N

N

Bootstrapping perception with action: a case for sensory
prediction

Jean Godon, Sylvain Argentieri, Bruno Gas

» To cite this version:

Jean Godon, Sylvain Argentieri, Bruno Gas. Bootstrapping perception with action: a case for sensory
prediction. 2020. hal-02596671v1

HAL Id: hal-02596671
https://hal.science/hal-02596671v1

Preprint submitted on 15 May 2020 (v1), last revised 31 Oct 2020 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02596671v1
https://hal.archives-ouvertes.fr

Bootstrapping perception with action:
a case for sensory prediction

Jean Godon, Sylvain Argentieri and Bruno Gas

Abstract—Recent developments have argued that perception
can emerge from sensation when (and to an extent only when)
actions are considered. This problem of Developmental Robotics
is studied by drawing from the Sensorimotor Contingencies
(SMC) theory. Specifically, an extended formalism for describing
sensorimotor interaction is proposed, allowing to account for
motor and sensory variations. Said formalism is then used to
study the properties of sensory prediction in a naive agent,
with two main results. First, spatial contingencies make such a
prediction internally computable via a particular class of actions.
Second, sensory prediction is shown to capture the structure of
motor capabilities of the agent. Both those claims are further
illustrated in a simulation. This provides a generalized approach
to bootstrap the development of perception for naive agents,
which can tackle a larger class of problems.

Index Terms—Sensory prediction, sensorimotor contingencies,
interactive perception, bootstrapping, developmental robotics.

I. INTRODUCTION

OW can an artificial agent discover and build cogni-

tive capabilities by itself so it can face realistic and
unpredictable environments? This key capability is one central
question when trying to build autonomous robots. One solution
consists in taking into account the physical properties of the
interaction of the agent with such environments, e.g. by relying
on a priori models, either of the agent’s body, its sensors,
or of the agent world. Such conventional approaches are
by definition relying on well designed models of the agent
interaction for the assumed task it has to solve, like the
navigation in a clustered environment, or the recognition of
a sensory pattern. But such models are notoriously difficult
to obtain [1], by definition incomplete [2], and certainly not
generalizable to interactions varying in unknown spatial and
temporal scales. Importantly, perceptive capabilities are of
tremendous importance when dealing with such problems as
they represent the interface between the low level sensations
generated by the agent sensors and its higher level cognitive
layers. The ability of the agent to act accordingly to its
environment depends on it correctly learning its perception.
But while this ability has been for long considered as a simple,
a priori interpretation of the agent sensor’s outputs, the role
of action in this process is now hard to discard. Multiple cues
argue for a more central role of action from the agent in
the building of its perception capabilities, to a point where
talking about perception without action might be considered
incorrect [3].
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The field of interactive perception [4] emerged recently
as a set of work dealing with this relation between action
and perception. It can be seen as a topic regrouping low
level considerations like embodied sensorimotor approaches to
perception as well as higher ones like autonomous affordances
discovering [5] or control strategies. This paper belongs to
the former approaches, mostly along the Sensorimotor Con-
tingencies Theory (SMC) [6] stating that perception is the
mastery of invariant structures or regularities in the sensori-
motor flow discovered during the interaction of the agent with
its environment. We already proposed different contributions
in this field, successively dealing with peripersonal space
characterization [7], self-contact and body representation [8],
and the emergence of a topological representation of sensors
poses [9], everytime from the sensorimotor flow only. All
these contributions tried to demonstrate how internal (mathe-
matical) structures in the agent motor configuration (namely,
motor quotient spaces and their corresponding topologies),
discovered thanks to sensory invariance, are related to external,
mostly spatial, properties of the agent interaction with its
environment. However these works can only be applied to
acquire local spatial knowledge and skills, and cannot be
used with agents able to move freely in their environment.
The approach proposed here generalizes these concepts by
introducing a variational approach, i.e. variations of the agent
motor configurations, as a way to leverage spatial regularities
of the interaction to learn sensory prediction.

Sensory prediction is a topic that has been extensively
covered in neuroscience and cognitive psychology. Many
physiological experiments ([10], and later [11], [12]) described
how it might be implemented via motor efference copies
coupled with forward sensory models and how it supported
perceptual processes such as gaze stability. On the other hand,
ideomotor theory [13] goes as far as stating actions are in fact
represented in the mind as their perceptual consequences. This
has naturally lead to sensory prediction being used in robotics,
especially in cognitive robotics and grounded cognition [14].
Predictive Coding [15] constitutes one way to tackle this
question, with the idea that the brain is constantly building
and updating a predictive mental model of its sensorimotor
experience. The ability to predict the sensory consequence
of an action has been used in motor control [16]; it can
be leveraged as a way of learning efficient representations
of motor sequence [17], and it was also shown to lead to
a sensorimotor notion of object [18] on top of which higher
cognitive constructs can be built. Other works dealt instead
with the matter of learning this ability: neural networks have
been shown to be able to learn sensory predictions in a variety



of experiments [19], [20]. It should be noted that both of these
contributions learned to relate changes in sensory states and
in motor configurations.

Interestingly, sensory prediction has already been studied
in the context of SMC theory [21], with the idea that the
regularities of the latter could assist in the former. Our work
follows the same approach, showing how space-like regularity
properties in the experience of the agent allow for sensory
prediction to be learned. This is done in the context of very
simple models which are shown to be sufficient to pick up
on the phenomenon and therefore illustrate precisely which
structure is actually captured by the aforementioned neural
networks. Moreover it shows how both sides of sensory
prediction —learning it and using it to structure action— can
be performed by a naive agent, therefore providing a new
perspective for bootstrapping in the context of SMC theory.

This paper is organized as follows. To begin with, we
introduce in Section II all the notations and concepts needed
to exploit the proposed variational approach. On this basis, we
leverage these elements in Section III to enunciate properties
of the subsequent sensorimotor interaction. In particular, we
demonstrate the equivalence between the structure of sensory
predictions and actions. Then, some simulations are proposed
in Section IV to assess the mathematical formalism, through
a careful evaluation of each step of the proposed framework.
Finally, a conclusion ends the paper.

II. DEFINING A FORMALISM FOR SENSORIMOTOR
INTERACTION

This first section aims at expanding several previous results
in Interactive Perception as obtained for example in [4]. These
have made use of several classical objects such as the pose
(or working) space and the forward (either geometrical or
sensory) maps, at times rearranging their definitions or making
them more precise to allow for formal proofs to be derived.
Such work is followed upon in this contribution, with a
somewhat significant overhaul of the formal definitions. This
section is thus devoted to the definitions of the terms we
will use to describe a sensorimotor problem, showing during
the exposition how they appear in a simple classical example
and how they differ from previous theoretical formulations.
We then leverage these definitions to propose and prove new
perceptive bootstrapping algorithms in the following section.

A. Motor actions

As a first step, this subsection is devoted to the intro-
duction of all the notions and definitions of the motor side
of the proposed sensorimotor framework. After highlighting
the limitations of the previous approaches, we show how
to reparameterize the sensorimotor interaction by introducing
motor actions. Their definition and properties are then care-
fully discussed.

1) A look back to previous formalisms: Let us consider in
all the following an agent endowed with motor and sensing
capabilities. The internal motor configuration m and the
sensory configuration s of this agent lie respectively into
some sets M and S. Both of them define the internal agent
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Figure 1: Illustration of the motor actions effects. The internal agent configu-
ration is entirely described by its sensorimotor flow (m,s), while its external
configuration is given by (b, s), partially unknown to the agent. An action a
acts on a configuration b so that the agent motor & sensory configurations
and its position in space is changed.

configuration (m,s), i.e. the sensorimotor flow the agent has
access to. There is a clear dependency between the sensory and
motor configurations that can be captured by the sensorimotor
maps s : M x & — &S, such that s(m,e) = s, where
€ € & represents the state of the environment. As said in the
introduction, other contributions already exploited this kind of
parameterization [22], [7], [8]. In all these contributions, only
“grounded” agents are considered, since a single internal motor
configuration m € M is only mapped to a single sensory
configuration s € S for a fixed environment configuration e.

To illustrate this point, Figure 1 represents a 2D-agent able
to translate itself only along one dimension z. This agent is
able to move inside an environment made of colored walls
thanks to 5 rotating joints whose states m;, ¢ = 1,...,5,
are captured in its motor configuration m = (m;),;. To begin,
let us consider the case where m; and my are fixed, so that
the agent is only able to move its arm supporting a camera-
like sensor generating a sensation s, i.e. m is restricted to
(m3,mg,m5) only. In such a scenario, one has a grounded
agent for which each motor configuration m can be mapped
to one corresponding sensor pose, which is itself mapped to a
sensation s. This simple statement allows to build structures in
M by exploiting only the sensorimotor flow (m, s), structures
that can be leveraged to build an internal representation of the
agent body, or even of its peripersonal space. In other words,
m contains all of the information, although sometimes with
some redundancy, about the coupling between the agent and its
environment. However, what would happen if the same agent
was able to perform translations in its environment? This case
is illustrated in Figure 1 when all motor states m; are used.
Indeed, one can imagine a case where the agent moves in its
environment along the x axis from (external) position T (with
internal configuration m) to 7’ (same m). In this case, the
sensor samples two different parts of the color wall so that its
generated sensations s and s’ from these two different positions
are different. Then two identical internal configurations m give
two different sensations: there is no more mapping between
m and s, and all the mathematical developments performed
in previous works can no longer apply. Therefore, it seems
necessary to generalize these formalisms to cope with agents
able to move freely in their environment. In this paper, one
proposes a variational formulation of motor actions to deal
with this issue. It is introduced in the next subsections.



2) Foregoing grounding : reparameterizing the sensori-
motor interaction: From previous arguments, the internal
motor configuration m can not be mapped unambiguously
to sensations without additional considerations. If one still
insists on having a functional relation between motor data
and sensations, one then needs to enrich the initial motor
set. In this paper, one proposes to introduce some superset
% of M as initial parameter space. This new set & can be
thought of as the set of all absolute configurations b made
of pairs (m,7) where m is the internal motor configuration
and T represents an absolute measure of the pose of the
agent in its ambient space (which would most commonly
be position and orientation in 3D space). It is important to
understand that the agent itself has no knowledge of the
current absolute configuration b of its interaction with its
environment, retaining the same hypotheses about a priori
structure. However we may then consider the sensorimotor
map as a function s : Zx & — S instead of s : M x & — S
to account for possible displacements in the environment.
Defining such a new set % allows then to introduce the notion
of external agent configuration as the tuple (b, s). As such, two
different points of view must be stressed out: (i) the external
point of view (i.e. coming from the designer of the system) will
allow to characterize some properties of the agent interaction
with its environment (through modelization, hypotheses, etc.),
and (ii) the internal point of view which represents which data
and concepts are available to the agent for its operations. This
specific point is discussed in §III-A.

Coming back to Figure 1, the agent moves to three suc-
cessive absolute configurations b, b’ and b”. All of them are
now different, which was not the case of the internal motor
configurations: introducing b € % apparently solves the issue
raised at the end of §II-A1l. Let us now explain how the agent
actually reaches some given absolute configuration b.

3) Going variational : introducing motor actions: As ex-
plained previously, the agent has no direct access to the
configuration data b: it cannot know where it is in 4. Instead
we suppose it starts with some (very limited) knowledge of
how it moves in this set, i.e. it is capable of performing some
moves in & and of comparing any two moves for equality. To
this end, we propose to introduce some new set 4 behaving
in the following manner: an element a € A can be applied to
any absolute configuration b € Z to give a new configuration
b’ = ab = a(b). Therefore, a can be seen as a function
% — ZB. We will usually denote b % b’ this situation, and
call a a motor action. Now as we intend to represent the way
in which the agent can move in its environment, one can take
for granted the existence of a special action e € A that verifies
Vb € 2, b 5 b: the agent may decide to stay still. Moreover,
considering it is able to do any moves a and o/, it may then
chain them in one single move a” = a’a € A which satisfies
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so that A naturally carries the structure of a monoid. In the
following, we will further restrict ourselves to the case where
individual actions are reversible, that is for any action a there
exists an action a~! such that

vbeB, b )
a
making A into a group. Seeing as how actions can be thought
of as mappings # — A, a necessary (and sufficient) condition
is for all mappings in A to be bijective.

Figure 1 illustrates these notions, with the agent moving
from external configuration b to b’ through an action a.
This action, applied at b = (m, 7), happens to produce a
translation of the agent so that its internal motor configuration
finishes at the same m. Note that the agent would be able to
return back to its initial absolute configuration by applying
the inverse action a~' of a. Moreover, since a is a function
defined on the whole Z set, the same action can be applied
at b’ = (m, 7’) to reach a third configuration b” = (m”, 1").
This time, the same action a has conducted to a global
displacement of the agent in the environment, combined with
a change in its internal motor configuration. Indeed, while
it represents cases which are mostly avoided for practical
reasons, it is not required for a to only depend on m in the
general case: the outcome of the same action a may depend
on the position 7T of the agent in the environment. Finally,
the agent would have been able to move from b to b” by
applying the action a” = a2, as per Equation (1).

With these structure assumptions, for a given subset of
motor primitives A" C A available to the agent, we can search
for the set of composed moves the agent can actually reach
by iteration of its known ones. We shall say an action a € A
decomposes over A’ = {a;};c if it can be written in the form

I ci.iner 3)
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a=ai,...aq

The interest of these decompositions appears because the
effect of composed moves on motor configurations boils down
to the effects of its components as per the following diagram:

a

b b’

N L

a _
bl 4>12 4“ Y n—1

Vb € A,

In the example in Figure 1, it may well be that the agent
can move to any configuration b i.e. that its action set is
A = R® (for the 5 possible angular increments of its 5 joints).
But it may also be restricted to a limited set of moves, for
example if it only can send discrete commands to its joints.
For instance, if each actuator is a stepper motor, then its action
set turns into A = Z°. In this case, a would be written as
the tuple (Ag;);, i@ = 1,...,5, where Ag; € Z is the i
motor increment expressed in step increments. Consequently,
any action a would decompose over A" = {a;}; where action
a; corresponds to adding one step to the i™ actuator. In this
specific case, while A is infinite, it is sufficient for the agent to
know the 5 motor primitives a; to generate any action a € A.



Figure 2: Illustration of the receptive fields for a sensor made of two rigidly
linked cameras at configuration b. Each pixel ¢; of either camera produces
a sensory value s, in the overall sensory array s explained only by a small
subset of space F, (b). The same applies for both cameras, thus explaining
how a sensation for the agent can be explained by the perception of a subset
of space.

B. Grounding sensations in space

The previous subsection was devoted to the introduction
of actions on the motor side of the proposed sensorimotor
framework. This subsection accordingly deals with the sensory
side of it, and more particularly with its relation to a persistent
“space” which was entirely absent from previous consider-
ations. After a more precise definition of the meaning of
“environment configuration”, the link between local perception
and spatial considerations is formalized. This will constitute
the root of the theoretical developments proposed in the next
section.

1) Decoupling environment and its underlying layer: In
previous works, a traditional way for parameterizing the
environment was to introduce the environment configuration
€. The meaning of such a variable was often fuzzy, almost
without any formal semantics linking it to the sensorimotor
experience of the agent. In this paper, and maybe more in line
with classical “physical” formalisms, it is proposed to stress
the difference between the ambient geometrical space—in
which sensorimotor experience occurs—and the environment
itself—that is the state of “things” lying in this space—.
The former takes the form of some set £ endowed with a
spatial structure as encoded by a group ¥(€) of admissible
transformations. These spatial transformations are mappings
& — & preserving some “geometry” of £. The most common
illustration is the usual affine geometry of R? given by the
group SE3(R) = SO3(R) x R? of its rigid transformations,
made of 3D rotations, translations and their compositions. On
this basis, one chooses to define a “state of the environment”
as a valuation that maps each point of £ to its corresponding
physical properties such as temperature, color, luminance,
etc. These states are therefore best represented as functions
p: & — P where P is a set describing the different physical
properties the agent can observe. Consequently, p(e) represents
the observable physical properties at point e € £. We will
henceforth denote &2 the set of environment states, i.e. a set
of such functions p.

Figure 2 illustrates these considerations. In this simple case,
the geometrical space £ is monodimensional, represented as an
axis where each point e is assigned a color through a function
p1 or ps. Interestingly, one can now distinguish points in & for
which different environment states locally coincide, as far as
the agent is able to observe this coincidence. This trivial—but
important—statement is discussed in the following.

2) Local perception and receptive fields: Now that we have
formally defined what is “out there” from an external point of
view, let us now focus on the sensory capabilities of the agent.
Recall that we considered in §1I-A2 the sensorimotor map as
a function s : & x & — S. From previous considerations, this
map can now be generalized as a function s, : Zx & — S, to
account for the environment physical state p. The new notation
s. also outlines that the sensory map is explicitly written for
a sensory element c (or sensel, i.e. one pixel for a camera,
the cochlea cell coding for one sound frequency, etc.). Thus,
the sensorimotor map s¢ for the entire sensory apparatus is
made of the aggregate of all sensels along s¢ : B x & —
S = [I.c Se with € the set of all sensels'. An illustration
of these points is proposed in Figure 2 for an agent endowed
with two cameras. In this case, the sensels c;—each depicted
as elements in a color array— represent the pixels of either
camera. Separate sensors in the apparatus thus appear as sub-
arrays in % the first (resp. second) camera is figured by 4
(resp. %>). Note that this decomposition of € as €1 U 6
directly comes from our external understanding of the agent
structure (i.e. with one camera corresponding to one set of
sensels, i.e. one sensor). One could have selected others sub-
arrays to form a distinct set of (virtual) sensors not necessarily
corresponding to their (physical) implementation on the agent.

Let us now focus on sensors ¢’ C % that satisfy the
following locality principle: for any given absolute configu-
ration b € Z their output only depend on a certain subspace
F:(b) C & as per the following property

vplva € 327Vb € ‘%7

(5)
D1|Fys (b) = P2|F, () = 57 (b, p1) = s%/(b, p2).

In this equation, F% is a map intending to mirror the well
studied concept of receptive fields of the sensor €”, that is the
region of space determining the sensory output of ¢”. Figure 2
represents some of the receptive fields for the two cameras
agent. The first one, F,, (b), is the receptive field of a single
sensel/pixel ¢; € €. The receptive fields Fi, (b) and Fi, (b)
of each camera can be obtained as the union of the receptive
field F¢,(b) of their respective pixels. In the same vein, the
overall receptive field of the agent Fy(b) is also given by
F¢,(b) U Fg,(b). From the same figure, it is clear that even
if p; # po (since there are areas of different colors on the £
axis), the sensation captured by the agent is the same since
the aforementioned differences are restricted to areas of space
unseen to the agent.

It is important to notice that this is the formal step where
the notion of receptive field formalizes an implicit relation
between the sensations of the agent and spatial information.
This constitutes one fundamental property sufficient to lever-
age spatial knowledge from the agent interaction with its
environment. The application of these theoretical elements is
proposed in the next section.

'In all the following, the map s« will be shortened to s when there is no
ambiguity, consistently with the initial definition of the sensorimotor map of
the agent recalled in §II-Al.



ITI. A ZERO-TH LAYER OF SENSORIMOTOR
CONTINGENCIES: SPATIAL REGULARITIES THROUGH
VARIATIONS

In this section, we proceed by describing how the formal
elements from Section II can be arranged to enunciate some
interesting properties of the sensorimotor interaction. First, to
keep in line with considerations of minimalist bootstrapping,
the model of knowledge of the agent is discussed. Then the
interactions between the objects defined earlier are outlined,
with some preliminary conditions, definitions and results made
formal. Finally, a novel learning process is proposed for what
we argue to be the class of most basic agents, allowing for
the internal representation of their initial motor structure. The
corresponding results are of two distinct but equally important
natures: some, taking the viewpoint of an external observer, as-
sert that certain particular objects of interest (such as a sensory
prediction function) exist; others guarantee these objects to be
computable in the boundaries set by our model of knowledge.
This is made in an effort to keep a priori knowledge to a
minimum, and these proofs are generally of a constructive
nature. They are both formulated for general agents as defined
by the previous section, before being assessed on a particular
toy case in the next section as proof of concept.

A. How can it be so “naive”?

In the authors previous works [9], sensorimotor interaction
occurred as a sequence of (generally discrete) steps where
at each point, the agent can access both its proprioception
m € M (seen as an array of current joint configuration
states) and its corresponding exteroceptive array s = s(m, €).
These sensory arrays are then compared for equality as total
vectors, that is the agent may not access the vectors component
by component. This knowledge is then used for example
to compute set-theoretic motor kernels which are shown to
be a structural invariant of the sensorimotor interaction. By
contrast, in this paper slight modifications are applied. Indeed,
from the external point of view we now have Z as a functional
analogue to the previous M, that is the set of “parameter” data
that entirely determines the state of the interaction between
agent and environment. However, as the definition of Z refers
to some explicitly external data (i.e. the 7 in b = (m, 7)),
we cannot assume its knowledge from the point of view
of the agent. We could however elect, on the same basis
previous contributions used, to assume internal knowledge of
the m part of b = (m, 7). Note that this would not however
guarantee us to achieve all previously obtained results since
the class of represented agents and interactions grew far wider:
this is precisely what motivated the reparameterization of the
problem from M to Z in the first place. Instead, we even
dispose of the distinguished knowledge of “proprioception”
per se altogether. By this we mean that although the agent
may have access to feedback from its actuators, these values
should be treated as part of a unified sensory array. We posit
that the property for certain components to be proprioceptive
can be inferred from otherwise discovered statistics of the
interaction. This however effectively makes us lose a great deal

of knowledge since internal motor states m used to represent
the point where the agent stood in its relation to space.

As for remedies, it is instead where a variational approach
is preferred: while configuration data represented by b € %
still exists as an external object, the agent may only choose a
motor action a € A which, applied to b, yields the following
configuration b" = ab = a(b). The agent is therefore given
the capacity to compare any two elements of A for equality,
so that it may tell whether at any two steps of its sensorimotor
experience it performed two identical or distinct actions.
Moreover, much deeper change in knowledge occurs at the
level of sensory readings: in the following we not only ask
that the agent be able to compare its entire sensory output
s = (s¢)ce for equality as a vector, but that it also can check
for equality two values of any given sensel. That is, for every
sensel ¢ € €, for every values s, s/, this sensel may output,
the agent may test whether s, == s/. In this contribution,
it will be further assumed that the values output by distinct
sensels are themselves a priori comparable for equality. While
it is a common property in many classical applications, this
constitutes a current limitation which will be addressed in a
future ongoing work.

B. Sensorimotor binding: a marketplace for spatial informa-
tion

The formalism introduced in Section II allows for space to
appear as a variable in the sensorimotor equations, which we
will use in this section to prove that under some reasonable
assumptions we can talk about the spatial information content
of a sensory signal. This in turn is used to form the basis
of a sensory prediction the agent can use to try and infer
the sensory consequences of its motor actions, mirroring the
psychological construct of forward sensory model which is at
the heart of ideomotor theories. This is the core idea we will
further develop in the simulations of Section IV to see how
a naive agent can derive such a prediction function from its
sensorimotor flow.

Recall that for any given sensel ¢ € ¥ and environment
state p € &, we introduced F, the receptive field of sensel ¢
as the function which given agent configuration b € % yields
& = F.(b) C & the minimal region of space which entirely
determines the output of s.. Therefore we can write

Vb € Q7Vp € <@736(])ap) = fC(p\Fc(h))v (6)

where f. is a “sensitivity” function (or filter) which converts
the physical properties of environment sampled into a sensory
output, both selecting to which property the sensor reacts and
how. Equation (6) describes the sensorimotor dynamics by
dissociating the spatial dependency (which is given by F) and
the sensitivity one (as seen with f.), so that we the observer
can now speak of sensels that look at the same region of space.
Let us then consider a particular condition, in which sensels
c¢; and c¢; verify for motor action a the relation

Vb € B, F,,(ab) = F.,(b). )

This describes the case where, for a given action a, sensel ¢;
samples after a the same point sensel c; was sampling before



. : : > B
bTb/T’b//

Figure 3: Illustration of how the underlying 1D space induces transitions
between cross-sensel outputs. In this case, under action a, sensel c; takes the
place of sensel c;: the output of c; after a (red) is the same as the output of
c; before a (red). The same applies when performing a a second time: the
yellow color is transfered from c; to c;.

the agent began to move. To have this relation apparent to
the agent, we also require that the output of these particular
sensels be comparable, as already discussed in §III-A. In the
strictest sense, this can be by requiring that their sensitivity
functions f., and f., are equal. It follows that

Vbe &, Vpe P,
¢, (ab,p) = fe, (p|FCi(ab)) (8)
= fe; (D7, (b)) = 3¢, (b, D).

Equations (7) and (8) are both illustrated in Figure 3, where a
1D (infinite) pixel array is placed in front of a 1D colored line
along which the sensor can translate itself thanks to actions a.
Eq. (7) is captured by the fact that both receptive fields F, (b)
and F. (b’), drawn as two rectangular shapes, project on the
same area on the environment. Then, Eq. (8) explains how it
causes both sensels to actually generate the same sensory (red)
output. It is clear that the spatial relation being forwarded to
sensory transitions depends on the sensels actually outputing
the same (red) value. This might be argued to be a restrictive
assumption. Nevertheless, being able to deal with different
sensitivity functions is a sizeable development to which an
ongoing contribution shall be devoted.

To conclude, a key point here is that a phenomenon entirely
defined from the external point of view through receptive
fields is accessible from the internal one by the constraints
it imposes on the sensels outputs values during exploration.
Equation (8) therefore shows how space, insofar as it is
common to all sensels and actions, makes this informational
content accessible to a naive agent.

C. A motor and sensory account of spatial conservation

1) Conservation through permutation : conservative ac-
tions: The result obtained in the previous subsection exhibits
an important property making internally available some exter-
nal information. But given that the actual motor exploration
follows the algebraic structure of actions A4, it still remains to
be shown how these two structures are consistent. This can be
made apparent by introducing conservative actions as those a

of A verifying
Ve € ¢,3c € € such that Vb € B, F.(ab) = F.(b), (9)

generalizing somewhat Equation (7). Then, conservative ac-
tions are those for which all sensels of the agent exchange
the places they sample: there is conservation of the (spatial)
information available. In the following, “Vb € %, F.(ab) =
F.(b)” will be shortened to the more legible ¢ % ¢/, and
¢ (resp. ') is said to be the predecessor (resp. successor)
of ¢’ (resp. ¢) by a. It is proven in Appendix V-A that for
conservative actions a, the relation — can be made into a
successor function

04: 6 —F

, (10)
cr

where ¢ = o0,4(c) is a sensel verifying ¢ % ¢/. Therefore,
conservative actions can equivalently be thought of as permu-
tation of sensels. Importantly, conservative actions provide a
natural framework for exploiting Equations (7) and (8) during
motor exploration. Indeed, it is proven in Appendix V-B that
conservative actions form a subgroup Ax C A for its compo-
sition operation. That is to say, chaining conservative actions
yield other actions which are necessarily conservative, and the
inverses of conservative actions are themselves conservative.
This also defines a new group action of conservative actions
on sensels via ac = o,(c) = ¢ where ¢ % ¢

At this stage, it has been shown how the spatial property of
permutation of the receptive fields relates to the intrinsic motor
structure of the agent. However, this does not suffice to make
this structure accessible to its knowledge as the dependency
of the sensorimotor process on the spatial variable is implicit.
We must therefore go through one final step to relate the
available informational content (i.e. sensory reading) to the
motor structure.

2) From permutation to prediction : making it into sensory
territory !: Let us consider the agent at any point (b,s) of its
sensorimotor experience. Its sensory output is s = s¢ (b, p) =
(s¢)ecw, and for any action a it may perform this sensory
output should shift to s’ = s(b’ = ab,p) provided the
environment state stays constant throughout the action. But
following our previous discussions, were a to be conservative
we would have

S/ :(Sc(abap))ce% = (fC(p|Fc(ab)))C€(ga
:(f0<p\Fac(b)))ce%” = (saC(bvp))cGﬁ
:(Saa,(c))c€%7

(11

so that performing motor action a only results in a permutation
of the components of the sensory output. This permutation is
exactly o,, and therefore is a constant of the agent which
does not depend on the actual current configuration (b,p).
Equation (11) shows that any conservative action a € Ay
corresponds to a sensory function

P,:S—S

(12)
(Sc)c€<§ = (Sac)ce%
which verifies the property
VbE‘@avpe 3273%(@1),17) :Pa('s‘g(bap))‘ (13)



Per this property, P, is a function which given any starting
sensory reading of the agent can determine the sensation it
would experience after performing action a (provided the en-
vironment state stays constant during a). It must be reiterated
that a crucial part is that this function operates on sensory
data, which is precisely the only data available to the agent.

D. A conservative policy to regulate the predictive market?

From there, let us now consider
P: A4 — Bij(S)

14
a— P, (14)

with Bij(S) the set of all bijections from S onto itself, i.e.
P maps abstract motor actions to their sensory prediction
functions. As proven in Appendix V-C, it establishes a group
isomorphism between conservative actions a € A and their
associated sensory prediction maps P, € P(A), so that

Ay = P(Ag).

While Equation (15) written as is might easily pass as benign,
it is actually a very powerful result and the centerpiece of
our argument. It indeed specifies how structure computable
by the naive agent —as captured by its group of sensory
predictions P(A¢)— relates to the a priori structure of
its motor capabilities present in A. Using the terminology
introduced in §III-A, it shows how some external information
describing the interaction between agent and environment can
emerge as a hierarchical construct from the infernal point of
view. In turn, it is the enunciation —and the proof— of this
result that motivate developing the formalism as in Section II,
going as far back as absolute configurations b € % and
ambient space £. Equation (15) will be leveraged as part of
the simulations in the following.

15)

IV. SIMULATING A 2D VERSION OF OUR TOY MODEL

Up until this point, the discussion has been kept to a purely
theoretical level. The following section is now devoted to a
simulated experiment illustrating the new proposed formalism.
To this end it starts with a description of the experimental
setup, highlighting how it manifests in the proposed formalism
of §III. Then, we describe what tasks the agent is given and
how they relate to the theoretical results we put forth in the
previous section. Finally, we review the observable results of
these tasks to inspect how our earlier theoretical claims appear
in practical cases.

A. Description of the experimental setup

In the following, we will consider the 2D generalization
of the illustrating case used in the previous sections. That is,
the studied agent body is now made of a planar, rectangular
camera sat atop omnidirectional wheels, see Figure 4. These
allow for translations along both x and y coordinates, as
well as rotations in the plane. The pixels of the camera are
sensitive to the luminance of the ambient stimulus, which for
our experimental purposes is a fixed grayscale image placed
above the moving camera. Describing the problem in the terms

Figure 4: Experimental setup used in simulation to assess the proposed
formalism. A holonomic agent is placed in a 2D environment which ceiling
is made of a fixed grayscale image. The agent can move in this environment
by applying 7 different actions ag, including the “rest” one ai. A 10 X 10
camera pointed towards the ceiling is placed on the top of the agent and
generates a sensory array s = (S, );-

of the developed formalism gives:

o the ambient space & is the plane R?;

« the set of physical properties of space P is [0; 255] the set
of luminance values. Therefore, a state of the environment
p € & is a function which takes points (z,y) of the
ambient plane and map them to luminances as given by
the data of the acquired image;

« the configuration space & is R? x S; & R? x |—m; 7] to
account for both position (x,y) and orientation 6 of the
robot on the plane;

o the sensory output of the agent is an array s €
[0; 255]W0XHC, with W, (resp. H.) the number of
sensels/pixels in one row (resp. one column) of the
camera. In the simulation, the image dimension is set
to W, = H. = 10. Each of the components s, of s are
the sensory output of pixel c¢;, given by the luminance
of the spatial location in the environment it is currently
looking at. Importantly, the position of each pixel in s is
chosen arbitrarily.

Let us define a set A of seven basic actions ag, k =1,...,7:

1) one identity action @i, mapping any current absolute
configuration to itself;

2) four elementary translations as, as, ay4, as, one for each
direction of the basis axes on the plane. These are
defined relative to the current orientation of the agent,
which can end up distinct from external systems of axes
when the agent rotates;

3) two elementary rotations ag,ay, to account for both
clockwise and counter-clockwise turns.

These actions are depicted in Figure 4 with colored arrows.
Note that the color convention used in this figure is the same
used in the forthcoming figures for coherence.

Relative to the prior discussion about properties of motor
actions, these are not strictly conservative as per the def-
inition (9): indeed, consider dF’ the elementary “forward”
translation. While inner pixels of the camera will certainly ex-
change receptive fields, those in the front row will necessarily
observe new areas of space after the agent has moved forward.
Therefore none of these front row pixels has any successor



for dF', which precludes it from being strictly conservative.
The same phenomenon of border impredictibility occurs for
all translations, each with their respective side failing to verify
the conservation property. We nevertheless proceed with the
formalism on the basis that actions are at worst, informally
speaking, “quasi” conservative. This is based on the quick
analysis that, for a N-by-N square camera, this defect only
occurs in IV pixels which remains an order of magnitude fewer
than the N? total.

Representing the sensory configuration as numerical arrays
makes the permutation of sensels into N -by-N, sparse matri-
ces, where N, = W, x H, is the number of sensels. Indeed,
starting with any permutation ¢ : [1, N] — [1, N] we can
define a matrix My € My n(R) by

1iff j = (s
. {o J= o), (16)
else.

It can then be checked that for any array s = (s;), the array
S¢ = (s¢(i)) obtained by permutating the components of s by
¢ verifies s = Mys.

B. Description of the tasks

The proposed simulation can be decomposed as a sequence
of 2 related, successive, tasks. First, these are briefly described
in a global manner so as to go through the flow of the
experiment. Then, each task is described in greater detail with
respect to its implementation details. It is in this second part
that relevant proofs ensuring both completion and correctness
of the endeavor are provided. In this setup, the robot is given
a set A of ny unknown actions drawn in A. Although
A was designed for convenience from an external point of
view, A, may not accurately reflect it. Indeed, for random
draws there is a high likelihood of missing actions when n 4
is small, of duplicate actions when it is large. However, as
discussed previously these notions do not yet make sense to
the agent, which can only “run” actions drawn. Importantly,
in the following, the considerations will be restricted to the
case where A, = A. This is a possibly strong assumption
about the initial fitness of readily available commands to
the “objective” capabilities of the agent. The influence of
this choice and the effect of less optimally designed starting
command shall be postponed to later works.

The first part of the experiment is one of motor babbling.
During it, the agent effectively runs its available actions a; €
Ajnie multiple times and tries to figure out whether they are
conservative by computing their associated sensel permutation
map. This is realized as a sequential process : at timestep 7,
the agent (randomly) chooses and runs an action aj, = a[n] €
Ainit, and the absolute configuration b[n] = (x[n], y[n], 8[n])
is accordingly changed to b[n 4+ 1] = a;b[n]. Corresponding
sensory array s[n + 1] = (s;[n + 1]); is then used to proceed
in the computation of the (candidate) permutation matrix Mg,
of ay, with the details of the update rule discussed in the
following subsection.

Once this first task is complete, the agent computes all
products of (quasi) permutation matrices to make the resulting
set of matrices. As per Equation (4), this set is precisely the

one of all matrices that decompose over the M,, , ar € Ajni.
This is formally analogous to the compressed representation
of motor sequences observed in [17]. Following our argument
about the groups of prediction functions and motor actions
being isomorphic, this graph is taken as the global under-
standing of its motor capabilities the agent has acquired. Here
“global” denotes that new structure, absent from the first
empirical phase which was limited to Ajp;;, emerged from the
computation of products.

1) Learning the prediction through sensorimotor interac-
tion: The first task performed by the agent is computing,
where possible, the permutation matrix associated to each of
its available motor actions. This is done according to the
following procedure: at the beginning of the sensorimotor
experience, to each starting action a; € A, associate a
N, x N, matrix M,, where N, is the number of sensels.
This matrix is initialized so that all of its coefficients are 1.
Then, at the end of timestep n where it performed action ay,
(that is a[n] = ag), the agent uses its sensory output arrays
both previous (s[n]) and current (s[n + 1]) as per the update
rule :

1iff s;[n+ 1] = s;[n] and (M, [n])

0 else.

(Mo, [n+ 1])1',]' — { I

a7
Let us first observe that in this rule the only possible change
in coefficients is going from 1 to 0 : whenever a coefficient
(Ma,[n]), ; is already O, the condition of the first case
automatically fails so that its value stays at 0. Therefore, the
rough dynamics of the update is that while all coefficients start
at 1, some are eventually switched to O upon exploration until
matrices converge to a final (possibly null) form.

In Appendix V-D an argument is provided that for any
conservative motor action this algorithm makes the empirical
matrix M,, converge to the associated permutation matrix
M, . It also proves that for non conservative actions, under
the same richness hypothesis the associated empirical matrix
will converge to the null matrix. This fact allows the robot to
naively distinguish between conservative and non conservative
actions, should he be given the capability to perform both on
startup.

2) “And then the simulation began to simulate...” : inferring
motor structure from learned interaction: In the second phase
of the experiment, the agent uses the prediction functions it
discovered for elementary conservative moves to infer how
combinations of these moves relate to each other. Indeed,
it was proved in the previous part that for any conservative
actions a and a’ with associated permutation matrices M,
and M, _,, it is true that

Maa/Maa = Maa/a (18)

so that the agent can internally infer the sensory prediction of
any combination of the moves it empirically learned. This is
used in a Dijsktra-like process to build a graph of prediction
matrices, which runs as follows, see Algorithm 1: starting
from a prediction matrix My corresponding to any origin
action ag, each of the known matrices M,,, ar € Ainit
are applied to yield both a set of new neighboring “end



Algorithm 1 Dijkstra-like algorithm for live construction of
action group graph.

Input
A The set of all matrices learned in exp.1
D A bound on length of matrix combinations used
O A reference matrix around which to explore

Output
G A local view of the combinatorial graph of matrix
products around O, using edges in A

Add O to collection U
O.depth < 0
Add node O to G
while U is not empty do
K < node in U
for all M, in A do
P+ M,K
P.depth < K.depth + 1
if P.depth < D then
B < False
for all node C in G do > e« previously explored points for equality
if predictions for P and C match then
B < True
Set edge M,: K — Pin G
end if
end for
if B is False then
AddPtoU
Add node P to G
Set edge M,: K — P in G

D> for all node C in G

end if
end if D> if Pdepth < D
end for D> forall ain A
Remove K from U
end while D> while U is not empty

points” Ny, := {M,, My, ap € A} and for each pair My—
M,, My a directed edge M, . This is then recursively applied
to all newly discovered end points, while those that were
previously visited (as the prediction matrices can be compared
for equality) are discarded. However, the resulting graph would
in most cases be infinite, therefore a stopping rule must be
chosen. In our case, we chose to explore up to a given depth
parameter in graph edge distance.

C. Results

This subsection is devoted to the evaluation in simulation
of the previous points, divided in two successive experiments.
The first one illustrates how the agent can build the permu-
tation matrices associated to each of its conservative actions;
a discussion about the convergence and the statistics of this
experiment is then proposed. The second one exploits the
permutation matrices just obtained to structure its own actions
through a graph of their combinations; a discussion about its
fidelity as a representation of the action group A is proposed
to conclude the subsection.

1) Experiment 1: discovering the permutations:

a) Building the permutation matrices: To begin with, the
simulated robot in Figure 4 is placed at a random 2D position
inside the image to be explored. The available action set is
defined as A, = A so that n4 = 7. Then, at each time step
n, a random action a, = a[n] € Ay is run, and the associated
permutation matrix M,, is updated according to (17). After
this update, the agent is able to evaluate if these matrices have
finished converging and therefore can decide when to stop the
exploration. An entropy-like internal criterion is proposed to
quantify this convergence, along

N.
CM)=1- H;,
(M) Nlog2 ;
Ne s M
where H; = — Y —2L]o LIy, (19)
Z . g i )

j=1
1
N. :

max(l, Zj:l Mi,j)
In this criterion, H; is the entropy of the post-action output
of sensel ¢; as a random variable of the pre-action outputs
of all sensels c;. Therefore it measures which degree of
surprise remains in the determination of which (if any) sensel
is successor to ¢;. Finally, this makes C into an average
measure of certainty in the discovery of successor sensel pairs,
going in nondecreasing trajectories from 0 at initialization to
1 at permutation matrices. Consequently when it obtains the
updated matrices M,, [n+1], ar € Ainit the agent computes all
Cin+1] = C(M,, [n+1]) to assess the state of its discovery,
stopping its exploration when all the C}, have reached 1.

After convergence, the resulting matrices for all the 7
actions shown in Figure 4 are depicted in Figure 5. In this
figure, a 0 (resp. 1) is represented in black (resp. white),
and action a; corresponds to the “rest” action. Since the
agent has no knowledge of its sensor geometry, the position
of its sensels (i.e. pixels) inside the sensory array s (i.e.
the flattened image) is randomly chosen. In this case, the
resulting permutation matrices for each action is depicted in
Figure 5 (top), demonstrating the fact that those matrices are
not easy to understand from an external point of view. If one
now selects a more natural ordering of the pixels inside s,
like a line by line arrangement, one then gets the permutation
matrices in Figure 5 (middle). With such an arrangement, an
external observer is now able to get a clearer intuition about the
effects of each action on the pixels permutations. Nevertheless,
these two different sets of matrices are purely equivalent from
an internal point of view. This can be illustrated by mapping
the permutation on the overall sensor to better catch how the
agent has been able to discover the underlying spatial transfer
between sensels. This is done by plotting the sensel pairs along
which values are transfered as proposed in Figure 5 (bottom).
In this figure, the 10 x 10 pixel grid of the simulated camera
is represented together with arrows connecting each sensel to
its successor. While such a representation requires external
knowledge in the sensor geometry, the arrows are entirely
determined by the internal permutation matrices from either
of the two sets presented. It is thus a convenient external way

and p; =
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(a) Maq, (b) Ma, (c) May

(d) Ma,

(e) May (f) Mag (g) Ma,

Figure 5: Representation of the 7 binary 102 x 102 permutation matrices My ,, corresponding to the 7 actions aj, possibly generated by the agent, where a 0
(resp. a 1) is represented as black (resp. white). (first row) Matrices obtained for a random organization of the sensels outputs s; inside the sensory array s.
(second row) Matrices obtained for a well chosen sensels arrangement, where each pixel values are stored line by line in s. (third row) Interpretation of the
permutation matrices (either from the first or second row) directly on the physical 10 x 10 pixel array: if a 1 is present at line ¢ and column j of a matrix
Mo, , then an arrow joining pixel 4 to j is plotted. Note that the arrow length has been resized for actions 6 and 7 (i.e. rotations) to enhance readability.
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Figure 6: Representation of the criterion Cy, = C(My,,) for the 7 actions
aj. Each jump in this figure corresponds to a reevalution of the criterion
happening at a timestep when the corresponding action has been drawn in the
set in Ajpje. As expected, the criterion starts from O to reach 1, indicating that
all possible permutations have been found.

to display that each matrix has actually captured the pixel shift
induced by each action. For instance, with such a visualization,
it is now very clear that (as, as), (a4, as) or even (ag, ay) are
all found to be pairs of inverse actions; this specific capability
will actually be exploited in §1V-C2 to structure the agent set
of actions.

b) A discussion about the dynamics of convergence: It
is clear from Figure 5 that at some point the agent captured
the permutation to the best of its capabilities. One therefore
proposes to study the dynamics of the convergence of the
approach w.r.t. the experimental time step n. First, the internal
criterion Cy, = (M,, ) defined in Equation (19) is evaluated at
each n and each ag, resulting in the plot in Figure 6. One can
then confirm that the C} increase from 0 (all elements in the
matrices are initialized at 1) to 1 (all successor pairs have been
discovered). It also appears that for each particular action a,
the associated criterion increases in sparse jumps because its
matrix M,, is only actually updated at the random time steps

when ay, is drawn. Figure 6 also illustrates the fact that the
amplitude of these jumps decreases over the experiment. For
the starting conditions of this experiment, a detailed analysis
shows that about 7 realizations of each action are necessary
to fully discover the target permutation matrices. But it also
appears that most of the initial 1s in the matrices are wiped
out very early, with a criterion value Cy[n] ~ 0.7 after only
one execution of the corresponding action aj. However, one
still questions whether the differences in the dynamic of all
actions is a random occurrence of this particular exploration, or
there is an intrinsic variance in difficulty in learning between
actions.

c) A statistical analysis about richness of the environ-
ment: The answer to the previous question can be obtained
by performing an empirical survey (i) by averaging over
random explorations for given starting conditions, and (ii) by
varying these starting conditions and comparing the resulting
performances. With such a study, (i) will allow to quantify
the influence of the randomness in exploration, while (ii) lets
us assess how the properties of the environment influence the
discovery of permutations. For this experiment, the environ-
ment is made of the image shown in Figure 7a, where the
starting points of each exploration is depicted as a grid of
points on it. At each of these points, 1000 random explorations
are conducted, each of them consisting in a random run of
actions ay, as in §IV-Cla, resulting in 1000 sets of 7 C curves
as in Figure 6. For each random exploration [ and each action
ay, the number of jumps J; ,, in the C} curve obtained is
taken as a measure of difficulty in learning the permutation.
The average J = 1 >, >, Ji.a, Of Jiq, over all actions aj
and explorations [ at a given starting position is depicted as
the color of the grid in Figure 7a, with L = 1000 (runs)x7
(actions). Green points correspond to a low number of jumps



(a) Environment explored by the agent.
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(b) Normalized histograms of the number of jumps in the criterion C'
for the green and red initial positions highlighted on the left.
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(c) Global normalized histogram of the number of jumps in C.

Figure 7: Statistical analysis of the permutation matrices building process. (left) Environment explored by the agent. Each point in this environment corresponds
to a starting position around which the agent draws actions to build the permutation matrices Mg, . Counting the mean number of jumps in the criterion
curves C}, for each realization of the exploration around a given starting point and each action leads to the value J representing the difficulty to build the
corresponding matrices. A high (resp. low) J value in red (resp. in green) corresponds to areas in the environment harder (resp. easier) to exploit for sensory
prediction. (right) Normalized histograms of the number of jumps in the criterion curves C} averaged across actions. (top right) Focus on the histograms
obtained around two different starting conditions corresponding to low (resp. high) J value highlighted by a green (resp. red) circle in the environment.
(bottom right) Overall normalized histogram for all actions and all starting positions in the environment, showing that most of the permutation matrices are

correctly obtained after a low number of action run.

J, while red ones are representing higher values. One can
observe that the points are overwhelmingly green, and that the
red ones are restricted to precise areas in the picture. These
correspond to areas with locally low contrast, such as the sky
(in the top left corner) or its reflection (in the bottom). The
extremal conditions corresponding to the two green and red
highlighted points are further compared. For each of them, the
distribution of the J; ,, is plotted as an histogram in Figure 7b.
Clearly, green points correspond to areas in the environment
where the permutation matrices can be discovered in at most 5
executions of actions. On the contrary, at red points the agent
must wait for about 17 on average, and up to 35, executions
before it has obtained the same results. This illustrates how the
richness of the environment might influence the agent ability
to capture the structure of its sensory prediction. On a more
global scale, Figure 7c shows the distribution of the J;,,
for all random explorations, indiscriminately of the starting
position. This corroborates the observation that most positions
in the image are green, i.e. lead to easy convergence. It appears
that for a randomly selected starting position, there is more
that 66% of chance of permutation matrices being discovered
in less than 4 executions of their corresponding actions.

2) Experiment 2: structuring actions by combination: From
the previous experiment, we now have as many permutation
matrices M,, as we have actions in A;;. As outlined in
§IV-B2, one can then use them to build a graph of prediction
matrices by following Algorithm 1. Recall that in this graph,
a node is a permutation matrix obtained as a combination of
the M,, matrices, while there is a M,, edge from matrix
M to M'" iff M’ = M,, M. Therefore, all edges in the graph
correspond to the permutation matrices built during experiment
1. According to Equation (15), this graph is isomorphic to

the graph of corresponding actions, meaning all properties
discovered of any combination of matrices holds true for the
corresponding combination of actions. As an example, if one
discovers that M,, = M,, M,,, then one also has a; = azas.

As a first step, let us consider only the actions corresponding
to translations in the environment, i.e. ag and a; are discarded
from Ay This a priori selection is only made to simplify the
visualization of the graph at first. After applying Algorithm 1
to the matrices shown in Figure 5, one gets the directed graph
in Figure 8a, where all the color conventions are consistent
with experiment 1. This particular graph has been built for a
maximum depth set to 3 and with M, the permutation matrix
of the “rest” action taken as the origin of the graph. Note that
the depth of this graph has been maintained voluntarily low
so as to help in the reading of the graph. Note also that the
arbitrary choice of origin makes all of its neighbors themselves
correspond to one of the M,, discovered in experiment 1 since
they all occurred as M,, M,, = M,, products, whereas all
other nodes are indeed new matrices.

This graph mirrors many algebraic properties of the M,, as
captured by the internal experience. Indeed one can first ob-
serve that the light blue arrow leads from any given node M to
itself, which corresponds to M, being the identity matrix Iy, .
Furthermore one can note that the graph obtained is, up to its
borders, completely homogeneous; that is the neighborhoods
of each interior nodes share the same geometry. This even
extends to the color of edges matching, so that some of them
form pairs. One can for example verify that whenever a yellow
edge goes from node M to M’, there is a green edge from
M’ to M and no other one. This identifies the corresponding
matrices to be inverses w.r.t. matrix multiplication since from
any starting node, taking first the green (resp. yellow) edge
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(b) Directed graph obtained for all actions ay.

Figure 8: Directed graph of permutation matrices Mg, —and thus also of
corresponding actions aj, as per Equation (15)— obtained by combination of
these matrices. Color conventions for edges match the color of each action in
Figure 4.

then the yellow (resp. green) one forms a loop. The same
can be said of the red and purple colors, which are found to
correspond to another pair of inverse matrices. At last, the
four central squares correspond to the commutativity of the
M,, used: indeed one can see on the graph that taking the
red edge first, then the green one always leads to the same
node as green first, red second.

While those observations were discussed as properties of
the permutation matrices, the actual result is their representing
properties of the abstract motor actions ai. And indeed one
can check that the blue arrow corresponds to the identity
action ap, that the inverse pairs (yellow, green) and (orange,
purple) respectively correspond to (leftward, rightward) and
(forward,backward) translations, and that the commutativity
discussed is that of “forward then left” being the same as
“left then forward”. While these facts seem obvious from
an external point of view, they were not part of the initial
knowledge of the agent discussed in §III-A. This only appears
as a consequence of the agent capability to predict the sensory
consequences of its own actions built during experiment 1.

This also applies to the graph shown in Figure 8b obtained

when considering all seven actions, i.e. the two rotations corre-
sponding to actions ag and a7 are now included in the analysis.
This plot shows the same 2D graph of translations obtained
before, but enriched with a third dimension supporting the
change of orientation induced by rotations. Again, the depth of
the graph is maintained low to keep things legible. The global
structure of the graph can be described as a disjunction of 2D
subgraphs corresponding to translations at fixed orientation.
Each subgraph is therefore equivalent to each other up to a
rotation as can be seen by the edges colors shifting between
the plans. As an example, one can see that the same node in
the graph can be reached by following either (yellow, dark
blue) and (dark blue, purple), or (left, turn left) and (turn left,
forward) in terms of actions seen from an external point of
view. Figure 8b also shows that rotations are limited to the
third vertical dimension in which they form cycles at constant
position in the planar subgraph. The cycle simply mirrors the
external observation that taking four 7 /2 rotations successively
takes you back to the initial orientation. Importantly, this could
constitute an internal signature of rotations as opposed to
translations.

In the end of this second experiment, the agent has thus been
able to discover a structure of its actual group of motor actions.
The agent now has access to algebraic relations between
its own actions which relate to its motor capabilities. This
knowledge also allows it to generalize the sensory prediction it
discovered in experiment 1 to all the combinations considered
in the graph. Nevertheless, one have to keep in mind that all
the actions considered in these experiments are not exactly
conservative in the sense of Equation (9). Indeed, they fail at
conserving spatial information on the border of the simulated
camera. However, results show that conservatity holding true
for all internal pixels allows for discovering the aforemen-
tioned properties. Because all calculations are made on actual
current outputs of the pixels, one obvious consequence is that
the agent has no way to predict what happens outside of its
field of view, and so far it keeps no memory of it. Therefore,
the results only hold for a very local movement w.r.t. the
dimension of the agent. However, the discovered structure
stays true whatever the initial position of the exploration. This
is one crucial improvement in comparison to previous works,
one brought about by the proposed variational formalism of
actions.

V. CONCLUSION

This paper was devoted to the introduction of a new
variational paradigm into the sensorimotor framework, ex-
tending the scope of such approaches to naive agents able
to move freely in their environment. We demonstrated how
these agents could exploit said approach not only to perform
sensory prediction, but also to structure their own actions,
with minimal prior knowledge. The proposed formalism has
been assessed in simulation as a proof of concept, with a
naive agent able (i) to build for each of its action some
permutation matrices associated to its own sensory array, and
(i1) to exploit them to structure its own set of actions. Thus,
with the proposed contribution a naive agent endowed with



the ability to apply actions without any understanding of them
can anticipate the sensory consequences of its movement in
the environment, from which it can int turn discover the
relations between actions and how to combine them. This is
a major improvement w.r.t. existing sensorimotor approaches,
leveraging the limitation of local understanding of the agent
interaction with its environment.

Implementing a formal version of sensory prediction comes
with many interesting perspectives, as it was shown to yield
crucial properties both in the original cognitive psychology
literature and in the previous robotic contexts. It should
therefore be studied further how the results obtained here fare
in reproducing these properties, including e.g. motor control,
motor planning, isolating proprioception, differenciating self-
induced changes from external ones or distinguishing objects.

Nevertheless, the applicability of the proposed paradigm to
real agents or robots is still an opened question. First, it is
clear that most of the actions an agent will be dealing with
are not strictly conservative, but rather guasi-conservative like
in the proposed simulations. While not extensively studied in
this paper, some ongoing mathematical developments tend to
show that their properties still allow to reach the same concepts
of sensory prediction and action structuration. Then, the fact
that the sensory prediction relies on exact sensory values shifts
inside the un-noisy sensory array is not very realistic. Introduc-
ing stochastic matrices instead of permutation ones constitute
a promising way to deal with such an issue, also pulling all
these developments inside a probability territory [23] in which
a lot of development still needs to be done. Finally, actions can
also be noisy, and the question of their repeatability over time
needs to be addressed so as to face realistic conditions. All
these paths constitute future promising works in the field and
will undoubtedly extend the scope of these approaches to naive
adaptative and robust agents able to build by themselves their
own understanding of their interaction with their environment.

APPENDIX
In the following proofs, we will assume

(Vb € B,¥p € P, s¢(a'b,p) = s¢(ab,p)) = a=d
(20)
and

VYe,d €€, F.=F, =c=c. 1)

These assumptions are of minimal importance for two reasons
o Eq. (21) only mandates that any two distinct sensels have
different receptive fields if only one time, while Eq. (20)
asks for actions to have no difference (as denoted by
=) except that which can be assessed by the sensory
capabilities s¢. These conditions only fail to hold in
very particular cases and can be found to be true in the
presented examples.

o In any case where they indeed fail to hold, the exact same
results can be found with suitable equivalence relations
for actions (for Eq. (20)) and sensels (for Eq. (21)) at the
cost of more loaded notations.

Therefore these conditions only serve as a way to streamline
the presentation of the results with an at most negligible impact
on generality.

A. Equivalency between conservative and permutative

Here is provided a proof that conservative actions can
be described as permutations of sensels, as discussed in
section III-Cl1.

Proposition 1. Let a be a conservative action € A, there
exists a unique map

0a:C —F
, (22)
crH C
such that
oalc)=c &S (23)

Proof. Let a € A conservative and ¢ € €. By conservativity
3¢’ € € such that ¢ = ¢'. Let ¢/ € € such that ¢ 2 ¢, then

Vb € B, F,(b) = F.(ab) and F.(b) = F.»(ab)
so that
Vb € f@, Fc/(ab) = FC//(ab).

But a : # — 2 must be surjective because it is bijective,
so that all b € Z can be written ab’ for some b’ € £.
Therefore F,, = F,, from which ¢/ = ¢”’: successor sensels
are necessarily unique. We therefore declare o, to be the map
that takes each sensel ¢ € € to its unique successor sensel. [

Proposition 2. For any conservative action a € A, its
successor map o, is bijective.

Proof. Let a be a conservative action, and let ¢,¢’ € % be
sensels such that o,(c) = o,(c’). From this it follows that

Vb € B, F.(b) = F.(ab) and F. (b) = F..(ab)
for some common successor ¢’ € €. But it entails in particular
Vb € A, F.(b) = F..(b)

that is F. = F,/, which further yields ¢ = ¢’ : o, is injective.

From injectivity of o, it follows that |0,(%¢)| = |€|. But
because ¥ is finite it in turns follows from this equality that
04(€) = €, i.e. o, is also surjective. O

B. Conversing of conserving

We provide here the proof, as used in section III-C1 and
following, that conservative actions are themselves a subgroup
of A for its succession operation.

Proposition 3. Letr Ay C A be the subset of all conservative
actions. Then A« is in fact a subgroup of A.

Proof. Ay C A by its very definition, therefore we only need
prove it is actually a group.
e Ve € €, ¢ 5 ¢ with e the identity action: e is
conservative.
e Let a and a’ be conservative actions, and ¢ € ¥ since
a € Ay, 3¢ € € such that ¢ = ¢/. But sin,ce a € Ay
too, there also exists ¢/ € € verifying ¢ < ¢”, so that
finally

Ve € €,Va,d € A, 3¢ such that ¢ 5 ¢



that is a’a is conservative itself.

e Let a € Ay and let o, be its successor map 6 — €.
Ve € € since oy, is surjective (see proof in V-A) we have
¢ = 04(c") for some ¢ € €, or equivalently

Ve € €, 3¢ such that ¢ % c.

-1
Finally, since ¢ = ¢ < ¢ > ¢ it follows that o~ is
conservative too.

O

C. Conservation or prediction, it is all the same

Here is provided a proof that mapping conservative actions
a to their respective sensory prediction functions P, provides
a group isomorphism, as per Equation (15). To this end, let
us recall the essential property of these functions:

Vb e B,Vp e P, s¢(ab,p) = Pa(s¢(b,p)). (24)
From this we get:
Proposition 4. The map
P: Ay — Bij(S
€ ij(S) (25)

a— P,
is a group morphism. Moreover it is injective, so that it induces
a group isomorphism Ay = P(Ag).
Proof. Let a,a’ be two conservative actions, we have
Vb € B,Vp € 2,
Par-14(s%(b,p)) = s¢(a’"ab,p)
= Py-1(s(ab,p))
= g1 (Pa(s(b,p)))
= (Pa—1 0 Fy)(s(b, p))
so that P(a'~1a) = P(a’~!)o P(a) : P is a group morphism.
Now let a,a’ € A¢ such that P, = P,. It follows from
Equation (24) that

Vb € B,Vp € P, sx(a'b,p) = s¢(ab,p)

so that under hypothesis (20) P is indeed injective. O

D. “Poof!” goes the matrix: a proof

This part is devoted to the proof of the relevance of
Equation (17) in §IV-B1, that is the convergence of matrices
M, towards the associated permutation matrices M, for all
conservative actions a.

the associated
during

Lemma 1. For any coefficient my, ; of M,
sequence (Mg, [n])n of values taken in (Mgy[n]),
exploration is nonincreasing with values in {0, 1}.

Proof. Let us consider an arbitrary timestep 7 € N in the
exploration. If @ is not drawn at this timestep, then

Ma, ; [n + 1] = Mg, ; [”} < My, ; [n}

If it is instead chosen, assuming my, ;[n] € {0, 1} then as per
the update rule of M,, either
e Mg, ;[n] =0 and then myg, ;[n + 1] = 0 too,

o Or Mg, ;[n] =1 and mq, ;[n+1] € {0,1}

so that the lemma follows by induction on n.

Lemma 2. For any coefficient mq, ; = 1 in M,,, the associ-
ated sequence (myq, ;[n]), is constant with value my, ;[0] = 1.

Proof. At any timestep n of the exploration, if @ is not chosen
then myg, ;[n + 1] = mq, ,[n].
If it is instead drawn, then by Equation (11) we know that

sj[n + 1] = SZ[TL]
because my,, ; = 1 implies that j = 0, (i) as per the definition

of M,,. Then by the update rule of M,[n], mq, ;[n+1] = 1.
The lemma then follows by induction on n.

We now proceed with the last part of our argument, that is
showing that coefficients of the empirical matrices M,, which
do not correspond to successor sensel pairs will actually be
nulled during exploration. This specific part is provided in the
specific case of the simulated experiment presented, allowing
us to formulate the relevant equations in the vector geometry of
& = R2. The same idea could also be adapted for generalized
spaces &£, & and actions Aj,;;, more in line with the previous
theoretical descriptions. However, such a development is out
of the scope of this contribution.

Let us define
cos(6)

VO €R, Ry = <Sin © —Sin(9)>

cos(0)

the matrix corresponding to the rotation in R? of angle 6. As
per the definitions provided for our particular example, we
may assume the properties :

Ve e €, ¥(x,y.0) € B, Fu(x,y,0) = (z) + RgF.(0,0,0)
and
Va € A, 3, = (gz) €R? 3, €R
such that Vb = (z,y,0) € B, ab= (/.. 6)

/
where (I,) = (:C) + Ry <xa) and 0’ =60 +46,.
Y Y Ya

Therefore we have

Lemma 3. Leta € A c, ¢ € €. There exists a unique vector
da ee! € R? such that

Vb = (xvya ) '%a F. (ab)Fc’(b; = RHCZLC,C,'

Proof. Letb = (z, y,

1) Fu( (“") + RoF.(0,0,0),
s =) on () 759
<z>+ )

) € %. We therefore have

so that

F.(ab)F,



which proves taking d_:z,c,c’ = <FC/(0) - (ma> — Ry, F.(0)
satisfies the property.

It should be noted that J'a,c’cz captures some geometry of
conservation: indeed, from the definition of - it can easily
be shown that

Va € A, Ve,d €€, ( cSHd e 62;70,0/ = O) ) (26)

This greatly serves the conclusion of our argument with

Proposition 5. Let a € A c¢;,¢; € €. Then for given
environment configuration p € & the two statements
1) There exists an absolute configuration b € 9 such that if

b[n] = b and a[n] = a for some n € N, then mq, k] =
O0Vk>n+1 '
2) p is not doubly periodic with periods d;’c,d and
R% Ja,c,c’
are equivalent.
Proof.

—

e Assume that p is both d, .- and R%Ja,c’cz-periodic.
Let n € N such that a[n] = a, let b = b[n]. We have
si[n] = p(Fe(b[n])) and s;[n + 1] = p(Fe (b[n +1])) =
p(F.(b[n]) + Rod, .. ). But since 0 € {0,2,7, 3},
Ry = £15 or Ry = £Rz. Therefore by periodicity of p
we have s;[n + 1] = s;[n], from which by induction on
n we get Vn € N, mg, ;[n] =1:1) = 2).

o Without loss of generality, let us assume that p is
not da c,cr-periodic (if it is instead only not Rz da c,c-
periodic, the same argument follows up to a rotatlon).
Let Xo € R? such that p(Xo) # p(Xo + dyce)s
by = (z,4,0) € B such that Fi.(bg) = Xo. By definition
F.(abg) = Xo + da,a,c' so that if b[n] = by for some
n € N, s;[n+1] # s;[n]. From the update rule of M, we
then get myg, ;[n+ 1] = 0, which by Lemma 1 concludes
the proof.

O

Finally, simultaneously applying this proof to all actions
and pair of sensels of the agent has us deduce:

Corollary. If p : R?> — P is aperiodic, then there exists a
sequence of drawings of actions (a[n|)nen such that

Vai € Ainit, lim Mg, [n] =M

Uak M

While the converse strictly speaking is not true, we can see
from the preliminary lemma that problems in the algorithm
arise from very particular periodicity properties which relate to
the geometry of (receptive fields of) sensels. It therefore should
be noted already how most experiments in live specimens
made use of specifically engineered symmetric and periodic
environments to try and impair the development of percep-
tion [24]. Future works could expand on the effects of such
“pathological” environment configurations on the proposed
algorithm.
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