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ABSTRACT2

For naive robots to become truly autonomous, they need a means of developing their perceptive3
capabilities instead of relying on hand crafted models. The sensorimotor contingency theory4
asserts that such a way resides in learning invariants of the sensorimotor flow. We propose a5
formal framework inspired by this theory for the description of sensorimotor experiences of a naive6
agent, extending previous related works. We then use said formalism to conduct a theoretical7
study where we isolate sufficient conditions for the determination of a sensory prediction function.8
Furthermore, we also show that algebraic structure found in this prediction can be taken as a9
proxy for structure on the motor displacements, allowing for the discovery of the combinatorial10
structure of said displacements. Both these claims are further illustrated in simulations where a toy11
naive agent determines the sensory predictions of its spatial displacements from its uninterpreted12
sensory flow, which it then uses to infer the combinatorics of said displacements.13

Keywords: Sensory prediction, sensorimotor contingencies, interactive perception, bootstrapping, developmental robotics.14
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1 INTRODUCTION

Autonomous robots need possess the cognitive capabilities to face realistic and uncertain environments.17
Classical approaches deal with this problem by giving them a priori models of their interaction with their18
environment. These rely on carefully crafted models of the agent’s body (Mutambara and Litt, 1998), its19
sensors, the environments it will encounter and the nature of the tasks it is setting to perform (Marconi20
et al., 2011). But said models are notoriously difficult to obtain (Lee et al., 2017), by definition incom-21
plete (Nguyen et al., 2017) and often fail to generalize to interactions varying in unknown spatial and22
temporal scales. As it has been previously studied, models of an agent sensorimotor apparatus (Censi and23
Murray, 2012) or of a mobile robot interaction with its environment (Jonschkowski and Brock, 2015) can24
alternatively be learned. In particular, these capabilities crucially depend on the robot correctly learning its25
perception in that it represents the interface layer between the raw readings of its sensors and its higher26
level cognitive capabilities, e.g. decision making or task solving layers.27
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While there certainly is an established practice of mostly treating perception as processing the sensory28
signal, multiple cues argue that perception can only emerge from the joint sensorimotor experience (Noë,29
2004). The field of interactive perception, reviewed in (Bohg et al., 2017), indeed displays several30
approaches which roughly adhere to this principle. One particular theoretical framework is that of Sensori-31
motor Contingencies Theory (O’Regan and Noë, 2001) (SMCT for short) which asserts that perception is32
the mastery of invariant structures in the sensorimotor flow an agent discovers during its interaction with33
the environment. Their theoretical origin as an abstract, generic cognitive construct lends them desirable34
properties for robotic applications: namely, they could support bootstrapping the learning of perceptual35
capabilities in a way that does not depend on the implementation of the artificial agent considered as well as36
on the environments in which said learning is done. In this regard, it differs significantly from the modern37
developmental approaches supported by Deep Learning (Ruiz-del-Solar et al., 2018) which rely on specific38
structural details of neural networks, i.e. the numeric forms of inputs, outputs and activation of the neurons.39

Early works on SMCT have been shown to lead to discovery of the color spectrum (Philipona and40
O’Regan, 2006) and of the dimensionality of ambient space (Philipona et al., 2003, 2004; Laflaquière41
et al., 2010; Laflaquière et al., 2012) in “naive” agents, which can be extended to that of an internal, path42
independent, notion of space (Terekhov and O’Regan, 2016). We already proposed different contributions43
in this field, successively dealing with peripersonal space characterization (Laflaquière et al., 2015), self-44
contact and body representation (Marcel et al., 2017) and the emergence of a topological representation45
of sensors poses (Marcel et al., 2019). These works, as well as (Laflaquière et al., 2018; Laflaquière46
and Ortiz, 2019), devote a significant effort to providing formalisms suited to make explicit –and, where47
applicable, formally prove– not only the processing required to capture the contingencies, i.e. invariants in48
the sensorimotor flow of the agent, but also the mechanisms by which said contingencies should appear.49
This is an attempt to pinpoint the exact conditions of validity of the proposed processes in order to deliver50
on the promises of genericity of SMCT.51

Many recent contributions drawing from SMCT revolve around sensorimotor prediction in some way:52
the ability to discover a sensorimotor prediction is empirically shown to arise from both the temporal53
structure of the sensorimotor experience (Maye and Engel, 2012) and the spatial coherence of a natural54
visual environment for a sensor based on a retina (Laflaquière, 2017). Moreover, said ability to predict55
sensory outcomes has been shown to provide in robots a basis for an egocentric representation of ambient56
space (Laflaquière and Ortiz, 2019), object perception (Maye and Engel, 2011; Le Hir et al., 2018), action57
selection (Maye and Engel, 2012), motor control (Schröder-Schetelig et al., 2010) and motor sequence58
compression (Ortiz and Laflaquière, 2018). Along the “Bayesian brain” approach, predictive processing is59
even argued to form the mechanistic implementation of sensorimotor contingencies (Seth, 2014). This is60
very much in line with classical findings in cognitive psychology, both those regarding the physiological61
implementations of sensorimotor prediction via efference copies (von Helmholtz et al., 1925; Sperry,62
1950; von Holst and Mittelstaedt, 1950) and how it supports, albeit incompletely, a number of perceptual63
processes (Bridgeman, 1995; Imamizu, 2010; Pynn and DeSouza, 2012; Bhanpuri et al., 2013), as well as64
those supporting ideomotor theory (Stock and Stock, 2004) according to which actions are equated to their65
perceptual consequences from a cognitive standpoint.66

This article follows much of the same approach begun in (Philipona et al., 2003) and subsequently67
developed in e.g. (Marcel et al., 2017; Laflaquière et al., 2018; Laflaquière and Ortiz, 2019; Marcel et al.,68
2019). In particular, it sets out to mathematically describe from an exterior, “objective”, point of view69
some properties of the interaction between the robot and its environment which should appear in its70
sensorimotor flow. To this end we propose a revised formalism building upon the previous instances in71
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these contribution. One notable contribution indeed resides in our proposal remedying their requirement72
of the agent having a fixed base by transposing the location of sensorimotor contingencies in sets of73
“displacements” instead of that of motor or sensory configurations. In accordance with the previous remark74
about genericity, a particular attention is given to the construction of said formalism with assumptions and75
proofs explicitly detailed. Moreover, the bootstrapping aspect is emphasized throughout the work, much76
in the spirit of (Marcel et al., 2017; Marcel et al., 2019), highlighting the distinction between the points77
of view of the agent and of the observer in the description of the problems and an explicit discussion of78
the degree of a priori knowledge given to the agent, in terms of both data and computations available to79
it. There lie two contributions of this article: while the formalism is used to formally describe why and80
how spatial coherence lead to the discovery of sensory prediction very much like alluded to in (Laflaquière,81
2017) and how this sensory prediction encodes spatial structure akin to that of (Terekhov and O’Regan,82
2016; Laflaquière and Ortiz, 2019), it does so with a greater emphasis put on the precise relations between83
the algebraic structures at play and with much weakened assumptions about a priori capabilities of the84
agent, much closer to those put forward in (O’Regan and Noë, 2001). We argue that this formalism unifies85
and extends those found in previous works; that the formal structures its expressive power makes explicit86
(e.g. group morphisms between action and prediction) give a conceptual explanation of results previously87
achieved by more complex means in experimental contexts (Ortiz and Laflaquière, 2018; Laflaquière and88
Ortiz, 2019); and on a somewhat “philosophical” level that it allows for a clearer picture of the applicability89
and function of SMCT in the process of bootstrapping perception via its systematic distinction of points of90
view.91

The paper is organized as follows: to begin with, we introduce in Section 2 all the notations and concepts92
used for describing the sensorimotor experience. On this basis, Section 3 defines the two distinct points of93
view and enunciates generic properties of the sensorimotor experience that motivate the proposed study of94
internal sensorimotor prediction. In particular, the equivalence between the combinatorial structures of95
actions and sensory prediction is proved. Then, some simulations are proposed in Section 4 to assess the96
mathematical formalism through a careful evaluation of each step of the proposed framework. We establish97
that the spatial shifts mediating the sensory experience of a naive agent allow it to determine the sensory98
outcome of particular actions, in particular those corresponding to displacements of the agent. Further,99
we show that the ability to predict said outcomes can be used as a proxy to the hidden combinatorial100
structure of its motor actions. We argue that the theoretical focus adopted in this work provides some new101
valuable insight into the mechanisms supporting these results, as well as several similar findings presented102
in aforementioned related works.103

2 DEFINING A FORMALISM FOR SENSORIMOTOR INTERACTION

This first section aims at expanding several previous results in Interactive Perception as obtained for104
example in (Bohg et al., 2017). These have made use of several classical objects such as the pose (or105
working) space and the forward (either geometrical or sensory) maps, at times rearranging their definitions106
or making them more precise to allow for formal proofs to be derived. Such work is followed upon in this107
contribution, with a somewhat significant overhaul of the formal definitions. This section is thus devoted to108
the definitions of the terms we will use to describe a sensorimotor problem, showing during the exposition109
how they appear in a simple classical example and how they differ from previous theoretical formulations.110
We then leverage these definitions to propose and prove new perceptive bootstrapping algorithms in the111
following section.112
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Figure 1. Illustration of the motor actions effects. The agent actuator states mi are regrouped into its motor
configuration m, while s denotes its sensor output. Both define the internal agent configuration i.e. the
sensorimotor flow the agent has access to. The agent position and orientation in space is captured by τ ,
which together with m makes the absolute configuration b, partially unknown to the agent. Note that one
motor configuration m can be associated to distinct sensory outputs s and s′ provided a displacement in
space from τ to τ ′, thus preventing the existence of a mapping m 7→ s. The agent may also perform an
action a to modify its absolute configuration. One such action a is partially represented, mapping b to
b′ = (m′=m, τ ′), and b′ to b′′. Note that it induces a rigid displacement in the first case, while a change
of posture occurs in the second. Also depicted are the inverse action a−1 of a and the combination a′′
obtained by repeating a twice.

2.1 Motor actions113

As a first step, this subsection is devoted to the introduction of all the notions and definitions of the114
motor side of the proposed sensorimotor framework. After highlighting the limitations of the previous115
approaches, as seen in e.g. (Marcel et al., 2017; Laflaquière et al., 2018), we show how to reparameterize116
the sensorimotor interaction by introducing motor actions. Their definition and properties are then carefully117
discussed.118

2.1.1 A look back to previous formalisms119

Let us consider in all the following an agent endowed with motor and sensing capabilities. In the refer-120
enced previous contributions, the sensorimotor interaction is defined by the internal motor configuration m121
and the sensory configuration s of this agent, which lie respectively into some setsM and S . Both of them122
define the internal agent configuration (m, s), i.e. the sensorimotor flow the agent has access to. There is a123
clear dependency between the sensory and motor configurations that can be captured by the sensorimotor124
maps ψ :M× E → S, such that ψ(m, ε) = s, where ε ∈ E represents the state of the environment. As125
said in the introduction, other contributions already exploited this kind of parameterization (Philipona126
et al., 2003; Laflaquière et al., 2015; Marcel et al., 2017). In all these contributions, only fixed base agents127
are considered, since a single internal motor configuration m ∈ M is only mapped to a single sensory128
configuration s ∈ S for a fixed environment configuration ε.129

To illustrate this point, Figure 1 represents a 2D-agent able to translate itself only along one dimension x.130
This agent is able to move inside an environment made of colored walls thanks to 5 rotating joints whose131
states mi, i = 1, . . . , 5, are captured in its motor configuration m = (mi)i (where the second i subscript132
in (.i)i denotes the collection being taken with i for ranging variable). To begin, let us consider the case133
where m1 and m2 are fixed, so that the agent is only able to move its arm supporting a camera-like sensor134
generating a sensation s, i.e. m is restricted to (m3,m4,m5) only. In such a scenario, one has a fixed base135
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agent for which each motor configuration m can be mapped to one corresponding sensor pose, which is136
itself mapped to a sensation s. This simple statement allows to build structures inM by exploiting only the137
sensorimotor flow (m, s), structures that can be leveraged to build an internal representation of the agent138
body; they can be further refined into a representation of its peripersonal space (Marcel et al., 2017; Marcel139
et al., 2019). In these works, m carries all spatial data, possibly with some redundancy, about the coupling140
between the agent and its environment: the combination of states m and e is sufficient to determine the141
resulting sensory output s (as described by the formal sensorimotor map ψ).142

However, what would happen if the same agent was able to perform translations in its environment? Let143
us now focus on the case where all motor states mi are actually used, as depicted in Figure 1. Indeed, one144
can imagine a case where the agent moves in its environment along the x axis from (external) position145
τ (with internal configuration m) to τ ′ (same m). In this case, the sensor samples two different parts of146
the color wall so that its generated sensations s and s′ from these two different positions are different.147
Then two identical internal configurations m give two different sensations: there is no more mapping148
between m and s, and all the mathematical developments performed in previous works can no longer apply.149
Therefore, it seems necessary to generalize these formalisms to cope with agents able to move freely in150
their environment. In this paper, one proposes a variational formulation of motor actions to deal with this151
issue. Importantly, the term variational refers in all the following to the focus given on specific sequences152
of states (e.g. motor, sensory or external states) rather than any specific one of said states. It is introduced153
in the next subsections.154

2.1.2 Dealing with mobile agents: reparameterizing the sensorimotor interaction155

From previous arguments, the internal motor configuration m can not be mapped unambiguously to156
sensations without additional considerations. If one still insists on having a functional relation between157
motor data and sensations, one then needs to enrich the initial motor set. In this paper, one proposes to158
introduce some superset B ofM as initial parameter space. This new set B can be thought of as the set159
of all absolute configurations b made of pairs (m, τ ) where m is the internal motor configuration and τ160
represents an absolute measure of the pose of the agent in its ambient space (which would most commonly161
be position and orientation in 3D space). While posture or proprioception give m a definite meaning,162
one should instead only think of τ as a choice of reference frame in space. Indeed for spaces much like163
ours it ought to be somewhat arbitrary since any “displacement” from pose τ to τ ′ could be instead164
realized as an opposite motion of the whole ambient space like for compensatory movements as initially165
introduced in (Poincaré, 1895) and dealt with in (Philipona et al., 2003). This equivalency argument has166
been mentioned in previous contributions as a possible way to deal with mobile agents as proposed in this167
contribution. While this could be formalized in a consistent way, either from a quasi static or variational168
perspective, we argue the proposed point of view offers usability advantages, like for multi-agent situations169
(where space should emerge as a shared common playground), an easier formulation of compensability, or170
a clear separation between the internal and external points of view. It is important to understand that the171
agent itself has no knowledge of the current absolute configuration b of its interaction with its environment,172
retaining the same hypotheses about a priori structure. However we may then consider the sensorimotor173
map as a function ψ : B×E → S instead of ψ :M×E → S to account for possible displacements in the174
environment. Defining such a new set B allows then to introduce the notion of external agent configuration175
as the tuple (b, s). As such, two different points of view must be stressed out: (i) the external point of176
view (i.e. coming from the designer of the system) will allow to characterize some properties of the agent177
interaction with its environment (through modelization, hypotheses, etc.), and (ii) the internal point of view178
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which represents which data and concepts are available to the agent for its operations. This specific point is179
discussed in §3.1.180

Coming back to Figure 1, the agent moves to three successive absolute configurations b, b′ and b′′. All of181
them are now different, which was not the case of the internal motor configurations: introducing b ∈ B182
apparently solves the issue raised at the end of §2.1.1. Let us now explain how the agent actually reaches183
some given absolute configuration b.184

2.1.3 Going variational: introducing motor actions185

As explained previously, the agent has no direct access to the configuration data b: it cannot know where186
it is in B. Instead we suppose it starts with some (very limited) knowledge of how it moves in this set,187
i.e. it is capable of performing some moves in B and of comparing any two moves for equality. To this188
end, we propose to introduce some new set A behaving in the following manner: an element a ∈ A can be189
applied to any absolute configuration b ∈ B to give a new configuration b′ = ab = a(b). Therefore, a can190
be seen as a function B → B. We will usually denote b a→ b′ this situation, and call a a motor action.191
Such a definition for “actions” differs from many intuitions since it is restricted to quasistatic differences in192
posture and position; it does not account for a notion of dynamical effort exerted by actuators. In particular,193
no dynamical effects are considered at this level and no specification is made of the precise motor path194
taken from b to ab. Instead, only these pairs of related (b, ab) endpoints are relevant to characterizing any195
action a. This constitutes a present limitation pervading much of similar works to which a future –and196
assuredly significant– contribution shall be devoted.197

Now as we intend to represent the way in which the agent can move in its environment, one can take for198
granted the existence of a special action e ∈ A that verifies ∀b ∈ B, b e→ b: the agent may decide to stay199
still. Note that for certain systems, e.g. drones or bipedal walkers, this is distinctly different from doing200
nothing since constant posture and position must still be maintained. Moreover, considering it is able to do201
any moves a and a′, it may then chain them in one single move a′′ = a′a ∈ A which satisfies202

∀b ∈ B,

b b′′

b′

a′′

a a′ (1)

so that A naturally carries the structure of a monoid. Remark that this composition operation is necessarily203
associative since motor actions are assumed to behave as functions B → B. In the following, we will204
further restrict ourselves to the case where individual actions are reversible, that is for any action a there205
exists an action a−1 such that206

∀b ∈ B, b b′,
a

a−1
(2)

making A into a group. Seeing as how actions can be thought of as mappings B → B, a necessary (and207
sufficient) condition is for all mappings in A to be bijective. It is clear that this assumption of invertibility208
may not apply in some experimental contexts, e.g. an agent may jump down a height which it cannot jump209
up. This constitutes a current limitation of the proposed framework, although several factors may limit its210
severity. In this example, even if the agent can not jump up the height directly, it may still find a sequence211
of actions allowing it to climb back up to its original position. Corresponding to the definition of Eq. (2),212
this would result in an inverse action in the formal sense, as illustrated later in Section 4.3.3213
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Figure 1 illustrates these notions, with the agent moving from external configuration b to b′ through214
an action a. This action, applied at b = (m, τ ), happens to produce a translation of the agent so that its215
internal motor configuration finishes at the same m. Note that the agent would be able to return back to216
its initial absolute configuration by applying the inverse action a−1 of a. Moreover, since a is a function217
defined on the whole B set, the same action can be applied at b′ = (m, τ ′) to reach a third configuration218
b′′ = (m′′, τ ′′). This time, the same action a has conducted to a global displacement of the agent in the219
environment, combined with a change in its internal motor configuration. Indeed, while it represents cases220
which are mostly avoided for practical reasons, it is not required for a to only depend on m in the general221
case: the outcome of the same action a may depend on the position τ of the agent in the environment.222
Finally, the agent would have been able to move from b to b′′ by applying the action a′′ = a2, as per223
Equation (1).224

225

With these structure assumptions, for a given subset of motor primitives A′ ⊂ A available to the agent,226
we can search for the set of composed moves the agent can actually reach by iteration of its known ones.227
We shall say an action a ∈ A decomposes over A′ = {ai}i∈I if it can be written in the form228

a = ain . . . ai1 =
∏

1≤k≤n
aik , ik ∈ I (3)

This represents a formal property functionally similar to that of compositionality of motor trajectories,229
with A′ filling for actions the role of primitives (Flash and Hochner, 2006). Indeed, the interest of these230
decompositions appears because the effect of composed moves on motor configurations boils down to the231
effects of its components as per the following diagram:232

∀b ∈ B,
b b′

b1 . . . bn−1

a

ai1

ai2 ain−1

ain (4)

In the example in Figure 1, it may well be that the agent can move to any configuration b i.e. that its233
action set is A = R5 (for the 5 possible angular increments of its 5 joints). But it may also be restricted234
to a limited set of moves, for example if it only can send discrete commands to its joints. For instance, if235
each actuator is a stepper motor, then its action set turns into A = Z5. In this case, a would be written236
as the tuple (∆qi)i, i = 1, . . . , 5, where ∆qi ∈ Z is the ith motor increment expressed in step increments.237
Consequently, any action a would decompose over A′ = {ai}i where action ai corresponds to adding238
one step to the ith actuator. In this specific case, while A is infinite, it is sufficient for the agent to know239
the 5 motor primitives ai to generate any action a ∈ A. This is very similar to the notion of reducing a240
(finite dimensional) vector space, which is usually infinite, to the very finite subset of a generating set or if241
possible a base. However it can be proven that any finite subset of R will not generate it as a group, and that242
it will often only generate a discrete kZ subgroup. This occurs in the proposed simulations in §4, where all243
combinations of a finite subset of starting actions lead to the discovery of a discrete generated action group.244

2.2 Grounding sensations in space245

The previous subsection was devoted to the introduction of actions on the motor side of the proposed246
sensorimotor framework. This subsection accordingly deals with the sensory side of it, and more particularly247
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Figure 2. Illustration of the receptive fields for a sensor made of two rigidly linked cameras at configuration
b. Each pixel ci of either camera produces a sensory value sci in the overall sensory array s explained only
by a small subset of space Fci(b). The same applies for both cameras, thus explaining how a sensation for
the agent can be explained by the perception of a subset of space.

with its relation to a persistent “space” which was entirely absent from previous considerations. After a248
more precise definition of the meaning of “environment configuration”, the link between local perception249
and spatial considerations is formalized. This will constitute the root of the theoretical developments250
proposed in the next section.251

2.2.1 Decoupling space and environment : the where and the what252

In previous works, a traditional way for parameterizing the environment was to introduce the environment253
configuration ε. The meaning of such a variable was often left unspecified, almost without any formal254
semantics linking it to the sensorimotor experience of the agent (Laflaquière et al., 2015). In this paper255
it is proposed to stress the difference between the ambient geometrical space—in which sensorimotor256
experience occurs—and the environment itself—that is the state of “things” lying in this space.The former257
takes the form of some set X endowed with a spatial structure as encoded by a group G (X ) of admissible258
transformations. These spatial transformations are mappings X → X preserving some “geometry” of X .259
The most common illustration is the usual affine geometry of R3 given by the group SE3(R) = SO3(R)oR3260
of its rigid transformations, made of 3D rotations, translations and their compositions. On this basis, one261
chooses to particularize a “state of the environment” as a valuation that maps each point of X to its262
corresponding physical properties such as temperature, color, luminance, etc. These states are therefore263
best represented as functions ε : X → P where P is a set describing the different physical properties the264
agent can observe. Consequently, ε(x) represents the observable physical properties at point x ∈ X . We265
will henceforth denote E the set of environment states, i.e. a set of such functions ε.266

Figure 2 illustrates these considerations. In this simple case, the geometrical space X is monodimensional,267
represented as an axis where each point x is assigned a color through a function ε1 or ε2. Interestingly,268
one can now distinguish points in X on which the physics described by different environment states ε1269
and ε2 locally coincide, as far as the agent is able to observe this coincidence. Particularizing the former270
unspecified ε state to a function ε of the spatial variable will allow to express new properties of the271
sensorimotor experience, as in the next subsection.272

2.2.2 Local perception and receptive fields273

Now that we have formally defined what is “out there” from an external point of view, let us now focus on274
the sensory capabilities of the agent. On this specific point, most previous contributions were considering275
the full sensory output as atomic data: although it is implemented as a possibly high dimensional vector,276
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elements and subarrays were generally kept from scrutiny. On the contrary, we now take interest at the277
subarray level and accordingly adapt the formalism. Therefore,278

in all the following the sensorimotor map is written as ψc : B × E → Sc where the c subscript outlines279
that the sensory map is explicitly written for a sensory element c (or sensel, i.e. one pixel for a camera, the280
cochlea cell coding for one sound frequency, etc.). Thus, the sensorimotor map ψC for the entire sensory281
apparatus is made of the aggregate of all sensels along ψC : B × E → S =

∏
c∈C Sc with C the set of282

all sensels1. An illustration of these points is proposed in Figure 2 for a similar agent endowed this time283
with two cameras so as to better show the descriptive capabilities of the formalism. In this case, the sensels284
ci—each depicted as elements in a color array— represent the pixels of either camera. Separate sensors in285
the apparatus thus appear as sub-arrays in C : the first (resp. second) camera is figured by C1 (resp. C2).286
Note that this decomposition of C as C1 ∪ C2 directly comes from our external understanding of the agent287
structure (i.e. with one camera corresponding to one set of sensels, i.e. one sensor). One could have selected288
others sub-arrays to form a distinct set of (virtual) sensors not necessarily corresponding to their (physical)289
implementation on the agent.290

With space and sensors made formally precise we can now proceed with the (spatial) receptive field of291
sensor C ′ ⊂ C , that is a region of space which environment state suffices to determine the output of C ′.292
This region as a subset of X should naturally depend on the current configuration b since moving causes293
one’s sensors to sample new parts of space, so that it takes the form of a map b ∈ B 7→ FC ′(b) ⊂ X .294
Then, its characteristic property is295

∀ε1, ε2 ∈ E ,∀b ∈ B,

ε1|FC ′(b) = ε2|FC ′(b) ⇒ ψC ′(b, ε1) = ψC ′(b, ε2).
(5)

Figure 2 represents some of the receptive fields for the two cameras agent. The first one, Fci(b), is the296
receptive field of a single sensel/pixel ci ∈ C . The receptive fields FC1

(b) and FC2
(b) of each camera can297

be obtained as the union of the receptive field Fcj (b) of their respective pixels. In the same vein, the overall298
receptive field of the agent FC (b) is also given by FC1

(b) ∪ FC2
(b). From the same figure, it is clear that299

even if ε1 6= ε2 (since there are areas of different colors on the X axis), the sensation captured by the agent300
is the same since the aforementioned differences are restricted to areas of space unseen to the agent.301

It is important to notice that this is the formal step where the notion of receptive field formalizes an302
implicit relation between the sensations of the agent and spatial structure. This constitutes one fundamental303
property sufficient to leverage spatial knowledge from the agent interaction with its environment. The304
application of these theoretical elements is proposed in the next section.305

3 A ZERO-TH LAYER OF SENSORIMOTOR CONTINGENCIES: SPATIAL
REGULARITIES THROUGH VARIATIONS

In this section, we proceed by describing how the formal elements from Section 2 can be arranged306
to enunciate some interesting properties of the sensorimotor interaction. First, to keep in line with307
considerations of minimalist bootstrapping, the assumptions we use relative to the model of knowledge of308
the agent are discussed, and compared to that of previous contributions. Then, the definitions provided in309
the previous sections are used to isolate conditions where the spatial structure of the receptive fields can be310

1 In all the following, the map ψC will be shortened to ψ when there is no ambiguity, consistently with the initial definition of the sensorimotor map of the
agent recalled in §2.1.1.
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leveraged, in particular via a certain class of “conservative” actions which are themselves defined. We prove311
that under these conditions a naive agent may achieve the determination of sensory prediction functions312
for said conservative actions, and that the algebraic structure of these prediction functions matches that313
of their actions. The corresponding results are of two distinct but equally important sorts: some, taking314
the viewpoint of an external observer, assert that certain particular objects of interest (such as a sensory315
prediction function) exist; others guarantee these objects to be computable in the boundaries set by our316
model of knowledge. This endeavor is made in an effort to keep a priori knowledge to a minimum, and317
these proofs are generally of a constructive nature.318

3.1 Model of knowledge of the agent319

In the authors’ previous works (Marcel et al., 2017; Marcel et al., 2019), sensorimotor interaction320
occurred as a sequence of (generally discrete) steps where at each point, the agent could access both321
its proprioception m ∈ M (seen as an array of current joint configuration states) and its corresponding322
exteroceptive array s = ψ(m, ε). These sensory arrays were then compared for equality (and for equality323
only) as total vectors, that is the agent may not access the vectors component by component. It is crucial324
to note that, much like in the referenced articles —and following the argument that “there is no a priori325
reason why similar neural processes should generate similar percepts” as found in (O’Regan and Noë,326
2001)— we will assume here that the sensory signals are uninterpreted in the very strong sense that they327
retain no other structure than equality. This presents an a priori significant hurdle since this includes e.g.328
order comparisons, substractions, metric structures and precludes us from using objects such as gradients329
or clusterings, which are required in almost all comparable works ((Censi and Murray, 2012; Montone330
et al., 2015; Laflaquière, 2017) among others). This knowledge was then used for example to compute331
set-theoretic motor kernels (Marcel et al., 2017) which were shown to be a structural invariant of the332
sensorimotor interaction (Marcel et al., 2019). By contrast, in this paper slight modifications are applied.333
Indeed, from the external point of view we now have B as a functional analogue to the previous M,334
that is the set of “parameter” data that entirely determines the state of the interaction between agent335
and environment. However, as the definition of B refers to some explicitly external data (i.e. the τ in336
b = (m, τ )), we cannot assume its knowledge from the point of view of the agent. We could however elect,337
on the same basis previous contributions used, to assume internal knowledge of the m part of b = (m, τ ).338
Instead, we even assume no direct access to “proprioceptive” data and treat it as unknown to the agent. Our339
hypothesis is that the agent should learn to isolate what part of its proprioception lies in its unified sensory340
array s from the statistics of its sensorimotor experience.341

As for remedies, it is instead where a variational approach, as defined in Section 2.1.1, is preferred: while342
configuration data represented by b ∈ B still exists as an external object, the agent may only choose a343
motor action a ∈ A which, applied at b, yields the following configuration b′ = ab = a(b). The agent is344
therefore given the capacity to compare any two elements of A for equality, so that it may tell whether345
at any two steps of its sensorimotor experience it performed two identical or distinct actions. Moreover,346
much deeper change in knowledge occurs at the level of sensory readings: in the following we not only347
ask that the agent be able to compare its entire sensory output s = (sc)c∈C for equality as a vector, but348
that it also can check for equality two values of any given sensel. That is, for every sensel c ∈ C , for349
every values sc, s′c this sensel may output, the agent may test whether sc == s′c. In this contribution, it350
will be further assumed that the values output by distinct sensels are themselves a priori comparable for351
equality. While it is a common property in many classical applications, this limitation has been partially352
tackled in (Laflaquière, 2017) via sensory prediction. However, this solution relies on clustering methods353
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implicitly exploiting structure assumptions we do not yet consider available. Therefore, this remains a354
current limitation of our approach which will be addressed in a future ongoing work.355

3.2 Sensorimotor binding: a marketplace for spatial information356

The formalism introduced in Section 2 makes space appear as a variable in the sensorimotor equations357
via the receptive field, which we will use in this section to prove that under some reasonable assumptions358
we can talk about the spatial information content of a sensory signal. This in turn is used to form the basis359
of a sensory prediction the agent can use to try and infer the sensory consequences of its motor actions,360
mirroring the psychological construct of forward sensory model which is at the heart of ideomotor theories.361
This is the core idea we will further develop in the simulations of Section 4 to see how a naive agent can362
derive such a prediction function from its sensorimotor flow.363

Recall that for any given sensel c ∈ C and environment state ε ∈ E , we introduced Fc the receptive field364
of sensel c as the function which given agent configuration b ∈ B yields X ′ = Fc(b) ⊂ X the minimal365
region of space which entirely determines the output of ψc. Therefore we can write366

∀b ∈ B,∀ε ∈ E , ψc(b, ε) = fc(ε|Fc(b)), (6)

where fc is a “sensitivity” function (or filter) which converts the physical properties of environment sampled367
into a sensory output, both selecting to which property the sensor reacts and how. Equation (6) describes368
the sensorimotor dynamics by dissociating the spatial dependency (which is given by Fc) and the sensitivity369
one (as seen with fc), so that the observer can now speak of sensels that look at the same region of space.370
Let us then consider a particular condition, in which for a given action a, some sensel ci samples after a the371
same point some other sensel cj was sampling before the agent began to move. This is formally described372
by the relation373

∀b ∈ B, Fci(ab) = Fcj (b). (7)

This situation where the spatial difference between two sensels can be bridged by a displacement of the374
agent over time to make their respective sensory experiences coincide has already proven to yield interesting375
structures as in (Montone et al., 2015; Laflaquière, 2017). However, these works largely dealt with the376
geometry of sensels and sensors, while we aim to elaborate on how this relates to the structure of actions.377
As for us, to have this relation apparent to the agent we also require that the output of these particular378
sensels be comparable, as already discussed in §3.1. In the strictest sense, this can be by requiring that their379
sensitivity functions fci and fcj are equal. It follows that380

∀b ∈ B, ∀ε ∈ E ,

ψci(ab, ε) = fci(ε|Fci(ab))

= fcj (ε|Fcj (b)) = ψcj (b, ε).

(8)

While there are reasons to hope that a working relation could be found even for dissimilar fci and fcj , one381
should remember that at the moment the outputs of sensels ci and cj lie in some sets totally devoid of382
structure. Therefore, even though a conversion function Ci,j such that ψci(ab, ε) = Ci,j(ψcj (b, ε)) might383
exist, we would lack the means to represent it in any way but the collection of the related sensory outputs,384
e.g. as opposed to the already resource heavy clustering done in (Laflaquière, 2017).385

Equations (7) and (8) are both illustrated in Figure 3, where a 1D (infinite) pixel array is placed in front386
of a 1D colored line along which the sensor can translate itself thanks to actions a. Equation (7) is captured387
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Figure 3. Illustration of how the underlying 1D space induces transitions between cross-sensel outputs. In
this case, under action a, sensel ci takes the place of sensel cj : the output of ci after a (red) is the same as
the output of cj before a (red). The same applies when performing a a second time: the yellow color is
transfered from cj to ci.

by the fact that both receptive fields Fcj (b) and Fci(b′), drawn as two rectangular shapes, project on the388
same area on the environment. Then, Equation (8) explains how, provided the environment state ε at these389
locations stays constant through any one execution of a, it causes both sensels to actually generate the same390
sensory (red) output. It is clear that the spatial relation being forwarded to sensory transitions depends on391
the sensels actually outputting the same (red) value. This might be argued to be a restrictive assumption.392
Nevertheless, being able to deal with different sensitivity functions is a sizable development to which an393
ongoing contribution shall be devoted. To conclude, a key point here is that a property entirely defined from394
the external point of view through receptive fields is accessible from the internal one by the constraints it395
imposes on the sensels outputs values during exploration. Equation (8) therefore shows how space, insofar396
as it is common to all sensels and actions, makes this phenomenon of shifts of receptive fields into an397
observable contingency of the agent’s sensorimotor experience.398

3.3 A motor and sensory account of spatial conservation399

3.3.1 Conservation through permutation: conservative actions400

The result obtained in the previous subsection exhibits an important property making internally available401
spatial matching between receptive fields at different timesteps of motor exploration. But given that the402
actual motor exploration follows the algebraic structure of actions A, it still remains to be shown how these403
two structures are consistent. This can be made apparent by introducing conservative actions as those a of404
A for which all sensels of the agent exchange the places they sample: there is conservation of the (spatial)405
information available. In terms of the formalism, a ∈ A is conservative if it verifies406

∀c ∈ C ,∃c′ ∈ C such that ∀b ∈ B, Fc(ab) = Fc′(b), (9)

generalizing somewhat Equation (7). This characterization makes apparent that many actions can’t be407
conservative: for example, “turning back” may only be conservative for the rare agent that “sees” precisely408
as much forwards as it does backwards. In fact, the spatiality of the condition on receptive fields makes it409
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so that all readily found conservative actions correspond to displacements of the body of the agent. In the410
following, “∀b ∈ B, Fc(ab) = Fc′(b)” will be shortened to the more legible c a→ c′, and c (resp. c′) is said411
to be the predecessor (resp. successor) of c′ (resp. c) by a. It is proven in Appendix 1 that for conservative412
actions a, the relation a→ can be made into a successor function413

σa : C → C

c 7→ c′
(10)

where c′ = σa(c) is a sensel verifying c a→ c′. Therefore, conservative actions can equivalently be thought414
of as permutation of sensels. Importantly, conservative actions provide a natural framework for exploiting415
Equations (7) and (8) during motor exploration. Indeed, it is proven in Appendix 2 that conservative actions416
form a subgroup AC ⊂ A for its composition operation. That is to say, chaining conservative actions yield417
other actions which are necessarily conservative, and the inverses of conservative actions are themselves418
conservative.419

At this stage, it has been shown how the spatial property of permutation of the receptive fields relates to420
the intrinsic motor structure of the agent. However, this does not suffice to make this group structure of421
conservative actions accessible to the agent given the a priori knowledge we discussed in Subsection 3.1,422
since the dependency of the sensorimotor process on the spatial variable is implicit. We must therefore423
go through one final step to relate the available informational content (i.e. sensory reading) to the motor424
structure.425

3.3.2 From permutation to prediction: making it into sensory territory!426

Let us consider the agent at any point (b, s) of its sensorimotor experience. Its sensory output is427
s = ψC (b, ε) = (sc)c∈C , and for any action a it may perform this sensory output should shift to428
s′ = ψ(b′ = ab, ε) provided the environment state stays constant throughout the action. If we now restrict429
ourselves to the case of conservative actions, we get430

s′ =(s’c)c∈C

=(ψc(ab, ε))c∈C = (fc(ε|Fc(ab)))c∈C

=(fc(ε|Fσa(c)(b)))c∈C
= (ψσa(c)(b, ε))

c∈C

=(sσa(c))c∈C

(11)

so that performing motor action a only results in a permutation of the components of the sensory output.431
This permutation is exactly σa, and therefore is a constant of the agent which does not depend on the actual432
current configuration (b, ε). Equation (11) shows that any conservative action a ∈ AC corresponds to a433
sensory function434

Πa : S → S
(sc)c∈C 7→ (sσa(c))c∈C

(12)

which verifies the property435

∀b ∈ B,∀ε ∈ E , ψC (ab, ε) = Πa(ψC (b, ε)). (13)

Per this property, Πa is a function which given any starting sensory reading of the agent can determine436
the sensation it would experience after performing action a (provided the environment state stays constant437
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during a). It must be reiterated that a crucial part is that this function operates on sensory data, which is438
precisely the only data available to the agent.439

3.4 Prediction as an internal proxy of the action group440

From there, let us now consider441
Π: AC → Bij(S)

a 7→ Πa

(14)

with Bij(S) the set of all bijections from S onto itself, i.e. Π maps abstract motor actions to their sensory442
prediction functions. As proven in Appendix 3, it establishes a group isomorphism between conservative443
actions a ∈ AC and their associated sensory prediction maps Πa ∈ Π(AC ), so that444

AC
∼= Π(AC ). (15)

While Equation (15) written as is might easily pass as benign, it is actually a very powerful result and the445
centerpiece of our argument. In a similar fashion to Equation (8) before it, this specifies how the algebraic446
structure of (conservative) actions —which largely governs the sensorimotor experience— appears as447
a contingency of the sensorimotor flow which can be picked up on by an agent as naive as outlined in448
Section 3.1. Using the terminology introduced there, it shows how some external structures describing the449
interaction between agent and environment can be captured from the internal point of view.In turn, it is the450
enunciation —and the proof— of this result that motivate developing the formalism as in Section 2, going451
as far back as absolute configurations b ∈ B and ambient space X . Equation (15) will be leveraged as part452
of the simulations in the following.453

4 SIMULATING A 2D VERSION OF OUR TOY MODEL

Up until this point, the discussion has been kept to a purely theoretical level. The following section is now454
devoted to a simulated experiment illustrating the new proposed formalism. To this end it starts with a455
description of the experimental setup, highlighting how it manifests in the proposed formalism of Section456
2. Then, we describe what steps the agent goes through and how they relate to the theoretical results we put457
forth in the previous section. Finally, we review the observable results of these experiments to inspect how458
our earlier theoretical claims appear in practical cases.459

4.1 Description of the experimental setup460

In the following, we will consider the 2D generalization of the illustrating case used in the previous sec-461
tions. That is, the studied agent body is now made of a planar, rectangular camera sat atop omnidirectional462
wheels, see Figure 4. These allow for translations along both x and y coordinates, as well as rotations in463
the plane. The pixels of the camera are sensitive to the luminance of the ambient stimulus, which for our464
experimental purposes is a fixed grayscale image placed above the moving camera. Describing the problem465
in the terms of the developed formalism gives:466

• the ambient space X is the plane R2;467

• the set of physical properties of space P is [0; 255] the set of luminance values. Therefore, a state of468
the environment ε ∈ E is a function which takes points (x, y) of the ambient plane and map them to469
luminances as given by the data of the acquired image;470
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Figure 4: Experimental setup used in simulation to assess the proposed
formalism. An holonomic agent is placed in a 2D environment, whose ceiling
is made of a fixed grayscale image. The agent can move in this environment
by applying 7 different actions ai, including the “rest” one a1. A Wc ⇥ Hc

camera pointed towards the ceiling is placed on the top of the agent and
generates a sensory array s = (sci )i.

sociated sensory prediction maps P (AC ), such that

AC
⇠= P (AC ). (17)

Therefore, computing compositions or inverses of sensory
predictions can be used as a proxy for computing successions
or inverses of motor actions. But crucially, the former are
items the agent can discover from naive exploration, as will be
exploited in the next simulation, while the latter were assumed
to be of unknown structure. Therefore this equivalency makes
accessible to the agent, via the discovery of relevant sensory
statistics, the algebraic details of its motor structure. <Insister
sur le fait que c’est peut être le résultat le plus important du
papier?>

IV. SIMULATING A 2D VERSION OF OUR TOY MODEL

Up until this point, the discussion has been kept to a purely
theoretical level. The following section is now devoted to a
simulated experiment illustrating the new proposed formalism.
To this end it starts with a description of the experimental
setup, highlighting how it manifests in the proposed formalism
of §III. Then, we describe what tasks the agent is given and
how they relate to the theoretical results we put forth in the
previous section. Finally, we review the observable results of
these tasks to inspect how our earlier theoretical claims appear
in practical cases.

A. Description of the experimental setup

In the following, we will consider the 2D generalization
of the illustrating case used in the previous sections. That is,
the studied agent body is now made of a planar, rectangular
camera sat atop omnidirectional wheels, see Figure 4. These
allow for translations along both x and y coordinates, as
well as rotations in the plane. The pixels of the camera are
sensitive to the luminance of the ambient stimulus, which for
our experimental purposes is a fixed grayscale image placed
above the moving camera. Describing the problem in the terms
of the developed formalism gives:

• the ambient space E is the plane R2;

• the set of physical properties of space P is [0; 255] the set
of luminance values. Therefore, a state of the environment
p 2 P is a function which takes points (x, y) of the
ambient plane and map them to luminances as given by
the data of the acquired image;

• the configuration space B is R2 ⇥ S1
⇠= R2 ⇥ ]�⇡;⇡] to

account for both position (x, y) and orientation ✓ of the
robot on the plane;

• the sensory output of the agent is an array s 2
[0; 255]

Wc⇥Hc , with Wc (resp. Hc) the number of
sensels/pixels in one row (resp. one column) of the
camera. Each of the components sci

of s are the sensory
output of pixel ci, given by the luminance of the spatial
location in the environment it is currently looking at. Im-
portantly, each pixel’s position in s is chosen arbitrarily.

We also define a set A0 of seven basic actions, which are
1) one identity action, mapping any current absolute con-

figuration to itself;
2) four elementary translations, one for each direction of

the basis axes on the plane. These are defined relative to
the current orientation of the agent, which can end up
distinct from external systems of axes when the agent
rotates;

3) two elementary rotations, to account for both clockwise
and counter-clockwise turns.

These actions are depicted in Figure 4 with colored arrows.
Note that the color convention used in this figure is the same
used in the forthcoming figures for coherence.

Relative to the prior discussion about properties of motor
actions, these are not strictly conservative as per the def-
inition (9): indeed, consider dF the elementary “forward”
translation. While inner pixels of the camera will certainly ex-
change receptive fields, those in the front row will necessarily
observe new areas of space after the agent has moved forward.
Therefore none of these front row pixels has any predecessor
by dF , which precludes it from being strictly conservative.
The same phenomenon of border impredictibility occurs for
all translations, each with their respective side failing to verify
the conservation property. We nevertheless proceed with the
formalism on the basis that actions are at worst, informally
speaking, “quasi” conservative. This is based on the quick
analysis that, for a N -by-N square camera, this defect only
occurs in N pixels which are an order of magnitude less than
the N2 total. Part of the analysis of the results will be in
assessing how this somewhat degrades the structure retrieved
from actual sensorimotor experience.

Representing the sensory configuration as numerical arrays
makes the permutation of sensels into Nc-by-Nc sparse matri-
ces, where Nc = Wc ⇥Hc is the number of sensels. Indeed,
starting with any permutation � : J1, NK ! J1, NK we can
define a matrix M� 2MN,N (R) by

(M�)i,j =

(
1 iff j = �(i),

0 else.
(18)

It can then be checked that for any array s, the array s�
obtained by permutating the components of s as given by �
verifies s� = M�s.

Figure 4. Experimental setup used in simulation to assess the proposed formalism. A holonomic agent
is placed in a 2D environment which ceiling is made of a fixed grayscale image. The agent can move in
this environment by applying seven different actions ak. A 10× 10 camera pointed towards the ceiling is
placed on the top of the agent and generates a sensory array s = (sci)i.

• the configuration space B is R2×S1 ∼= R2× ]−π; π] to account for both position (x, y) and orientation471
θ of the robot on the plane;472

• the sensory output of the agent is an array s ∈ [0; 255]Wc×Hc , with Wc (resp. Hc) the number of473
sensels/pixels in one row (resp. one column) of the camera. In the simulation, the image dimension is474
set to Wc = Hc = 10. Each of the components sci of s are the sensory output of pixel ci, given by the475
luminance of the spatial location in the environment it is currently looking at. Importantly, the order of476
each pixel in s is chosen arbitrarily.477

Let us define a set A of seven basic actions ak, k = 1, . . . , 7:478

1. one identity action a1, mapping any current absolute configuration to itself;479

2. four translations a2, a3, a4, a5, one for each direction of the basis axes on the plane, all of amplitude480
the size of 1 pixel. These are defined relative to the current orientation of the agent, which can end up481
distinct from external systems of axes when the agent rotates;482

3. two 90◦ rotations a6, a7, to account for both clockwise and counter-clockwise turns.483

These actions are depicted in Figure 4 with colored arrows. Note that the color convention used in this484
figure is the same used in the forthcoming figures for coherence.485

Relative to the prior discussion about properties of motor actions, these are not strictly conservative as486
per the definition (9): indeed, consider a5 the elementary “forward” translation. While inner pixels of the487
camera will certainly exchange receptive fields, those in the front row will necessarily observe new areas488
of space after the agent has moved forward. Therefore none of these front row pixels has any successor for489
a5, which precludes it from being strictly conservative. The same phenomenon of border impredictibility490
occurs for all translations, each with their respective side failing to verify the conservation property. We491
nevertheless proceed with the formalism on the basis that actions are at worst, informally speaking, “quasi”492
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conservative. This is based on the quick analysis that, for a N -by-N square camera, this defect only occurs493
in N pixels which remains an order of magnitude fewer than the N2 total.494

Representing the sensory configuration as numerical arrays makes the permutation of sensels into Nc-by-495
Nc sparse matrices, where Nc = Wc ×Hc is the number of sensels. Indeed, starting with any permutation496
φ : J1, NcK→ J1, NcK we can define a matrix Mφ ∈MNc,Nc(R) by497

Mφi,j =

{
1 iff j = φ(i),

0 else.
(16)

It can then be checked that for any array s = (si)i∈J1,NcK, the array sφ = (sφ(i))i∈J1,NcK obtained by498
permutating the components of s by φ verifies sφ = Mφs. It is clear that working with such a representation499
incurs a large memory overhead (with only Nc of all N2

c coefficients being non null). Furthermore, finding500
a permutation is known to be a problem of exponential complexity. However we do not aim to propose a501
scalable implementation in the following, but rather to illustrate as a proof of concepts the developments in502
Section 3.503

4.2 Description of the experiments504

The proposed simulation can be decomposed as a sequence of 2 related, successive, experiments. First,505
these are briefly described in a global manner so as to go through the flow of the experiment. Then, each506
experiment is described in greater detail with respect to its implementation. It is in this second part that507
relevant proofs ensuring both completion and correctness of the endeavor are provided. In this setup, the508
robot is given a setAinit of nA unknown actions drawn in the set of combinations of actions of A. Although509
A was designed for convenience from an external point of view, Ainit may not accurately reflect it. Indeed,510
for random draws there is a high likelihood of missing actions when nA is small, of duplicate actions511
when it is large. However, as discussed previously these notions do not yet make sense to the agent, which512
can only “run” actions drawn. Importantly, at first the considerations will be restricted to the case where513
Ainit = A. This is a possibly strong assumption about the initial fitness of readily available commands514
to the “objective” capabilities of the agent. The influence of this choice and the effect of less optimally515
designed starting command shall be discussed in the final part of this section.516

The first part of the experiment is one of motor babbling. During it, the agent effectively runs its available517
actions ak ∈ Ainit multiple times and tries to figure out whether they are conservative by computing518
their associated sensel permutation map. This is realized as a sequential process: at timestep tn, the agent519
chooses and runs an action ak = a[tn] ∈ Ainit, and the absolute configuration b[tn] = (x[tn], y[tn], θ[tn])520
is accordingly changed to b[tn+1] = akb[tn]. Corresponding sensory array s[tn+1] = (si[tn+1])i is then521
used to proceed in the computation of the (candidate) permutation matrix Mak of ak, with the details of522
the update rule discussed in the following subsection. It must again be stressed that we do not consider523
the actual time tn+1 − tn required to perform the action a as a relevant information of the proposed524
sensorimotor framework. It may vary for distinct actions without it affecting whatsoever the sequence525
of experienced absolute configurations b. During this exploration, the state of the environment ε is also526
allowed to vary with time so long as it is not updated during the generation of ak, i.e. ε can change between527
actions. This is achieved during the simulation by entirely changing the grayscale image presented to the528
agent between each action. In the following, the choice of action is randomly made at each timestep. This529
may at times slow the learning of the permutation matrices and could certainly be improved, for instance530

This is a provisional file, not the final typeset article 16



Godon et al. Structuring Motor Actions With Sensory Prediction

by introducing a necessarily intrinsic criterion like curiosity as in (Oudeyer et al., 2005). However, the531
specific case studied here is simple enough that a random strategy suffices to obtain good results.532

Once this first step is complete, the agent computes all products of (quasi) permutation matrices to make533
the resulting set of matrices. As per Equation (4), this set is precisely the one of all matrices that decompose534
over the Mak , ak ∈ Ainit. Following our argument about the groups of prediction functions and motor535
actions being isomorphic, this set can be taken as the global understanding of its motor capabilities the536
agent has acquired. Here “global” denotes that new structure, absent from the first empirical phase which537
was limited to Ainit, emerged from the computation of products. Finally, the effect of changing the set of538
actions available at start on the structure graph discovered in the second experiment is studied in a third539
part, see 4.3.3.540

4.2.1 Learning the prediction through sensorimotor interaction541

The first experiment performed by the agent is computing, where possible, the permutation matrix542
associated to each of its available motor actions. This is done according to the following procedure: at the543
beginning of the sensorimotor experience, to each starting action ak ∈ Ainit associate a Nc ×Nc matrix544
Mak where Nc is the number of sensels. This matrix is initialized so that all of its coefficients are 1. Then,545
at the end of timestep tn where it performed action ak (that is a[tn] = ak), the agent uses its sensory output546
arrays both previous (s[tn]) and current (s[tn+1]) as per the update rule:547

(Mak [tn+1])i,j =

{
1 iff sj [tn+1] = si[tn] and (Mak [tn])i,j = 1

0 else.
(17)

Let us first observe that in this rule the only possible change in coefficients is going from 1 to 0: whenever548
a coefficient (Mak [tn])i,j is already 0, the condition of the first case automatically fails so that its value549
stays at 0. Therefore, the rough dynamics of the update is that while all coefficients start at 1, some are550
eventually switched to 0 upon exploration until matrices converge to a final (possibly null) form.551

One can note that this is a very drastic choice compared to the more usual soft incremental rules. This552
offers increased simplicity such as in Appendix 4 where an argument is provided that for any conservative553
motor action this algorithm makes the empirical matrix Mak converge to the associated permutation matrix554
Mσak

. Moreover, we argue that obtaining said convergence with such an unforgiving rule is strong evidence555
towards the systematic, rather than statistical, nature of the supporting mechanism. The argument also556
proves that for non conservative actions, under the same richness hypothesis the associated empirical matrix557
will converge to the null matrix. This fact allows the robot to naively distinguish between conservative and558
non conservative actions, should he be given the capability to perform both on startup.559

4.2.2 Inferring motor structure from learned interaction560

In the second phase of the experiment, the agent uses the prediction functions it discovered for elementary561
conservative moves to infer how combinations of these moves relate to each other. Indeed, it was proved in562
the previous part that for any conservative actions a and a′ with associated permutation matrices Mσa and563
Mσa′ , it is true that564

Mσa′Mσa = Mσa′a . (18)

In the case of actions which are not strictly conservative such as those in the simulation, equality in the565
previous equation is not guaranteed. This happens because in the Mσa′Mσa expression, all the loss of566
information of a and a′ on their respective boundaries is accumulated, whereas a′a might recoup some of567
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it e.g. when a′ = a−1. However, multiple expressions should at least yield non contradictory prediction,568
that is whenever one specifies a pair ci → cj another other cannot assert ci → ck with j 6= k. As long569
as these combinations are kept short enough to limit the accumulation, this non contradiction criterion570
can be used by the agent to internally infer the sensory prediction of any combination of the moves it571
empirically learned. This is used in a Dijsktra-like process to build a graph of prediction matrices, which

Algorithm 1 Dijkstra-like algorithm for live construction of action group graph.
Input

A The set of all matrices learned in exp.1
D A bound on length of matrix combinations used
O A reference matrix around which to explore

Output
G A local view of the combinatorial graph of matrix products around O, using edges in A

Add O to collection U
O.depth← 0
Add node O to G
while U is not empty do . True iff the neighborhood of some node K is still Unexplored

K← node in U
for all Ma in A do . Test all learned predictions starting from node K

P←MaK
P.depth← K.depth + 1
if P.depth ≤ D then

B← False
for all node C in G do . Test previously discovered nodes for equality

if predictions for P and C match then
B← True
Set edge Ma: K→ P in G

end if
end for . END for all node C in G
if B is False then . Branch taken iff P := MaK was not previously discovered

Add P to U
Add node P to G
Set edge Ma: K→ P in G

end if
end if . END if P.depth ≤ D

end for . END for all a in A
Remove K from U

end while . END while U is not empty

572
runs as follows, see Algorithm 1: starting from a prediction matrix M0 corresponding to any origin action573
a0, each of the known matrices Mak , ak ∈ Ainit are applied to yield both a set of new neighboring “end574
points” NM0 := {MakM0, ak ∈ Ainit} and for each pair (M0,MakM0) a directed edge Mak . This is then575
recursively applied to all newly discovered end points, while those that were previously visited (as the576
prediction matrices can be compared for equality) are discarded. However, the resulting graph would in577
most cases be infinite, therefore a stopping rule must be chosen. In our case, we chose to explore up to a578
given depth parameter in graph edge distance.579

4.3 Results580

This subsection is devoted to the evaluation in simulation of the previous points, divided in three successive581
experiments. The first one illustrates how the agent can build the permutation matrices associated to each582
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of its conservative actions; a discussion about the convergence and the statistics of this experiment is then583
proposed. The second one exploits the permutation matrices just obtained to structure its own actions584
through a graph of their combinations; a discussion about its fidelity as a representation of the action585
group A is proposed. In the third and final one, the effect of varying starting action sets on the structure586
discovered is studied, concluding the subsection.587

4.3.1 Experiment 1: discovering the permutations588

4.3.1.1 Building the permutation matrices589

To begin with, the simulated robot in Figure 4 is placed at a random 2D position inside the image to be590
explored. The available action set is defined as Ainit = A so that nA = 7. Then, at each time step tn, a591
random action ak = a[tn] ∈ Ainit is run, and the associated permutation matrix Mak is updated according592
to (17). After this update, the agent is able to evaluate if these matrices have finished converging and593
therefore can decide when to stop the exploration. An entropy-like internal criterion is proposed to quantify594
this convergence, along595

C(M) = 1− 1

Nc log2(Nc)

Nc∑

i=1

Hi,

where Hi = −
Nc∑

j=1

Mi,j

µi
log2(

Mi,j

µi
),

and µi =
1

max(1,
∑Nc

j=1Mi,j)
.

(19)

In this criterion, Hi is the entropy of the post-action output of sensel ci as a random variable of the pre-596
action outputs of all sensels cj . Therefore it measures which degree of surprise remains in the determination597
of which (if any) sensel is successor to ci. Finally, this makes C into an average measure of certainty in598
the discovery of successor sensel pairs, going in nondecreasing trajectories from 0 at initialization to 1 at599
permutation matrices. Consequently when it obtains the updated matrices Mak [tn+1], ak ∈ Ainit the agent600
computes all Ck[tn+1] = C(Mak [tn+1]) to assess the state of its discovery, stopping its exploration when601
all the Ck have reached 1.602

After convergence, the resulting matrices for all seven actions shown in Figure 4 are depicted in Figure 5.603
In this figure, a 0 (resp. 1) is represented in black (resp. white). Since the agent has no knowledge of604
its sensor geometry, the position of its sensels (i.e. pixels) inside the sensory array s (i.e. the flattened605
image) is randomly chosen. In this case, the resulting permutation matrices for each action is depicted in606
Figure 5 (top), demonstrating the fact that those matrices are not easy to understand from an external point607
of view. If one now selects a more natural ordering of the pixels inside s, like a line by line arrangement, one608
then gets the permutation matrices in Figure 5 (middle). With such an arrangement, an external observer is609
now able to get a clearer intuition about the effects of each action on the pixels permutations. Nevertheless,610
these two different sets of matrices, as two contingent images of the same underlying structure, are purely611
equivalent from an internal point of view. This can be illustrated by mapping the permutation on the612
overall sensor to better catch how the agent has been able to discover the underlying spatial transfer613
between sensels. This is done by plotting the sensel pairs along which values are transfered as proposed in614
Figure 5 (bottom). In this figure, the 10× 10 pixel grid of the simulated camera is represented together with615
arrows connecting each sensel to its successor. While such a representation requires external knowledge in616
the sensor geometry, the arrows are entirely determined by the internal permutation matrices from either of617
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(5a) Ma1 (5b) Ma2 (5c) Ma3 (5d) Ma4 (5e) Ma5 (5f) Ma6 (5g) Ma7

Figure 5. Representation of the seven binary 102 × 102 permutation matrices Mak corresponding to the
actions ak possibly generated by the agent, where a 0 (resp. a 1) is represented as black (resp. white). (first
row) Matrices obtained for a random organization of the sensels outputs si inside the sensory array s.
(second row) Matrices obtained for a well chosen sensels arrangement, where each pixel values are stored
line by line in s. (third row) Interpretation of the permutation matrices (either from the first or second row)
directly on the physical 10× 10 pixel array: if a 1 is present at line i and column j of a matrix Mak , then
an arrow joining pixel i to j is plotted. Note that the arrow length has been resized for actions 6 and 7 (i.e.
rotations) to enhance readability.

the two sets presented. It is thus a convenient external way to display that each matrix has actually captured618
the pixel shift induced by each action. For instance, with such a visualization, it is now very clear that619
(a2, a3), (a4, a5) or even (a6, a7) are all found to be pairs of inverse actions; this specific capability will620
actually be exploited in §4.3.2 to structure the agent set of actions.621

4.3.1.2 A discussion about the dynamics of convergence622

It is clear from Figure 5 that at some point the agent captured the permutation to the best of its capabilities.623
One therefore proposes to study the dynamics of the convergence of the approach w.r.t. the experimental624
time step tn. For the remainder of experiment 1, we now keep the image constant during all the simulation,625
so as to better assess the influence of the experienced environment on the results. First, the internal criterion626
Ck = (Mak) defined in Equation (19) is evaluated at each tn and each ak, resulting in the plot in Figure 6.627
One can then confirm that the Ck increase from 0 (all elements in the matrices are initialized at 1) to 1 (all628
successor pairs have been discovered). It also appears that for each particular action ak, the associated629
criterion increases in sparse jumps because its matrix Mak is only actually updated at the random time steps630
when ak is drawn. Figure 6 also illustrates the fact that the amplitude of these jumps decreases over the631
experiment. For the starting conditions of this experiment, a detailed analysis shows that about 7 realizations632
of each action are necessary to fully discover the target permutation matrices. But it also appears that most633
of the initial 1s in the matrices are wiped out very early, with a criterion value Ck[tn] ≈ 0.7 after only634
one execution of the corresponding action ak. However, one still questions whether the differences in the635
dynamic of all actions is a random occurrence of this particular exploration, or there is an intrinsic variance636
in difficulty in learning between actions.637
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Figure 6. Representation of the criterion Ck = C(Mak) for the seven actions ak. Each jump in this figure
corresponds to a reevaluation of the criterion happening at a timestep when the corresponding action has
been drawn in the set in Ainit. As expected, the criterion starts from 0 to reach 1, indicating that all possible
permutations have been found.

4.3.1.3 A statistical analysis about richness of the environment638

The answer to the previous question can be obtained by performing an empirical survey (i) by averaging639
over random explorations for given starting conditions, and (ii) by varying these starting conditions and640
comparing the resulting performances. With such a study, (i) will allow to quantify the influence of the641
randomness in exploration, while (ii) lets us assess how the properties of the environment influence the642
discovery of permutations. For this experiment, the environment is made of the image shown in Figure 7a,643
where the starting points of each exploration is depicted as a grid of points on it. At each of these points,644
1000 random explorations are conducted, each of them consisting in a random run of actions ak as in645
§4.3.1.1, resulting in 1000 sets of seven Ck curves as in Figure 6. For each random exploration l and each646
action ak, the number of jumps Jl,ak in the Ck curve obtained is taken as a measure of difficulty in learning647
the permutation. The average J = 1

L

∑
l

∑
k Jl,ak of Jl,ak over all actions ak and explorations l at a given648

starting position is depicted as the color of the grid in Figure 7a, with L = 1000 (runs)×7 (actions). Green649
points correspond to a low number of jumps J , while red ones are representing higher values. One can650
observe that the points are overwhelmingly green, and that the red ones are restricted to precise areas in the651
picture. These correspond to areas with locally low contrast, such as the sky (in the top left corner) or its652
reflection (in the bottom). The extremal conditions corresponding to the two green and red highlighted653
points are further compared. For each of them, the distribution of the Jl,ak is plotted as an histogram in654
Figure 7b. Clearly, green points correspond to areas in the environment where the permutation matrices655
can be discovered in at most 5 executions of actions. On the contrary, at red points the agent must wait656
for about 17 on average, and up to 35, executions before it has obtained the same results. This illustrates657
how the richness of the environment might influence the agent ability to capture the structure of its sensory658
prediction. On a more global scale, Figure 7c shows the distribution of the Jl,ak for all random explorations,659
indiscriminately of the starting position. This corroborates the observation that most positions in the image660
are green, i.e. lead to easy convergence. It appears that for a randomly selected starting position, there661
is more than 66% of chance of permutation matrices being discovered in less than 4 executions of their662
corresponding actions.663
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(7a) Environment explored by the agent.
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(7b) Normalized histograms of the number of jumps in the criterion
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Figure 7. Statistical analysis of the permutation matrices building process. (left) Environment explored by
the agent. Each point in this environment corresponds to a starting position around which the agent draws
actions to build the permutation matrices Mak . Counting the mean number of jumps in the criterion curves
Ck for each realization of the exploration around a given starting point and each action leads to the value
J representing the difficulty to build the corresponding matrices. A high (resp. low) J value in red (resp.
in green) corresponds to areas in the environment harder (resp. easier) to exploit for sensory prediction.
(right) Normalized histograms of the number of jumps in the criterion curves Ck averaged across actions.
(top right) Focus on the histograms obtained around two different starting conditions corresponding to low
(resp. high) J value highlighted by a green (resp. red) circle in the environment. (bottom right) Overall
normalized histogram for all actions and all starting positions in the environment, showing that most of the
permutation matrices are correctly obtained after a low number of action run.

4.3.2 Experiment 2: structuring actions by combination664

From the previous experiment, we now have as many permutation matrices Mak as we have actions in665
Ainit. As outlined in §4.2.2, one can then use them to build a graph of prediction matrices by following666
Algorithm 1. Recall that in this graph, a node is a permutation matrix obtained as a combination of the667
Mak matrices, while there is a Mak edge from matrix M to M ′ iff M ′ = MakM . Therefore, all edges in668
the graph correspond to the permutation matrices built during experiment 1. According to Equation (15),669
this graph is isomorphic to the graph of corresponding actions, meaning all properties discovered of any670
combination of matrices holds true for the corresponding combination of actions. As an example, if one671
discovers that Ma1 = Ma2Ma3 , then one also has a1 = a2a3.672

As a first step, let us consider only the actions corresponding to translations in the environment, i.e. a6673
and a7 are discarded from Ainit. This a priori selection is only made to simplify the visualization of the674
graph at first. After applying Algorithm 1 to the matrices shown in Figure 5, one gets the directed graph in675
Figure 8a, where all the color conventions are consistent with experiment 1. This particular graph has been676
built for a maximum depth set to 3 and with Ma1 taken as the origin of the graph. Note that the depth of677
this graph has been maintained voluntarily low so as to help in the reading of the graph. Note also that the678
arbitrary choice of origin makes all of its neighbors themselves correspond to one of the Mak discovered in679
experiment 1 since they all occurred as MakMa1 = Mak products, whereas all other nodes are indeed new680
matrices.681

This graph mirrors many algebraic properties of the Mak as captured by the internal experience. Indeed682
one can first observe that the light blue arrow leads from any given node M to itself, which corresponds to683
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(8a) Directed graph obtained for translations only. (8b) Directed graph obtained for all actions ak .

Figure 8. Directed graph of permutation matrices Mak–and thus also of corresponding actions ak as per
Equation (15)– obtained by combination of these matrices. Color conventions for edges match the color of
each action in Figure 4. The depth up to which new nodes are explored has been limited for visualization
purposes by setting low depth parameters in Algorithm 1

Ma1 being the identity matrix INc . Furthermore one can note that the graph obtained is, up to its borders,684
completely homogeneous; that is the neighborhoods of each interior nodes share the same geometry. This685
even extends to the color of edges matching, so that some of them form pairs. One can for example verify686
that whenever a yellow edge goes from node M to M ′, there is a green edge from M ′ to M and no other687
one. This identifies the corresponding actions to be inverses w.r.t. successive execution since from any688
starting node, taking first the green (resp. yellow) edge then the yellow (resp. green) one forms a loop. The689
same can be said of the red and purple colors, which are found to correspond to another pair of inverse690
actions. At last, the four central squares correspond to the commutativity of the ak used: indeed one can691
see on the graph that taking the red edge first, then the green one always leads to the same node as green692
first, red second.693

While those observations were discussed as properties of the permutation matrices, the actual result is694
their representing properties of the abstract motor actions ak. And indeed one can check that the blue arrow695
corresponds to the identity action a1, that the inverse pairs (yellow, green) and (orange, purple) respectively696
correspond to (rightward, leftward) and (forward,backward) translations, and that the commutativity697
discussed is that of “forward then left” being the same as “left then forward”. While these facts seem698
obvious from an external point of view, they were not part of the initial knowledge of the agent discussed699
in §3.1. This only appears as a consequence of the agent capability to predict the sensory consequences of700
its own actions built during experiment 1. On a functional level, this is very similar to the property of motor701
sequence compression exhibited by RNNs performing sensorimotor prediction in (Ortiz and Laflaquière,702
2018); in fact we argue that it is the same phenomenon that is picked up on by the neural networks and that703
it is intrinsically related to sensorimotor prediction as developed in Section 3.704

This also applies to the graph shown in Figure 8b obtained when considering all seven actions, i.e. the705
two rotations corresponding to actions a6 and a7 are now included in the analysis. This plot, obtained706
through a classical force-directed algorithm, shows the same 2D graph of translations obtained before, but707
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enriched with a third dimension supporting the change of orientation induced by rotations. Again, the depth708
of the graph is maintained low to keep things legible. The global structure of the graph can be described as709
a disjunction of 2D subgraphs corresponding to translations at fixed orientation. Each subgraph is therefore710
equivalent to each other up to a rotation as can be seen by the edges colors shifting between the planes.711
As an example, one can see that the same node in the graph can be reached by following either (green,712
dark blue) and (dark blue, purple), or (left, turn left) and (turn left, forward) in terms of actions seen from713
an external point of view. Figure 8b also shows that rotations are limited to the third vertical dimension714
in which they form cycles at constant position in the planar subgraph. This property is highlighted in the715
graph by the 4 circled nodes which figure the same agent position for the four possible orientations. The716
cycle simply mirrors the external observation that taking four π/2 rotations successively takes one back to717
the initial orientation. Importantly, this could constitute an internal signature of rotations as opposed to718
translations.719

In the end of this second experiment, the agent has thus been able to discover a structure of its actual group720
of motor actions. The agent now has access to algebraic relations between its own actions which relate to721
its motor capabilities. This knowledge also allows it to generalize the sensory prediction it discovered in722
experiment 1 to all the combinations considered in the graph. Nevertheless, one has to keep in mind that all723
the actions considered in these experiments are not exactly conservative in the sense of Equation (9). Indeed,724
they fail at conserving spatial information on the border of the simulated camera. However, results show725
that conservativity holding true for all internal pixels allows for discovering the aforementioned properties.726
Because all calculations are made on actual current outputs of the pixels, one obvious consequence is that727
the agent has no way to predict what happens outside of its field of view, and so far it keeps no memory of728
it. Therefore, the results only hold for a very local movement w.r.t. the dimension of the agent. However,729
the discovered structure stays true whatever the initial position of the exploration.730

4.3.3 Experiment 3: exploiting the graph to improve the representation of the action set731

In the previous results, we have run the experiments with an experimental starting action set Ainit732
conveniently set to A, the set of externally defined movements. While this has been useful at first to yield733
easily recognized structure in Experiment 2, it is a crucial point that the results do not depend on this strong734
assumption. Therefore the same two part experiment is conducted with the difference that the starting735
action set Ainit the agent can run is not arbitrarily set to A anymore. Instead, it is now drawn in the set736
of combinations of actions ak ∈ A. Three important cases are now possible : first, it may be that some737
of the ak are “missing” in Ainit; on the contrary, duplicates may have been drawn so that the agent can738
run a, a′ ∈ Ainit which are effectively the same action (i.e. ∀b ∈ B, ab = a′b). Finally, it may even have739
drawn “complex” actions a /∈ A, that is actions that can only be obtained by combining some of the ak.740

The three situations are illustrated in Figure 9, where the graphs obtained at the end of Experiment 2741
are drawn for various starting action sets. In both cases, both the complexity of the starting action set and742
the depth of the depicted graph have been limited to keep the discussed structure as readable as possible.743
Figure 9a depicts the first two cases: the agent was given a duplicate action from A as well as missing one.744
This can be assessed in the resulting prediction graph by the yellow and black arrows which relate the745
same ordered pairs of nodes, e.g. from the highlighted red to blue nodes, and the lack of an inverse arrow746
that would match them. Note that while the absence of this inverse (green) arrow represents the lack of a747
“direct” inverse action in Ainit, the emerging structure from the graph allows for the determination of an748
inverse path as highlighted by the bold (red, orange, blue) arrows. From an external point of view, this749
basically means that if the agent has no action to translate itself to its left, it can insted rotate clockwise,750
then move backward, and finally rotate counter-clockwise to reach the correct orientation. Interestingly, this751

This is a provisional file, not the final typeset article 24



Godon et al. Structuring Motor Actions With Sensory Prediction

(9a) Graph obtained with a duplicate starting action (depicted in
black) and a missing action (a2, green in other figures). A path
made of 3 edges (red, orange, blue) equivalent to the missing
starting action is highlighted, providing an inverse to the (also
highlighted) yellow edge.

(9b) Graph obtained by adding a combination (depicted in black) to the set of
starting actions. Here, the action set was limited to translations to keep a
clear visual.

Figure 9. Illustration of the effect of drawing starting actions at random on the discovered structure.

phenomenon where a missing inverse can be otherwise obtained by combination of other actions can only752
occur when the agent is able to rotate. The third situation is depicted in Figure 9b, where the experiment753
was conducted with the robot given the additional action a8 “forward then rightward” along a8 = a5a3 in754
addition to the translations of A. The choice not to give the agent its defined rotations a6 and a7 serves755
only to get an easily legible picture of the resulting graph, much like in Figure 8a, and does not impact the756
following. This additional move a8, which we as an external observer know to be a combination, is studied757
like all other basic actions by the agent during the motor babbling phase. It means that the agent has no cue758
about a8 being an actual combination of two other actions. In the end of the experiment, the obtained graph759
of action exhibits this additional action a8 as black edges, as shown in Figure 9b. From this graph, one can760
easily see that, from any point, it is indeed equivalent to follow either the black arrow or first the orange761
and then the yellow ones. The agent has thus been able to discover the action combination property.762

These graphs therefore show two important results. The first conceptual comment is that the validity of763
the proposed experiment is not conditional to a perfect match between ideal, “objective” moves of the764
agent and actions it is effectively able to perform at start. This is a desirable property for genericity and our765
goal of bootstrapping, for it allows to avoid justifying said match. The second, more practical, comment is766
that the graph resulting from the experiment can be used by the agent to select an action set “better” than767
Ainit. Indeed, the redundancy between edges (or paths of edges) in Figures 9a and 9b represent the agent768
discovering it can discard the actions corresponding to black edges without losing capabilities, i.e. while769
keeping all nodes reachable. It can then be used to prune the available action set to a minimal set generating770
the same group, in the sense of Equation (4). Determining a criterion for selecting which actions are kept771
and which are discarded could functionally correspond to a basis for invariant principles in motor actions772
of the agent (Flash and Hogan, 1998). The agent may also expand its action set with new actions that verify773
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useful properties: for example, in the case depicted in Figure 9a it can package the bolded path of edges774
into a single action so that it gets a missing inverse.775

5 CONCLUSION

This paper was devoted to the introduction of a variational extension of a previous framework into the776
sensorimotor framework, extending the scope of such approaches to naive agents able to move freely in777
their environment. We demonstrated how, despite their extremely limited starting capabilities, these agents778
could exploit said framework not only to perform sensory prediction, but also to structure their own actions.779
The proposed formalism has been assessed in simulation as a proof of concept, with a naive agent able to (i)780
build for each of its action some permutation matrices associated to its own sensory array, and (ii) exploit781
them to structure its own set of actions. These experiments were conducted here in a somewhat simplistic782
experimental setting to keep the simulated situation as close as possible to the theoretical exposition.783
However, their transparent exploitation of the formal mechanisms we explicitly isolated yields valuable784
insight as to similar results, which related works otherwise achieved in more realistic conditions.785

Implementing a formal version of sensory prediction comes with many interesting perspectives, as it was786
shown to yield crucial properties both in the original cognitive psychology literature and in the previous787
robotic contexts. We hypothesize that it can be used to better understand the emergence and properties788
of capabilities often related to that of sensory prediction, both from robotics and from cognitive sciences,789
such as those mentioned in the Introduction. These include e.g. motor control, motor planning, isolating790
proprioception, suppression of self-induced changes or object perception. These capabilities therefore791
constitute potential applications to which further study could be devoted from there.792

Nevertheless, the applicability of the proposed paradigm to real agents or robots is still an opened793
question. First, it is clear that most of the actions an agent will be dealing with are not strictly conservative,794
but rather quasi-conservative like in the simulations conducted in this paper. While not extensively studied795
in this paper, some ongoing mathematical developments show that their properties still allow to reach the796
same concepts of sensory prediction and action structuration. Then, the fact that the sensory prediction797
relies on exact sensory values shifts inside the un-noisy sensory array is not very realistic. Introducing798
stochastic matrices instead of permutation ones constitutes a promising way to deal with such an issue,799
also pulling all these developments inside a probability territory (Rao and Ballard, 2005; Seth, 2014) in800
which a lot of development still needs to be done. Moreover, the way this framework can be extended801
to agents exhibiting dynamical effects, e.g. when performing kinematic or dynamical control, must still802
be investigated. This requires some clarification about the structure and role of time in the sensorimotor803
experience, a point which is still largely eluded in the SMCT context. Finally, actions can also be noisy, and804
the question of their repeatability over time needs to be addressed so as to face realistic conditions. This805
poses significant challenges in the SMCT context of minimal a priori knowledge outlined in the present806
contribution. However, ongoing exploratory work tends to show that topological structure grounding807
some continuity of the sensorimotor experience can be found as a contingency in said naive context. All808
these paths constitute future promising works in the field and will undoubtedly extend the scope of these809
approaches to naive adaptive and robust agents able to build by themselves their own understanding of810
their interaction with their environment.811
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APPENDIX

In the following proofs, we will assume812

(
∀b ∈ B,∀ε ∈ E , ψC (a′b, ε) = ψC (ab, ε)

)
⇒ a = a′ (20)

and813
∀c, c′ ∈ C , Fc = Fc′ ⇒ c = c′. (21)

These assumptions are of minimal importance for two reasons814

• Eq. (21) only mandates that any two distinct sensels have different receptive fields if only one time,815
while Eq. (20) asks for actions to have no difference (as denoted by =) except that which can be816
assessed by the sensory capabilities ψC . These conditions only fail to hold in very particular cases and817
can be found to be true in the presented examples.818

• In any case where they indeed fail to hold, the exact same results can be found with suitable equivalence819
relations for actions (for Eq. (20)) and sensels (for Eq. (21)) at the cost of more loaded notations.820

Therefore these conditions only serve as a way to streamline the presentation of the results with an at most821
negligible impact on generality.822

1 Equivalency between conservative and permutative823

Here is provided a proof that conservative actions can be described as permutations of sensels, as824
discussed in Section 3.3.1.825

PROPOSITION 1. Let a be a conservative action ∈ A, there exists a unique map826

σa : C → C

c 7→ c′
(22)

such that827
σa(c) = c′ ⇔ c

a→ c′ (23)

PROOF. Let a ∈ A conservative and c ∈ C . By conservativity ∃c′ ∈ C such that c a→ c′. Let c′′ ∈ C
such that c a→ c′′, then

∀b ∈ B, Fc(b) = Fc′(ab) and Fc(b) = Fc′′(ab)

so that
∀b ∈ B, Fc′(ab) = Fc′′(ab).

But a : B → B must be surjective because it is bijective, so that all b ∈ B can be written ab’ for some828
b’ ∈ B. Therefore Fc′ = Fc′′ , from which c′ = c′′: successor sensels are necessarily unique. We therefore829
declare σa to be the map that takes each sensel c ∈ C to its unique successor sensel.830

PROPOSITION 2. For any conservative action a ∈ A, its successor map σa is bijective.831

PROOF. Let a be a conservative action, and let c, c′ ∈ C be sensels such that σa(c) = σa(c
′). From this

it follows that
∀b ∈ B, Fc(b) = Fc′′(ab) and Fc′(b) = Fc′′(ab)
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for some common successor c′′ ∈ C . But it entails in particular

∀b ∈ B, Fc(b) = Fc′(b)

that is Fc = Fc′ , which further yields c = c′: σa is injective.832
From injectivity of σa, it follows that |σa(C )| = |C |. But because C is finite it in turns follows from this833
equality that σa(C ) = C , i.e. σa is also surjective.834

2 Conversing of conserving835

We provide here the proof, as used in Section 3.3.1 and following, that conservative actions are themselves836
a subgroup of A for its succession operation.837

PROPOSITION 3. Let AC ⊂ A be the subset of all conservative actions. Then AC is in fact a subgroup838
of A.839

PROOF. AC ⊂ A by its very definition, therefore we only need prove it is actually a group.840

• ∀c ∈ C , c
e→ c with e the identity action: e is conservative.841

• Let a and a′ be conservative actions, and c ∈ C : since a ∈ AC , ∃c′ ∈ C such that c a→ c′. But since

a′ ∈ AC too, there also exists c′′ ∈ C verifying c′ a
′
→ c′′, so that finally

∀c ∈ C ,∀a, a′ ∈ AC , ∃c′′ such that c a
′a→ c′′

that is a′a is conservative itself.842

• Let a ∈ AC and let σa be its successor map C → C . ∀c ∈ C since σa is surjective (see proof in 1) we
have c = σa(c

′) for some c′ ∈ C , or equivalently

∀c ∈ C , ∃c′ such that c′ a→ c.

Finally, since c′ a→ c⇔ c
a−1→ c′ it follows that a−1 is conservative too.843

3 Conservation or prediction, it is all the same844

Here is provided a proof that mapping conservative actions a to their respective sensory prediction845
functions Πa provides a group isomorphism, as per Equation (15). To this end, let us recall the essential846
property of these functions:847

∀b ∈ B,∀ε ∈ E , ψC (ab, ε) = Πa(ψC (b, ε)). (24)

From this we get:848

PROPOSITION 4. The map849
Π: AC → Bij(S)

a 7→ Πa

(25)

is a group morphism. Moreover it is injective, so that it induces a group isomorphism AC
∼= Π(AC ).850
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PROOF. Let a, a′ be two conservative actions, we have

∀b ∈ B,∀ε ∈ E ,

Πa′−1a(ψC (b, ε)) = ψC (a′−1ab, ε)

= Πa′−1(ψ(ab, ε))

= Πa′−1(Πa(ψ(b, ε)))

= (Πa′−1 ◦ Πa)(ψ(b, ε))

so that Π(a′−1a) = Π(a′−1) ◦ Π(a): Π is a group morphism.851

Now let a, a′ ∈ AC such that Πa = Πa′ . It follows from Equation (24) that

∀b ∈ B,∀ε ∈ E , ψC (a′b, ε) = ψC (ab, ε)

so that under hypothesis (20) Π is indeed injective.852

4 Convergence of experiment 1853

This part is devoted to the proof of the relevance of Equation (17) in §4.2.1, that is the convergence of854
matrices Ma towards the associated permutation matrices Mσa for all conservative actions a.855

LEMMA 1. For any coefficient mai,j of Mσa , the associated sequence (mai,j [tn])
n

of values taken in856
(Ma[tn])n during exploration is nonincreasing with values in {0, 1}.857

Proof. Let us consider an arbitrary timestep tn, n ∈ N in the exploration. If a is not drawn at this timestep,
then

mai,j [tn+1] = mai,j [tn] ≤ mai,j [tn].

If it is instead chosen, assuming mai,j [tn] ∈ {0, 1} then as per the update rule of Ma, either858

• mai,j [tn] = 0 and then mai,j [tn+1] = 0 too,859

• or mai,j [tn] = 1 and mai,j [tn+1] ∈ {0, 1}860

so that the lemma follows by induction on n.861

LEMMA 2. For any coefficient mai,j = 1 in Mσa , the associated sequence (mai,j [tn])
n

is constant with862
value mai,j [tn] = 1.863

Proof. At any timestep tn of the exploration, if a is not chosen then mai,j [tn+1] = mai,j [tn].
If it is instead drawn, then by Equation (11) we know that

sj [tn+1] = si[tn]

because mai,j = 1 implies that j = σa(i) as per the definition of Mσa . Then by the update rule of Ma[tn],864
mai,j [tn+1] = 1.865
The lemma then follows by induction on n.866

We now proceed with the last part of our argument, that is showing that coefficients of the empirical867
matrices Mak which do not correspond to successor sensel pairs will actually be nulled during exploration.868
This specific part is provided in the specific case of the simulated experiment presented, allowing us to869
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formulate the relevant equations in the vector geometry of X = R2. The same idea could also be adapted870
for generalized spaces X , B and actions Ainit, more in line with the previous theoretical descriptions.871
However, such a development is out of the scope of this contribution.872

Let us define

∀θ ∈ R, Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

the matrix corresponding to the rotation in R2 of angle θ. As per the definitions provided for our particular
example, we may assume the properties:

∀c ∈ C ,∀(x, y, ~θ) ∈ B, Fc(x, y, ~θ) =

(
x

y

)
+RθFc(0, 0,~0)

and

∀a ∈ Ainit, ∃~ua =

(
xa
ya

)
∈ R2, ∃θa ∈ R

such that ∀b = (x, y, ~θ) ∈ B, ab = (x′, y′, ~θ′)

where
(
x′

y′

)
=

(
x
y

)
+Rθ

(
xa
ya

)
and θ′ = θ + θa.

Therefore we have873

LEMMA 3. Let a ∈ Ainit, c, c′ ∈ C . There exists a unique vector ~da,c,c′ ∈ R2 such that

∀b = (x, y, ~θ) ∈ B,
−−−−−−−−→
Fc(ab)Fc′(b) = Rθ ~da,c,c′ .

PROOF. Let b = (x, y, ~θ) ∈ B. We therefore have874

1. Fc′(b) =

(
x
y

)
+RθFc′(0, 0,~0),875

2. Fc(ab) = Fc

((
x
y

)
+Rθ

(
xa
ya

)
,
−−−−→
θ + θa

)

=

(
x
y

)
+Rθ

(
xa
ya

)
+Rθ+θaFc(0, 0,~0)

876

so that
−−−−−−−−→
Fc(ab)Fc′(b) = Rθ

(
Fc′(0)−

(
xa
ya

)
−RθaFc(0)

)
.

which proves taking ~da,c,c′ =

(
Fc′(0)−

(
xa
ya

)
−RθaFc(0)

)
satisfies the property.877

It should be noted that ~da,c,c′ captures some geometry of conservation: indeed, from the definition of a→878
it can easily be shown that879

∀a ∈init, ∀c, c′ ∈ C ,
(
c
a→ c′ ⇔ ~da,c,c′ = 0

)
. (26)
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This greatly serves the conclusion of our argument with880

PROPOSITION 5. Let a ∈ Ainit, ci, cj ∈ C . Then for given environment configuration ε ∈ E the two881
statements882

1. There exists an absolute configuration b ∈ B such that if b[tn] = b and a[tn] = a for some n ∈ N,883
then mai,j [tk] = 0 ∀k ≥ n+ 1884

2. ε is not doubly periodic with periods ~da,ci,cj and Rπ
2

~da,ci,cj885

are equivalent.886

PROOF.887

• Assume that ε is both ~da,ci,cj - and Rπ
2

~da,ci,cj -periodic. Let n ∈ N such that a[tn] = a, let b = b[tn].888

We have si[tn] = ε(Fc(b[tn])) and sj [tn+1] = ε(Fc′(b[tn+1])) = ε(Fc(b[tn]) +Rθ ~da,ci,cj ). But since889

θ ∈
{

0, π2 , π,
3π
2

}
, Rθ = ±I2 or Rθ = ±Rπ

2
. Therefore by periodicity of ε we have sj [tn+1] = si[tn],890

from which by induction on n we get ∀n ∈ N, mai,j [tn] = 1: 1)⇒ 2).891

• Without loss of generality, let us assume that ε is not ~da,ci,cj -periodic (if it is instead only not Rπ
2

~da,c,c′-892
periodic, the same argument follows up to a rotation).893
Let X0 ∈ R2 such that ε(X0) 6= ε(X0 + ~da,ci,cj ), b0 = (x, y,~0) ∈ B such that Fc(b0) = X0. By894

definition Fc′(ab0) = X0 + ~da,ci,cj so that if b[tn] = b0 for some tn ∈ N, sj [tn+1] 6= si[tn]. From the895
update rule of Ma we then get mai,j [tn+1] = 0, which by Lemma 1 concludes the proof.896

Finally, simultaneously applying this proof to all actions and pair of sensels of the agent has us deduce:897

COROLLARY. If ε : R2 → P is aperiodic, then there exists a sequence of drawings of actions (a[tn])n∈N
such that

∀ak ∈ Ainit, lim
n
Mak [tn] = Mσak

.

While the converse strictly speaking is not true, we can see from the preliminary lemma that problems in898
the algorithm arise from very particular periodicity properties which relate to the geometry of (receptive899
fields of) sensels. It therefore should be noted already how most experiments in live specimens made900
use of specifically engineered symmetric and periodic environments to try and impair the development901
of perception (Held and Hein, 1963). Future works could expand on the effects of such “pathological”902
environment configurations on the proposed algorithm.903
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