 (33)

A resource can not contain more than one task at a same time
(exclusivity constraint). From the definition of the families of vari-
ables u and y and knowing that a task can not be interrupted before
its termination, we can deduce that:

• vi,m,t −vi,m,t−Tmi = 1 if the Map task groupm of the job
i uses the pool of resources a at time t ; = 0 if not.

• wi,r,t −wi,r,t−T ri = 1 if the Reduce task group r of the job
i uses the pool of resources b at time t ; = 0 if not.

Amim (or Arir) indicates the allocated resource pool on which the
Map task group m (resp. Reduce task group r) of the job i was
placed following the placement phase. The linear formulation of
the exclusivity constraint is thus the following:∑

i ∈J

∑
m∈Mi

Amim=a

∑
t−Tmi ≥1

(vi,m,t −vi,m,t−Tmi)

+
∑
i ∈J

∑
m∈Mi

Amim=a

∑
t−Tmi<1

vi,m,t ≤ Fma,t , ∀a ∈ A, t < T (34)

∑
i ∈J

∑
r ∈Ri
Arir=b

∑
t−T ri ≥1

(wi,r,t −wi,r,t−T ri)

+
∑
i ∈J

∑
r ∈Ri
Arir=b

∑
t−T ri<1

wi,r,t ≤ Frb,t , ∀b ∈ B, t < T (35)

The parameter family O indicates the precedence between jobs.
If Oi, j = 1 then the job j can not start before the end of the job i .
We propose the following linear formulation for the precedence
constraint:

vj,m,t −wi,r,t−T ri ≤ 1 −Oi, j ,

∀i, j ∈ J,m ∈ Mj , r ∈ Ri , t −Tri ≥ 1 (36)
vj,m,t ≤ 1 −Oi, j , ∀i, j ∈ J,m ∈ Mj , t −Tri < 1 (37)

The problem to solve is:
minimize д′

subject to (24), (25), (26), (27), (29), (30), (32), (33), (34),
(35), (36), (37)

The global resource allocation manager periodically reports on the
cost of penalties to a capacity management module. By analyzing
the reports, the capacity management module may decide to reserve
new VMs if the penalties are high over a long time interval.

4 EXPERIMENTAL RESULTS
We have performed extensive simulations to evaluate our allocation
method. ILP models were implemented with GNU Linear Program-
ming Kit5 (GLPK). The job graphs we used for the tests were defined
by observing the execution of some queries with Hive [7]. Observed
queries were retrieved from the hive-testbench tool6.

The method proposed in this paper (ILP2P) is first compared
with three heuristics presented in [3]. The heuristics follow the
same generic greedy algorithm but differ in the criterion to choose
the tasks to place as well as the target resources. In each iteration :
5https://www.gnu.org/software/glpk/
6https://github.com/hortonworks/ hive-testbench

GBRT GMPT GMPM ILP2P
0

10

20

30

40

50
m
on

et
ar
y
co
st
($
)

CPU cost
Memory cost
Storage cost

Communication cost
Penalty cost

(a) 2 simple queries per time unit

GBRT GMPT GMPM ILP2P
0

10

20

30

40

50

m
on

et
ar
y
co
st
($
)

(b) 3 simple queries per time unit

GBRT GMPT GMPM ILP2P
0

20

40

60

m
on

et
ar
y
co
st
($
)

(c) 4 simple queries per time unit

GBRT GMPT GMPM ILP2P
0

20

40

60

m
on

et
ar
y
co
st
($
)

(d) 2 complex queries per time unit

GBRT GMPT GMPM ILP2P
0

20

40

60

m
on

et
ar
y
co
st
($
)

(e) 3 complex queries per time unit

GBRT GMPT GMPM ILP2P
0

20

40

60

m
on

et
ar
y
co
st
($
)

(f) 4 complex queries per time unit

Figure 3: Monetary cost comparison (GBRT,GMPT,GMPM,ILP2P)

(1) G-BRT assigns the task with maximum execution time to the
resource that minimizes the standard deviation of the utilization of
resources, (2)G-MPT assigns the task with the maximum execution
time to the resource that minimizes completion time, (3) G-MPM
assigns the task with the maximum output size to the resource that
minimizes monetary cost.

In the simulation, we consider two types of VMs. A type1 VM
contains 32 CPU and 8GB of RAM, its price per hour of use is 1.5$.
A type2 VM contains 16 CPU and 4GB of RAM, its price per hour
of use is 0.75$. We consider the arrival of simple queries (< 6 jobs
per query) in sub-figures (3a),(3b),(3c) and complex queries (≥ 6
jobs per query) in sub-figures (3d),(3e),(3f). Each job contains 16 to
40 Map (resp. Reduce) tasks. The size of each Map block is 256 or
512 MB. The initial resource availability rate is generated randomly.
Each sub-figure represents the average monetary cost per time unit
for different arrival rates.

Figures (3a),(3b),(3c),(3d),(3e),(3f) show that G-MPM and ILP2P
have a lower cost than G-BRT and G-MPT. The latter two methods
handle load balancing and execution time reduction but it is not
sufficient to reduce monetary costs. Indeed, when we have a set
of queries to place and schedule, and we want to reduce costs, we
should schedule first the query with the most restrictive deadline
and penalty weight and not the query that minimizes the global
execution time. G-MPM handles monetary cost but uses a greedy
method in which a part of the solution is determined at each step of
the algorithm. This part is determined with the available informa-
tion in the current step and without taking into account all possible
placement and scheduling configurations. This may give rise to
choices that would seem interesting given the information available

in the step where the choice was made, but it will turn out that it is
not a good choice later. Its results are thus worse than that of ILP2P
which adopts an exact approach.

In a second step, we compare our two-phase ILP method (ILP2P)
with another ILP method (ILP1P) designed to show the advantages
of adopting a two-phase approach. ILP1P is based on a single phase
approach, i.e. one ILP model that handles both placement and sched-
uling at the same time.

Table 1: Allocation cost (seconds)

average minimum maximum
G-BRT 0.020 0.017 0.052
G-MPT 0.223 0.178 0.401
G-MPM 0.228 0.176 0.483
ILP2P 2.272 0.931 19.405
ILP1P 376.043 54.763 1201.742

The results of Figure 4 shows that ILP1P has obviously the best
monetary cost. Indeed, if the problems of placement and scheduling
are treated at the same time then the search space is significantly
larger. It is therefore likely to find a better solution in terms of
monetary cost. On the other hand, dealing with scheduling and
placement problems at the same time gives rise to a more complex
problem. Table 1 illustrates the average, minimal and maximum
allocation times of the different methods. Given the complicated
nature of ILP1P, its allocation time is very long and unreasonable
in practice. Although ILP2P is slower than the greedy methods, its

GBRT GMPT GMPM ILP2P ILP1P
0

10

20

30

m
on

et
ar
y
co
st
($
)

CPU cost
Memory cost
Storage cost

Communication cost
Penalty cost

Figure 4: Monetary cost comparison (GBRT, GMPT, GMPM,
ILP2P, ILP1P) - 2 simple queries per time unit

allocation time remains reasonable and significantly better than
ILP1P. Indeed, the allocation time is negligible compared to the
execution time of the query. As shown in Figure 4, ILP2P makes it
possible to gain about 1$ per time unit compared to G-MPM. ILP2P
presents thus a good trade-off between the allocation cost and the
monetary cost.

5 RELATED WORK
Several methods have been proposed in the literature to improve
the resource allocation for MapReduce applications. Some solutions
are more suitable for classical parallel environments [5][8][9][11],
while others are dedicated to the cloud [3][6]. The goal of resource
allocation for classical parallel environments is to minimize execu-
tion time and maximize throughput. The allocation in the cloud, on
the other hand, supposes the existence of a provider and several
clients with different needs, the goal is to meet client requirements
(specified in SLAs) while maximizing profit.

Most of the existing work for parallel environments is limited to
independent tasks. The basic allocation algorithm for these environ-
ments is FIFO. The allocator assigns the oldest waiting task to the
first available resource. This solution is unfair. Indeed, when long
tasks are submitted the later short tasks must wait until the earlier
finish. FAIR [11] is a resource allocation algorithm that solves this
problem by considering fairness. This algorithm ensures that each
user queries receive a minimum resource capacity as long as there
is sufficient demand. When a user does not need its minimum ca-
pacity, other users are allowed to take it. Despite its advantages,
FAIR does not offer mechanisms to handle deadlines. ARIA [8] is
a framework that manages this problem. For this purpose, ARIA
builds a job profile that reflects performance characteristics of the
job for Map and Reduce phases, then it defines a performance model
that estimates the amount of map and reduce tasks for the job and
its deadline. Finally, ARIA determines the job order for meeting
deadlines based on the earliest deadline first policy.

The above resource allocation algorithms do not consider cloud
features. Tan et al [6] position their work in the context of multi-
tenant parallel databases. Their solution handles SLAs. Nevertheless,
they consider only performance metrics in the allocation decision
but not economic aspects. Among the existing resource allocation
work dedicated to the cloud, Kllapi et al [3] is the closest to our
context. This work considers economic aspects. Authors explore

three different problems: (1) minimize execution time given a fixed
budget, (2) minimize the monetary cost given deadlines and (3)
find the right trade-off between execution time and monetary cost.
They propose some greedy methods and a local search algorithm
to allocate resources to dependent tasks. They show that the local
search does not significantly improve the results compared to the
greedy methods. However, it is known that the greedy approaches
do not theoretically guarantee the quality of the solution. This
can generate a negative impact on the provider benefit. Unlike
greedy methods, we propose in our work an ILP formulation for the
problem, so an exact solution can be found. Our work is compared
with greedy methods in the experimental section.

6 CONCLUSION
We addressed in this work the resource allocation problem for SQL-
like queries in the cloud. We proposed an ILP based method that
ensures placement and scheduling. We implemented the models
and compared our work with some existing methods. The results
showed that our method provides a higher monetary gain compared
to the greedy algorithms with a reasonable allocation time. As a
future work, we plan to consider parameter estimation errors and
design efficient dynamic strategies that detect estimation errors
during execution time, then change the allocation plan to reduce
the impact of these errors on the monetary cost.

REFERENCES
[1] Foto N Afrati and Jeffrey D Ullman. 2010. Optimizing joins in a map-reduce

environment. In Proceedings of the 13th International Conference on Extending
Database Technology. ACM, 99–110.

[2] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[3] Herald Kllapi, Eva Sitaridi, Manolis M Tsangaris, and Yannis Ioannidis. 2011.
Schedule optimization for data processing flows on the cloud. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of data. ACM,
289–300.

[4] Minghong Lin, Li Zhang, Adam Wierman, and Jian Tan. 2013. Joint optimization
of overlapping phases in MapReduce. Performance Evaluation 70, 10 (2013),
720–735.

[5] Zhihong Liu, Qi Zhang, Mohamed Faten Zhani, Raouf Boutaba, Yaping Liu, and
Zhenghu Gong. 2015. Dreams: Dynamic resource allocation for mapreduce with
data skew. In Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on. IEEE, 18–26.

[6] Zilong Tan and Shivnath Babu. 2016. Tempo: robust and self-tuning resource man-
agement in multi-tenant parallel databases. Proceedings of the VLDB Endowment
9, 10 (2016), 720–731.

[7] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy. 2010. Hive-a
petabyte scale data warehouse using hadoop. In Data Engineering (ICDE), 2010
IEEE 26th International Conference on. IEEE, 996–1005.

[8] Abhishek Verma, Ludmila Cherkasova, and Roy H Campbell. 2011. ARIA: au-
tomatic resource inference and allocation for mapreduce environments. In Pro-
ceedings of the 8th ACM international conference on Autonomic computing. ACM,
235–244.

[9] Weina Wang, Kai Zhu, Lei Ying, Jian Tan, and Li Zhang. 2016. Maptask schedul-
ing in mapreduce with data locality: Throughput and heavy-traffic optimality.
IEEE/ACM Transactions on Networking 24, 1 (2016), 190–203.

[10] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. 2011. Query optimization
for massively parallel data processing. In Proceedings of the 2nd ACM Symposium
on Cloud Computing. ACM, 12.

[11] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. 2010. Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling. In Proceedings of the 5th European
conference on Computer systems. ACM, 265–278.

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

