
HAL Id: hal-02603674
https://hal.science/hal-02603674

Submitted on 16 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Three-fold Approach towards Increased Assurance
Levels for Interactive Systems: A Flight Control Unit

Case Study
Camille Fayollas, Jean-Charles Fabre, Philippe Palanque, Martin Cronel,

David Navarre, Yannick Deleris

To cite this version:
Camille Fayollas, Jean-Charles Fabre, Philippe Palanque, Martin Cronel, David Navarre, et al.. A
Three-fold Approach towards Increased Assurance Levels for Interactive Systems: A Flight Control
Unit Case Study. International Conference on Human-Computer Interaction in Aeronautics (HCI’Aero
2016), Sep 2016, Paris, France. pp.1-9. �hal-02603674�

https://hal.science/hal-02603674
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/24685

To cite this version:

Fayollas, Camille and Fabre, Jean-Charles and Palanque, Philippe
and Cronel, Martin and Navarre, David and Deleris, Yannick A
Three-fold Approach towards Increased Assurance Levels for
Interactive Systems: A Flight Control Unit Case Study. (2016) In:
International Conference on Human-Computer Interaction in
Aeronautics (HCI'Aero 2016), 14 September 2016 - 16 September
2016 (Paris, France).

Open Archive Toulouse Archive Ouverte

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/24685

A Three-fold Approach towards
Increased Assurance Levels for Interactive Systems:

A Flight Control Unit Case Study
C. Fayollas2,3, J.-C. Fabre3, P. Palanque2, M. Cronel2, D. Navarre2, Y. Deleris1

1 AIRBUS Operations, Toulouse, France
2 ICS-IRIT, Université de Toulouse, France

3 LAAS-CNRS, Université de Toulouse, France
(cronel, fayollas, navarre, palanque)@irit.fr, Yannick.deleris@airbus.com, Jean-Charles.Fabre@laas.fr

ABSTRACT
Interactive cockpits have been used since the early 00’s in
many aircraft cockpits, but the use of interactivity still
remains limited to non-critical functions even in the most
recent aircrafts. Indeed, engineering such interactive
systems is still a challenge and their engineering has not
reach the Design Assurance Level required for critical
functions. In interactive cockpits, interaction takes place
through graphical input devices and keyboards (such as the
Keyboard Cursor Control Unit in Airbus family) while the
behavior of the User Interface (UI) must be compliant with
the specifications defined in ARINC 661 standard. The
tool-supported three-fold approach presented in this paper
proposes means for increasing the assurance level of
interactive systems. The approach includes a formal
description technique for describing each component of an
interactive system (detection and prevention of
development faults), a command and monitoring technique
dedicated to interactive systems components (detection of
natural faults) and a segregation runtime environment
(prevention of faults propagation) We report on the
implementation of a Flight Control Unit (FCU) panel using
this approach, inspired by the FCU of the A380.
Keywords
User Interfaces, Interactive cockpits; model-based
development, dependability
INTRODUCTION
In classical cockpits (such as the glass-cockpit [14]
introduced by Airbus in the early 80’s) input from pilots
takes place through physical objects such as knobs, buttons,
side stick, … while output is distributed on digital displays
and dials each of them being managed by dedicated
hardware. In this generation of cockpits, input and output
are processed in an independent manner leaving the
connection between them to the pilot (through cognitive
processing usually supported by the collocation of input
and output devices in the cockpit). Dependability of these
cockpits is mainly addressed by formal description
techniques (for fault prevention) and redundancy (for fault
tolerance) which (during operation) enables pilots to enter

information via multiple input devices and receive
information through multiple redundant displays.
With the introduction of the ARINC 661 specification [2]
in the 00's, the new generation of aircraft (e.g., Airbus
A380, A350 WXB, Boeing 787 …) features graphical user
interfaces (GUI) in their cockpit. On the user side, these
graphical interfaces offer integrated management of input
and output through graphical devices, interactive widgets
(radio buttons, text boxes …) very similar to the ones
available in standard interactive systems (e.g., office and
home computers). On the technical side, such interfaces
require complex software components (such as windows
managers) to connect input devices to interactive
components on the graphical displays. This technical
complexity calls for specific methods and tools for
engineering such interactive systems and this is why GUIs
in interactive cockpits are currently only used for non-
safety-critical functions.
The use of graphical interfaces in the cockpit brings a lot of
advantages such as increasing the upgradability of the
cockpit, decreasing pilots’ workload or improving
bandwidth between flying crew and the cockpit. For all of
these reasons, aircraft manufacturers (such as Airbus) are
studying the possibility of replacing hardware control
panels by graphical interfaces, even for safety-critical
functions. This raises the issue of the dependability
increase of graphical interfaces and the challenge is now to
reach the same level of dependability for them as the one of
previous generation of cockpits. Even in the field of non-
critical systems reliability of interactive application is
clearly an issue, usually handled by manufacturers through
repetitive patches and by users through regular reboots. To
increase the development assurance level of interactive
systems, we proposed a three-fold approach based on the
use of formal description techniques to detect and remove
development faults [8], software patterns for detecting
natural faults [4] and segregation of hardware and software
for avoiding faults propagation [1].
The paper is structured as follows: next section details the
issues raised by engineering interactive systems and outline
the solutions proposed in this paper. Section 3 introduces
the case study that is used throughout the paper to
demonstrate the applicability of the approach. It is a
“guiding thread” to explain the proposed approach and to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

make it more concrete. The fourth section provides an
overview of the various components of the approach
dedicated to the development of reliable and fault-tolerant
interactive systems. Section 5 describes the implementation
of the approach that is compliant with ARINC 653
specification. The last section concludes the paper and
highlights perspectives and future work.
PROBLEM SPACE AND OVERVIEW OF THE
CONTRIBUTION
Failure Modes Taken Into Account
Concretely, improving development assurance level of
interactive systems aims at avoiding four possible failures
as required by the European Aviation Safety Agency CS-25
(Certification Specifications for large aeroplanes [6]):
x Loss of control: loss of function so that control (from

crew member to aircraft systems) is not performed.
x Erroneous control: malfunction so that control is

performed in an inappropriate manner (wrong control,
control sent with a wrong data or unexpected control sent
without crew member action).

x Loss of data display: loss of function so that the data
display (from aircraft system to display for crew member)
is not performed.

x Erroneous data display: malfunction so that the data
display is performed in an inappropriate manner or
unexpected change of data display without the aircraft
system asking for it. In both cases, the wrong data display
may be misleading to crew members.

Considered Fault Model
In this paper, we consider that the failures presented above
can be caused by several type of faults. These type of faults
constitute the fault model that encompasses software faults
such as design faults during the system development and
physical faults in particular transient single or multiple bit-
flips caused by electromagnetic fields or radiation [18]. The
evolution of modern IC components may lead in the next
future to a higher probability of physical faults in operation.
Although the recommendation for avionics systems is 100
FITs over 25 years lifetime, the current Deep Sub-Micron
(DSP) technology may lead to a failure rate up to 1000
FITs, only during 5 years operational life time [19]. This is
major worry in the avionics industry since this tendency
has two bad sided effects, i) the reduction of the life time of
the systems and ii) the increase of the failure rate due to
hardware faults. In addition to this, the complexity of the

stack of software layers may lead to a large number of
residual software faults impacting the software.
Overview of the Contribution
In this paper, we focus on the interactive system
dependability as a computer-based systems; human errors
during operation are out of scope of this work. Although
human errors can be an important source of problems in
avionics, human reliability aspects must be considered
independent from the dependability of the cockpit platform.
Furthermore, development software faults and natural
faults in operation that we considered in this study are not
influenced by operator’s behavior.
This paper presents a three-fold approach targeting at
improving development assurance level of interactive
systems. First, at development time the UI and all its
underlying software components are described using a
formal description technique dedicated to the formal
modelling of interactive systems. This approach (see Fig. 2)
has been improved over the years and already applied in the
area of interactive cockpits [5] and targets at detecting
faults made at development time by formal analysis of the
models. Second, the approach embeds the COM/MON [23]
design pattern for detecting natural faults occurring during
operation (e.g., multiple bit flips [18]). Third, we propose a
fault tolerant architecture based on the ARINC 653
standard, more precisely on an IMA (Integrated Modular
Avionics) kernel providing time and space partitioning to
avoid propagation of faults from one faulty component to
another one.

Fig. 2. Complementary approaches to increase development assurance
level of interactive systems

CASE STUDY: THE FCUS APPLICATION
Interactive Cockpit Architecture
The interactive Control and Display System (CDS) of the
Airbus A380 is composed of 8 outputs devices called DUs
(Display Unit) and 2 input devices (called KCCUs
(Keyboard and Cursor Control Unit) which gather in the
same hardware component a keyboard and a trackball (see
Fig. 1). A DU device is composed of a LCD screen, a
graphics processing unit and a central processing unit

Segregation

The approach
in the paper

Formal
Methods

COM/MON
design pattern

Fig. 1. Simplified architecture of an interactive cockpit (compliant with the ARINC 661 standard) implementing the FCUS application

running an ARINC 653 [1] operating system kernel. The
DUs are connected together and with the KCCUs through
four segregated and redundant CANs networks (Controller
Area Network). The DUs are connected to the aircraft
systems through the AFDX network (Avionics Full DupleX
switched Ethernet). The UA (User Application) is the
interactive part of the avionics functions belonging to the
aircraft systems.
The interactive system architecture in the cockpit (depicted
in Fig. 1) and the interactive applications are based on the
ARINC 661 specification [2] which specifies, first the
communication protocol between the CDS and the aircraft
systems and second, the software interface of interactive
objects (called widgets) which can be buttons, editboxes,
checkbuttons, ... as in standard user interfaces.

Fig. 3. Snapshot of the FCUS application (left: EFIS CP ; right: AFS CP)

The Flight Control Unit Software Application
In the Airbus A380, the Flight Control Unit is a hardware
panel (i.e. several electronic devices such as buttons, knobs,
displays …) providing two services: one managing aircraft
information called EFIS (Electronic Flight Information
System) and the other one managing the autopilot called
AFS (Auto Flight System). Several of the actions that can
be achieved by the pilot through the use of the Flight
Control Unit are critical. Therefore, the Flight Control Unit
is a good candidate when considering the replacing of
critical hardware panel by graphical interfaces.
We use as a case study an interactive software version of it,
providing the same services. This application is called
FCUS (for Flight Control Unit Software) and is composed,
as shown in Fig. 3, of two interactive pages:
x The Electronic Flight Information System Control

Panel (EFIS CP) which allows configuring piloting and
navigation displays.

x The Auto Flight System Control Panel (AFS CP)
which allows the setting of the autopilot states and
parameters.

The FCUS application is composed of 123 widgets of 11
different types that are quite representative of the 77
widgets types defined by the ARINC 661 specification [2].

Interactive system Functioning
To understand the functioning of the FCUS application, we
take the concrete scenario of a pilot engaging a new aircraft
heading (the direction pointed by the aircraft) on the FCUS.
In this case study, we will more particularly focus on the
generic part of the interactive system; our main interest is
thus to ensure that the CDS (server and widgets in Fig. 1)
of the interactive system processes correctly input events
from crew members, and send graphical commands to the
LCD screen according to the data received from the UA.
Sequence diagrams are really good candidates to identify
all the functions and elements of a system; they helps in
understanding the system functioning and enables the
identification of the function which, in case of failure, may
lead to one of the failure modes presented in previous
section. They thus support both the system formal
development and the application of the COM/MON
approach.
The sequence diagram of the engagement of a new aircraft
heading is presented in Fig. 4. When the autopilot is active
and in mode Heading/Vertical-Speed, it is programmed to
maintain the heading chosen during the creation of the
flight plan. If the pilot needs to modify the value of the
aircraft heading during the flight, he/she can use the FCU
application as the following:
1) The pilot clicks on the heading_ebn EditBoxNumeric,

the server processes the KCCU event and sends it to the
concerned widget (the heading_ebn) that processes it
by opening itself and sending a rendering update
notification to the server.

2) The pilot types the desired value. The server forwards
the event to the heading_ebn that updates its value and
asks the server for a rendering update.

3) The pilot validates the value by pressing the validation
key. The server forwards the event to the heading_ebn
that processes it and asks the server for a rendering
update.

4) At the end of this processing, the heading_ebn sends
an A661_STRING_CONFIRMED(newValue) event to
the UA. The UA processes this event by updating the
temporary heading value, checking its consistency and
sending a validation to the heading_ebn.

5) The pilot move the cursor to the engagement button, the
server processes the events and updates the cursor
rendering.

6) The pilot clicks on the heading_ppb
PicturePushButton to engage the new heading value, the
server processes the KCCU event and sends it to the
concerned widget that processes it and sends a rendering
update notification to the server.

7) At the end of the process of the click, the heading_ppb
sends an A661_EVT_SELECTION event to the UA. The
UA processes it, engages the new heading value and
notifies the pilot of this engagement by asking the

heading_ebn to change its text color, the
heading_ebn processes this and sends a rendering
update notification to the server.

A THREE-FOLD APPROACH TOWARDS INCREASE
ASSURANCE LEVEL FOR INTERACTIVE SYSTEMS
This section details the proposed approach. Fig. 5 positions
our contribution with respect to the abstract diagram
presented in Fig. 2. The interactive system development is
achieved through the use of the ICO formal description
technique; the COM/MON design pattern is applied to the
CDS and the segregation is achieved through the use of
ARISSIM, an ARINC 653 simulator.

Fig. 5. Instanciation of the complementary approaches to increase
development assurance level of interactive systems

A Formal Description Technique for Detection and
Prevention of Development Faults
To prevent the occurrence of software development faults,
we propose the use of a formal-description technique
dedicated to the specification and verification of interactive
systems: the ICO (Interactive Cooperative Objects)
formalism [17]. This formalism uses high-level Petri nets
[12] to describe the behavioral aspects of the interactive
system and concepts borrowed from the object-oriented
approach to describe the structural and static aspects of the
interactive system. This formalism enables the handling of
the specific aspects of interactive systems such as their
event driven nature. Its main interest is to provide a way for
the interactive system developer to create non-ambiguous
and concise models compliant with the system
specifications.
The ICO formalism is supported by a tool named PetShop
providing means to develop ICO models and formally
verify properties over them [21] and also providing a
runtime support for models’ execution. As the models are
directly interpreted at run-time by this tool, the verified
properties will be still valid at execution time. An overview
of this preventive approach is done in [11] and its
application for interactive cockpits is described in [5].
A COM/MON Approach for Detection of Natural Faults
For the detection of natural faults affecting the system
during operations, we propose an approach relying on the
conventional COM/MON architecture developed for fly-
by-wire functions [23] (also known as self-checking
architecture). The COM/MON approach relies on a
command (COM) channel and a monitoring (MON)
channel. The command channel ensures the function
allocated to the classical component and the monitoring
channel ensures that the command channel operates
correctly. This architectural fault tolerance design pattern
thus enables the detection of inconsistencies due to natural
faults and is also valid for certification authorities.
More particularly, we apply it to the software elements of
the CDS (cf. server and widgets in Fig. 1) thus leading to a
self-checking CDS. In that case, the COM is then the
classical interactive component, realizing the interactive
functions. The MON is responsible for the validation of the
COM outputs and is able to send error notifications in case
of inconsistency.
The challenge in the COM/MON approach is the definition
and implementation of the monitoring component. We
propose to define it as a property checker. The monitoring
component is thus responsible for the verification of several

The approach
in the paper

COM/MON
CDS

ICO formal description
technique

ARINC 653
segregation

serverkccu screen heading
ebn

heading
ppb

mouseClicked(dx,dy)

processMouseClicked(dx,dy)

updateCursorRendering

findWidgetAt(x,y)

processMouseClick(x,y)

updateRendering
updateRendering

pilot

clickMouse

updateRendering
updateRendering

seq

updateRendering
updateRendering

updateRendering
updateRendering

mouseMove(dx,dy)

processMouseMove(dx,dy)

updateCursorRendering

moveMouse

mouseClicked(dx,dy)

processMouseClicked(dx,dy)

updateCursorRendering

findWidgetAt(x,y)

processMouseClick(x,y)

updateRendering
updateRendering

clickMouse

updateRendering
updateRendering

pressValidationKey
pressValidationKey

processValidationKey

pressNormalKey

processNormalKey(code)

pressNormalKey(code)

processNormalKey(code)

1

2

3

5

6

7

processNormalKey(code)

Widgets

4

Fig. 4. Sequence diagram of the engagement of a new aircraft heading

assertions associated to the interactive objects organization
and their semantics in operational context. These assertions
are associated in operation to runtime monitors. The
identification of the assertions based on i) a failure mode
analysis (using a FMECA [7]), ii) formal definition of the
assertions associated to items failure modes and iii) the
definition of the associated assertion monitors. A full
account of the process leading to the identification of the
assertion and their monitors is given in [10].
To deal with crash faults but also to handle its fail-silent
behavior and enable fault recovery, the self-checking CDS
must be replicated, due to space constraints, we do not
focus on these aspects in this paper and more information
about it can be found in [11].
A Segregated Architecture for Prevention of Fault
Propagation
The segregation and error confinement relies on isolating
the MON component from the COM component in
separated error confinement areas called partitions, thus
preventing fault propagation between the two components.
The COM, composed of the classical CDS is located in a
first partition while the MON, composed of all the assertion
monitors is located in another partition.
The implementation relies on a basic ARINC 653 [1]
operating system. ARINC 653 (Avionics Application
Standard Software Interface) is the specification of a real-
time operating system providing Time and Space
Partitioning (TSP) for safety-critical avionics systems.
Multiple applications of different software criticality levels
(Development Assurance Levels – DAL [8]) can run on the
same hardware in the context of Integrated Modular
Avionics (IMA). TSP means that each partition is allocated
a time budget and has its own protected memory space.
TSP provides error confinement between executable code
running in two different partitions. The APEX (APplication
EXecutive) defines the API on this runtime support. Within
each Partition, multitasking is allowed. The APEX API
provides services to manage partitions, processes and
timing aspects, as well as partition/process communication
and error handling. The APEX defines communication
channels called blackboard and buffer inside a partition,
and called sampling and queuing between partitions. They
rely on two communication policies:

x Sampling and Blackboard only keep track of the last
message and a read operation does not erase the
information.

x Queuing and Buffering implement a conventional
FIFO queue. All the messages produced by the sender are
received by the receiver.

Fig. 7 depicts the architecture of the mapping of our
COM/MON architecture within an ARINC 653 operating
system: the interactive part of appli1 is running in partition
P1 on DU1, its monitoring counterpart MON_appli1 is
running in P1 on DU2. A backup implementation of the
former, named appli 2, can be implemented in the same
way (for the replication purposes explained in previous
section), but its COM part is running on DU2 and its MON
part running on DU1.

Fig. 7. Simplified overall physical architecture

The pilot interacts with a given application through the
KCCU. All inputs are delivered to both COM and MON
components running on 2 different displays using a reliable
broadcast protocol. The inputs are processed by the COM
whereas the MON keeps them for later verification. The
action performed by the COM, i.e. corresponding to the
behavior of a given widget, produces an output that is
delivered to the UA. The UA also receives the results of the
check from the MON, before processing the results of the
COM, i.e. an A661WidgetEvent.
The major time frame cycle for the partitions running on a
DU must be lower than 33 ms to ensure correct rendering
on the display [22]. In practice, the drift between the two
clocks has a bounded temporal impact, just one cycle to
validate an A661WiggetEvent. An extensive study of this
problem can be found in [16].

Fig. 6. Excerpt of the ICO model of an EditBoxNumeric behavior

APPLICATION OF THE APPROACH ON THE FCUS
CASE STUDY
Formal Description of the FCUS
The FCUS application is developed using the ICO formal
description technique presented in previous section.
Therefore, all the software parts (white boxes in Fig. 1) of
the CDS (server and widgets) are developed using the ICO
formalism and following the specifications of the
ARINC 661 standard [2]. The server is composed of two
ICO models, one responsible for the hierarchy of widgets
(called SceneGraph) and the other one responsible for all
KCCU event management. Each widget is composed of an
instance of an ICO model describing its behavior. Fig. 7
depicts an extract of an EditBoxNumeric (EBN)
behavior:
1) The actual state of this EBN is: i) waiting for a user

action (token in place Idle), ii) visible (token in place
Visible) and iii) active (token in place Enabled). In this
case, if the EBN receives a click (token in place
SIP_processMouseClicked), it will process it (transition
processMouseClicked1 producing a token in place
editBoxClicked).

2) The EBN needs then to ask the server for a special mode
called CagingMode (transition openingCaging) in which
the user can only interact with this one widget, using the
keyboard. When the server has activated this mode
(token in place cagingOpened), the EBN switches to
edition mode (token in place Editing).

3) The EBN is then able to process any keyboard input
from user (token in place SIP_processNormalKey) in
order to update the editing value.

4) When the user validates the editing value by pressing the
validation key (token in place
SIP_processValidationKey), the EBN asks the server for
closing the CagingMode (transition
validation_CloseCaging).

5) The EBN checks the format of the new value and sends
(if correct) an A661_STRING_CONFIRMED event
along with the new value.

6) The EBN is then waiting for the validation of this value
by the UA (token in place waitingForUA). When the
EBN receives the UA validation (token in place
SIP_setEntryValidation), the EBN switches to the Idle
mode with the new value.

Due to lack of space, we only depicted in Fig. 7 the normal
behavior of the EditBoxNumeric. All the arcs that are not
completely depicted in the Figure are responsible for all
abnormal behaviors. Fig. 7 only shows 24 places, 9
transitions and 42 arcs while the whole EditBoxNumeric
model contains about 65 places, 60 transitions and more
than 200 arcs.
The complete modeling of the FCUS case study is
composed of the modeling of the server (composed of two
ICO models) and a total of 12 types of widgets. These
widgets are representative of the 77 defined in the ARINC
661 standard and a total of 123 instances of them are
running in the final application.

Application of the COM/MON Approach to the FCUS
As explained in previous section, the challenge while
applying the COM/MON approach is the definition and
implementation of the monitoring component. A presented
previously, a safety analysis of the FCUS is the starting
point of the development of the MON component. This is
based on an analysis of the system functioning using
sequence diagrams such as the one presented in Fig. 4. The
analysis is done following the FMECA process [7] and is
achieved through the completion of a FMECA table (see
excerpt in Fig. 8). Each row of the FMECA table is leading
to the definition of an assertion describing the correct
behavior of the function studied.
To exemplify the FMECA table and the associated
assertions and assertion monitors, we have selected one
row of the FMECA table, typical of all the widgets ones.
This raw is depicted in Fig. 8 and corresponds to the
management of a KCCU event by a widget; here, it
corresponds to the management of a mouse click by a
PicturePushButton. We omit here the potential causes (fault
model early defined) and the risk level (replaced by the
consequence classification, corresponding to the failure
mode classification presented earlier). Each row of the
FMECA table corresponds to one function (item) of the
widget and identifies the three failure modes of this
function:
x FM1: no execution.
x FM2: erroneous execution.
x FM3: unexpected execution.

1 2 34 5 6

Item Failures modes Local effects Upper-level effects Consequence
classification

ppb.processMouseClicked
Process the click, send the
corresponding
A661_EVT_SELECTIONto
the UA and send an update
notification to the server

No execution
ppb.processMouseClicked.FM1

Upon the receipt of a kccu input event, the
widget does not send any
A661_EVT_SELECTION

The pilot command is not sent to
the aicraft system Loss of control

Erroneous execution
ppb.processMouseClicked.FM2 Upon the receipt of a kccu input event, the

widget sends a wrong A661_Event(val)
A wrong command is sent to the
aircraft system

Erroneous
control

Unexpected execution
ppb.processMouseClicked.FM3

The widget sends an
A661_EVT_SELECTION without
receiving any kccu input event

A command is sent t the aircraft
system without any user action

Erroneous
control

Fig. 8. Excerpt of the FMECA tables: process mouse click in a PicturePushButton

The assertion describing the correct behavior of the
management of a mouse click by a PicturePushButton is
depicted in Fig. 10.
Finally, each assertion is leading to two assertion monitors;
the first one allowing to detect the failures modes FM1 and
FM2 and the second one enabling to detect the failure mode
FM3. The two assertion monitors for the management of a
mouse click by a PicturePushButton are depicted in Fig. 9.
For the FCUS case study, a complete FMECA has been
done to identify the major risks and derived the

corresponding error detection and recovery mechanisms to
ensure safety. The complete FMECA table (for the server
and the widgets) enabled the identification of lead to the
identification of potential failures that are not all critical,
leading to the identification of around 30 critical assertions.
A Segregated Runtime Environment for the FCUS
Our first mockup (see Fig. 11) has been developed on a
network of 3 computers running UNIX and ARISSIM, an
ARINC 653 simulator (see next subsection). PC1 runs a
JVM and PetShop executing all the ICO models of the
COM component in a partition, PC2 runs the C
implementation of MON component in another partition.
The UA part of the interactive system (running in PC3) is
implemented in the same way than the COM component.
However, since the server handling the widgets and the
widgets are the focus in this paper, we do not detail the
models for the UA that are used as test drivers for our
mockup.

Fig. 11. Mockup SW and HW architecture.

A Runtime Support: ARISSIM, an ARINC 653 Simulator
Our ARINC 653 simulator has been developed on UNIX. It
implements the TSP concepts and the mechanisms for
partition communication. The functions provided to the
partitions are not limited to the APEX API as the simulator
is more a tool for proof of concepts than a real simulation
environment. The UNIX system call interface is accessible,
the development of applications can be done in C/C++, and
we can launch a Java Virtual Machine in a partition. The
setup of a simulation is described in two configuration files
(one for communication channels/ports, on for partitioning
temporal specification).
Space partitioning, i.e. memory management and
protection, relies on UNIX and is implemented using a
wrapper of the UNIX fork system call. The fork
mechanism allocates a complete independent page table for
each process newly created. A partition is a UNIX multi-
threaded process.
The partition execution time is parameterized but fixed
during the execution of the simulation. Time partitioning is
implemented using UNIX signals (SIGSTOP and SIGCONT).
These two signals are uncatchable and thus always lead
respectively to a pause of the process (move process in
waiting status) and to the continuation of the process (move
process to ready status).
Inter-partition and intra-partition communication channels
are implemented on UNIX sockets. The Queuing mode is
based on a stream socket point-to-point communication to

A1.AM1: ppb.processMouseClicked.assert
//MON state
boolean w.visible, w.enabled;
// ppb.processMouseClicked.assert
int errorDetected = -1;
if (functionCall == {source, w, processMouseClicked,
parameters}){

if (w.visible == true && w.enabled == true){
boolean timeOut = startTimer();

}
}
while (!timeOut){
 if (! timeOut &&
widgetEvent.contains({w,A661_EVT_SELECTION,∅}){

errorDetected = 0;
sendError(functionCall, errorDetected);

}
}
if (timeOut && errorDetected == -1){

errorDetected = 1;
sendError(functionCall, errorDetected);

}

A1.AM2: A661_EVT_SELECTION.assert
//MON state
boolean w.visible, w.enabled;
// ppb.processMouseClicked.assert
int errorDetected = 0;
if (widgetEvent == {w,A661_EVT_SELECTION, ∅}){

if (functionCall.contains({source, w, processMouseClicked,
parameters}) && w.visible == true && w.enabled == true){

errorDetected = 0;
sendError(functionCall, errorDetected);

}else{
errorDetected = 1;
sendError(functionCall, errorDetected);

}
}

Fig. 9. Implementation of the assertion monitors in C for the assertion A1:
process mouse click in a PicturePushButton

A1: Process mouse click in a PicturePushButton
Let w be a PicturePushButton,
let f = {source, target, functionName, parameters} be a function
call,
let We = {source, eventName, parameters} be a widget event

f = {source, w, processMouseClicked, parameters} �
w.visible = true � w.enabled = true
�
We = {w, A661_EVT_SELECTION, ∅}
Fig. 10. Formal definition of the assertion A1: process mouse click in a
PicturePushButton

ensure that every message sent is received. Sampling mode
is implemented in the same way but only keeps the last
message sent, and the reading is non-destructive.
The simulator is open-source and available for use through
a Web link with its documentation [3].
COM and MON Implementation
The COM component is composed of ICO models
instances that are executed at runtime using PetShop,
running on top of a Java Virtual Machine (JVM).
The MON component needs to be implemented in a
diversified way from the COM component to deal with
remaining software faults in the underlying runtime support
(JVM and PetShop). The MON component is thus
implemented in C for obvious efficiency reasons. As
depicted in Fig. 12, it is composed of a state image (State
Image), responsible to store and reconstruct within the
MON component the state of the COM component (for
instance, the widget tree), that is used as an oracle by each
assertion monitors (AM1 … AMn). Each assertion monitor
is implemented as a C function. The verification relies on
the state image, some observable items coming from the
COM through ARINC653 communication channels and all
the KCCU events.
This implementation allows us to address both the issue of
fault confinement (by means of the ARINC 653
architecture) and of diversity between COM and the MON
while focusing on faults specific to interactive systems
even though they remain at widget and server levels.

Fig. 12. Software architecture of the MON component

COM & MON Communication
Communication is achieved through the communication
facilities provided by the ARINC 653 layer. Two
communication channels are opened between the COM and
the MON: a sampling channel and a queuing channel. Any
information that is required for the verification of an
assertion is transmitted through one these channels. The
type of channel used depends on the data transmitted. The
sampling channel is used when the last updated value of a
given variable is required (for instance for the verification
of data value); the queuing channel is used for the
transmission of events (for instance all the widget events).
Hooks are needed to capture the appropriate data for the
verification; the hooks can be inserted in the
implementation of the models or directly in the models
runtime support. In both cases, observable items (event or
data) are sent to the MON through an inter-partition

communication channel. In our experiment, hooks are
implemented as a Java class, using the models runtime
support to observe the changes in the ICO models.
CONCLUSION AND PERSPECTIVES
We have proposed a three-fold approach for the
development of dependable interactive systems, based on
the use of a formal description technique for their
development together with a segregated fault tolerant
software architecture. The proposed fault-tolerant approach
is based on a COM/MON architecture that has already
proven its efficiency for improving the dependability and
certification of fly-by-wire functions [23]. The
implementation targets interactive cockpits and is
compliant with ARINC 661 and ARINC 653 specifications.
We have implemented a mockup for this approach ensuring
that moving from analog interactive systems to digital
systems does not decreases the dependability level of such
interactive systems. The current implementation is a proof
of concept and should be followed by a real
implementation in an industrial context to perform
performance evaluation and optimizations.
Previous work has been done in each of the three elements
of the approach (formal description techniques, fault-
tolerant mechanisms and segregation) but they have not
been integrated in a single framework.
The paper has demonstrated that the approach is applicable
to a large scale study. So far, this is the only one that has
been performed even though the formal description part has
been extensively applied to multiple User Applications and
even to the user interface server [5] for more than 10 years.
The potential introduction of interaction techniques more
sophisticated (than the WIMP ones proposed by the
ARINC 661 standard) raises additional difficulties (e.g.,
dynamic instantiation of input devices) that have been
presented (together with some solutions) in [13]. The
approach is resource consuming, requires deep involvement
of expert users but the availability of tools such as PetShop
and ARISSIM provide extremely valuable support. This
consumption of resources is acceptable in a safety critical
context and is not higher than current approaches such as
the ones currently used in the avionics domain (e.g.,
SCADE and SCADE Display).
On the perspectives side, it is important to note that
whatever the implementation of the CDS is, analog or
digital, with fault tolerance or not, perception, decision and
actions from the flying crew are of primary importance.
The user interface, the user interactions and the underlying
software mechanisms keep the operator in the loop. This
means that the flying crew is in charge of triggering
commands (using KCCU and physical knobs) and
assessing the current state of the aircraft (mainly based on
perceived information on displays). In the field of safety
critical systems the Human Factor has been most of the
time perceived as the weak element of the Organization-
Operator-Technological System triangle and as the main
source of errors and failures. Indeed, as reported in [15]

79% of fatal accidents in aeronautics in 2006 have been
attributed to human error. It is important to note however,
that such perception has evolved over the last decade and
that some authors represent the human as the last defense
against organizational and technical failures [20]. Dealing
with the human in assessing potential source of failures,
requires looking at the human in a generic term as well as
looking at the human in the specific case of the tasks and
goals he/she has to achieve. This aspect has not been
presented in this paper but is of the highest importance as
dependability issues have to be addressed at global socio-
technical system level. Indeed, the explicit representation
of operators’ tasks makes it possible to identify training
needs, workload and added complexity in presence of
system or human error. However, dependability, usability
and user experience are usually conflicting thus requiring
careful management of the trade-offs when interactive
critical systems are designed as demonstrated in [9] by the
same research team in our joint-project with Airbus.
ACKNOWLEDGMENTS
This work was partly funded by Airbus under the contract
R&T Display System X31WD1107313.
REFERENCES
1. ARINC 653. Avionics Application Software Standard

Interface. ARINC Specification 653-2. AEEC, 2006
2. ARINC 661. Cockpit Display System Interfaces to User

Systems. ARINC Specification 661-5. AEEC, 2013
3. ARISS: http://makrin.github.io/ARISS/
4. Avizienis A. et al. Basic concepts and taxonomy of

dependable and secure computing’, IEEE Trans.
Dependable Secur. Comput., Vol. 1, No. 1, pp.11–33.
2004

5. Barboni E. et al. Model-Based Engineering of Widgets,
User Applications and Servers Compliant with ARINC
661 Specification. Int. Conf. on Design Specification
and Verification of Interactive Systems (DSV-IS 2006),
pp. 25-38, Springer Verlag.

6. CS-25 – Amendment 14 - Certification Specifications
and Acceptable Means of Compliance for Large
Aeroplanes. EASA, 2013

7. Department of the Army, TM 5-698-4, Failure Modes,
Effects and Criticallity Analysis (FMECA) For
Command, Control, Communications, Computer,
Intelligence, Surveillance, and Reconnaissance (C4ISR)
Facilities, 2006.

8. DO-178C / ED-12C, Software Considerations in
Airborne Systems and Equipment Certification,
published by RTCA and EUROCAE, 2012.

9. Fayollas C. et al. An Approach for Assessing the Impact
of Dependability on Usability: Application to
Interactive Cockpits. EDCC 2014: 198-209

10. Fayollas C. et al. A Software-Implemented Fault-
Tolerance Approach for Control and Display Systems in
Avionics. IEEE 20th Pacific Rim International
Symposium on Dependable Computing (PRDC2014).

11. Fayollas, C. et al. Interactive Cockpits as Critical
Applications: a Model-Based and a Fault-Tolerant
Approach. In Int. Journal of Critical Computer-Based
Systems, Inderscience Publishers, 2013

12. Genrich, H.J. Predicate/Transitions Nets. High-Levels
Petri Nets: Theory and Application. pp. 3–43. Springer,
Heidelberg, LNCS, Springer (1991)

13. Hamon-Keromen A. et al. Formal description of multi-
touch interactions. EICS 2013: 207-216

14. Knight J. The Glass Cockpit. Computer, vol.40, no.10,
pp.92,95, Oct. 2007

15. Krey N. (2007) The Nall Report 2007: Accident Trends
and Factors for 2006. AOPA Air Safety Foundation.

16. Lauer M. et al. Worst Case Temporal Consistency in
Integrated Modular Avionics Systems. High-Assurance
Systems Engineering (HASE), 2011 IEEE 13th Int.
Symp. on, pp.212,219, 10-12 Nov. 2011

17. Navarre D. et al. ICOs: a Model-Based User Interface
Description Technique dedicated to Interactive Systems
Addressing Usability, Reliability and Scalability. Trans.
on Computer-Human Interaction, ACM, Vol. 16(4), p.
1-56, 2009.

18. Normand E. Single-event effects in avionics. Nuclear
Science, IEEE Transactions on, April, Vol. 43, No. 2,
pp.461–474. 1996

19. Regis D. et al. IC components reliability concerns for
avionics end-users. Digital Avionics Systems
Conference IEEE/AIAA 32nd pp.2C2-1,2C2-9, 5-10
Oct. 2013

20. Sandom C. Success and failure: human as hero --
human as hazard. In Proc. of Australian workshop on
Safety critical systems and software and safety-related
programmable systems, Vol. 86. Australian Comp.
Society, Inc., Darlinghurst, Australia, 79-87.

21. Silva J. L. et al., Analysis of WIMP and Post WIMP
Interactive Systems based on Formal Specification. In
Int. Workshop on Formal Methods for Interactive
Systems (FMIS 2013), Elsevier, 2013.

22. Card S. K. The Keystroke-Level Model for User
Performance Time with Interactive Systems. Commun.
ACM 23(7): 396-410 (1980)

23. Traverse P., Lacaze I., and Souyris J. Airbus fly-by-
wire: a total approach to dependability. Proc. IFIP
World Computer Congress, pp.191–212. 2004

http://makrin.github.io/ARISS/

