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Abstract

We study here the Zakharov-Kuznetsov equation in dimension 2 and 3 and the modified Zakharov-Kuznetsov

equation in dimension 2. Those equations admit solitons, characterized by their velocity and their shift. Given the

parameters of K solitons R
k (with distinct velocities), we prove the existence and uniqueness of a multi-soliton u

such that

}uptq ´
Kÿ

k“1

R
kptq}H1 Ñ 0 as t Ñ `8.

The convergence takes place in H
s with an exponential rate for all s ě 0. The construction is made by successive

approximations of the multi-soliton. We use classical arguments to control of H1-norms of the errors (inspired by

Martel [22]), and introduce a new ingredient for the control of the H
s-norm in dimension d ě 2, by a technique

close to monotonicity.

1 Introduction

In this paper we study different versions of the equation

#
Btu` B1 p∆u ` upq “ 0,

up0,xq “ u0pxq
pt,xq P R ˆ R

d, upt,xq P R, u0 P H1, (ZK)

where the pair pd, pq is:

• p2, 2q for the Zakharov-Kuznetsov equation in dimension 2, with x “ px1, x2q; (ZK2d)

• p2, 3q for the modified Zakharov-Kuznetsov equation, with x “ px1, x2q; (mZK)

• p3, 2q for the Zakharov-Kuznetsov equation in dimension 3, with x “ px1, x2, x3q, (ZK3d)

Bi is the derivative with respect to the ith space-coordinate, and ∆ “
dř

i“1

B2
i the Laplacian.

A solution of (ZK) enjoys two conserved quantities, at least formally, the mass and the energy:

Mpuptqq :“ 1

2

ż

Rd

|upt,xq|2dx and Epuptqq :“
ż

Rd

ˆ
1

2
|∇upt,xq|2 ´ 1

p` 1
pupt,xqqp`1

˙
dx.

Equation (ZK3d) was first propsed by Zakharov and Kuznetsov [17] to describe the evolution of non-linear ion-

accoustic waves in magnetized plasma. Equations (ZK2d) and (ZK3d) were derived from the Euler-Poisson system in

dimension d “ 2 and d “ 3 by Lannes, Linares and Saut in [19]; (ZK2d) was also derived from the Vlasov-Poisson

system by Han-Kwan [15]. Some physical considerations in [1] explain how (mZK) is derived.

Regarding the Cauchy problem, Faminskii [10] first proved that (ZK2d) was globally well-posed in H1pR2q, and
Molinet-Pilod in [32] improved this result to local well-posedness in HspR2q with s ą 1

2
. In dimension d “ 3,

Ribaud-Vento [34] proved local well posedness in HspR3q for s ą 1, and then Molinet-Pilod [32] and independently in
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Grünrock-Herr [14] proved global well-posedness in the same spaces. For (mZK), the first result of local well-posedness

was done by Linares-Pastor [20] for s ą 3{4 (see also [21]), and then Ribaud-Vento [33] improved it to s ą 1{4. In

a recent work Kinoshita [16] improved local well-posedness of (ZK3d) in H
s for s ě 1

2
. From a different perspective,

Bhattacharya-Farah-Roudenko [3] showed that solutions to the focusing (mZK) in Hs for s ě 3
4
are global, provided

that the mass of the initial data is less than the mass of the ground state.

The following scaling transform leaves the set of solutions invariant:

uλpt,xq “ λ
1

p´1upλ 3

2 t, λ
1

2xq.

In particular, the Hsc -norm is conserved under the scaling, with the critical scaling exponent sc :“ d
2

´ 2
p´1

:

}uλptq}Hsc “ }uptq}Hsc . In the studied cases, the equations are in the subcritical case for (ZK2d) and (ZK3d) and in

the critical case for (mZK).

1.1 Solitons and multi-solitons

Nonlinear travelling waves are special solutions of these equations. Those fundamental objects keep their form along

the time, and move at a velocity c in one direction. Their existence is the result of a balance between the dispersive

and non-linear parts of (ZK). From [5], it is proved that those objects exist only if they move along the first axis, and

thus satisfy the elliptic equation:

´cu` ∆u ` up “ 0. (1)

Without further assumption, there exist many solutions in H1pRdq of this elliptic equation. We will consider here only

the ground state Qc P H1pRdq which is radially symmetric and positive: up to translation in space, and up to the sign

for p “ 3, see [18] and [2], Qc is the unique positive solution to (1). Qcpx ´ cte1q is thus a solution to (ZK), called a

soliton.

Denoting Q :“ Q1, we observe that Qcpxq “ c
1

p´1Qp?
cxq. Unlike the solitons of the Korteweg-de-Vries equation,

Q has no explicit expression. By ODE arguments one can still obtain decay at infinity:

@α P N
d, |Bα1

1 ¨ ¨ ¨ Bαd

d Qpxq| “ |BαQpxq| ď K1pαqe´|x|, (2)

and we obtain exponential decay for all Qc by scaling.

Given K velocities ck ą 0, shifts yk P R
d and signs σk P tp˘1qpu, denote Rk the soliton

Rkpt,xq :“ σkQckpx ´ ckte1 ´ ykq.

Due to the non-linearity, a sum of solitons is no longer a solution. However, if the velocities ck are distincts, the

solitons will decouple and interact weakly, and one wonders if there exist nonlinear solutions uptq which behave like

the sum of the Rk for large times: more precisely uptq should behave like

upt,xq » Rpt,xq where Rptq :“
Kÿ

k“1

Rkptq.

Such solutions are called (pure) multi-solitons:

Definition 1. A solution u of (ZK) is called a (pure) multi-soliton (or K-soliton) if for some T0 P R, u P
CprT0,8q, H1q and it behaves at infinity as a sum of solitons with distinct speeds:

u P CprT0,8q, H1q, and lim
tÑ`8

›››››uptq ´
Kÿ

k“1

Qckpx ´ vkptqq
›››››
H1

“ 0, (3)

where vkptq “ ckte1 ´ yk, for some 0 ă c1 ă ¨ ¨ ¨ ă cK and pykqk P pRdqK .

We say that such a u is a multi-soliton associated with the velocities pckqk and the shifts pykqk.

Multi-soliton were first constructed for the (KdV) equation using the inverse scattering method, see [31]. In the non

integrable context, multi-solitons in the sense of the definition (3) were first built for the nonlinear Schrödinger (NLS)

2



and generalized Korteweg-de Vries (gKdV) equations by Merle [29], Martel [22] and Martel-Merle [25] in the L2 -critical

and subcritical cases, and then for the supercritical cases by Côte-Martel-Merle [6]. Combet in [4] gave a classification

of multi-solitons for the L2-supercritical (gKdV) equation. The study of multi-solitons was also developped for other

dispersive equations, like the non-linear Klein-Gordon equation in [8], the water wave system in [30] and the damped

Klein-Gordon equation [13, 7].

The dynamics of multi-solitons was also studied, mainly for Korteweg-de Vries type equations. We refer to [27] for

a stability result. One can also ask about the behavior as t Ñ ´8 (or minimal time of existence) of multi-solitons: this

in particular requires to understand the collision of solitons. For the (KdV) equation, see [31], the inverse scattering

method give explicit formulas which shows that the collision are elastic (with just and explicit shift in space): the

multi-solitons structure remains at ´8. However, for the non integrable quartic (gKdV) equation, Martel and Merle

proved in [26] that the collisions are not fully elastic: a pure 2-soliton at ´8 is no longer a 2-soliton at `8, and they

are able to describe the defect of elasticity.

In this article, we will only focus on multi-solitons for positive times.

1.2 Main results

Our main result in this paper is to prove the existence and uniqueness of multi-solitons of (ZK) in the sense of

Definition (3).

Theorem 2. Let K P N
˚, K distinct velocities 0 ă c1 ă ¨ ¨ ¨ ă cK and K shifts pykqk. There exists a multi-soliton of

(ZK) associated to those velocities and shifts, denoted by R˚ and defined for times in rT0,`8q. It is unique in H1 in

the sense of (3). Furthermore, R˚ P C8prT0,`8q ˆR
dq and there exist a constant δ ą 0, and for all s ě 1, a constant

As such that:

@t ě T0, }R˚ptq ´Rptq}Hs ď Ase
´δt.

Let us introduce right now an important constant related to the interaction of the solitons:

σ0 :“ minpc1, c2 ´ c1, ¨ ¨ ¨ , cK ´ cK´1q.

The constant δ in Theorem 2 depends on the different velocities: it can be chosen as δ ď σ
3{2
0

8
. The time T0 depends

on the velocities and the shifts. Observe that none of them depend on the regularity index s.

An important outcome of this paper is the proof of uniqueness of multi-solitons. As far as we can tell, it is the first

time that this property is proved, besides the case of the (gKdV) equations, where it was proved in the L2 subcritical

and critical cases in Martel [22]. Regarding the L2 supercritical case of (gKdV), recall that [4] gave an exhaustive

classification: multi-soliton form a K-parameter family (each soliton has one instability direction, which yields one

degree of freedom in the multi-soliton).

We do not consider the modified Zakahrov-Kuznetsov equation in dimension 3 (mZK3d) in Theorem 2 for different

reasons. Let us recall that, even though (mZK3d) is not supported by any physical model, as far as we know, it is an

L2 supercritical equation, which makes it interesting by itself. In view of the study in Côte-Martel-Merle [6] for the

L2 supercritical (NLS) and (gKdV) equations, the construction would require the use of a extra topological argument.

Recalling [4] for (gKdV), one would no longer expect uniqueness of multi-solitons, but rather a classification into a

K-parameter family. In order to keep this article a reasonable size, we do not raise this case and leave it for future

works. We focus here only on L2 subcritical and critical cases.

One can naturally ask about stability properties of multi-solitons. Let us recall that de Bouard [9] proved orbital

stability of a soliton in the L2 subcritical cases (ZK2d) and (ZK3d), and orbital instability in the L2 supercritical cases.

Côte-Muñoz-Pilod-Simpson in [5] strengthened this result to asymptotic stability of a soliton for (ZK2d): if the initial

condition is H1-close to a soliton, then it converges to a 1-soliton in H1ptx;x1 ą βtuq for some β ą 0 small. [5] also

give a result of asymptotic stability in the same spirit, for the sum of decoupled solitons: in view of Theorem 2, their

result can naturally be interpreted as asymptotic stability in H1ptx;x1 ą βtuq of multi-solitons. The corresponding

results for (ZK3d) remain open.
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In the L2 critical case (mZK), solitons are unstable and can lead to some kind of blow up (see Farah-Holmer-

Roudenko [11] and Farah-Holmer-Roudenko-Kay [12]).

The multi-solitons constructed in Theorem 2 are the usual one: each soliton interacts weakly with the others

solitons, so that the trajectories of their center is not affected. Recently, the interest grew for highly interacting

multi-solitons, where the trajectories of the centers is dictated (at leading order) by the interaction with its neighbour

solitons. This happens for example for (gKdV) when considering to two solitons with same mass (and so, same speed).

The first result concerning highly interacting multi-solitons is due to Martel-Raphaël in [28], for the non-linear

Schrödinger equation (NLS): they constructed a solution which behaves as a the sum of N -solitons placed on the

vertices of regular N -gone (this solution blows up in infinite time). Nguyen [35] studied the problem for (gKdV):

he constructed, for the L2 subcritical and supercritical cases, 2-solitons with mass c1 “ c2 “ 1, and center at

t˘ lnprctqq `Op1q (so that the distance between the centers is 2 lnptq `Op1q). A similar regime was studied for (NLS)

in Nguyen [36]. We expect that an analoguous phenomenon can happen for (ZK).

1.3 Outline and notations

Recall the parameters of the K solitons are given in the statement of Theorem 2: the velocities

0 ă c1 ă ¨ ¨ ¨ ă ck ă ¨ ¨ ¨ ă cK ,

and the shifts yk “ pyk1 , yk2 q for d “ 2, or yk “ pyk1 , yk2 , yk3 q for d “ 3. We denote as before

Rkpt, xq “ σkQckpx ´ ckte1 ´ ykq and Rptq “
Kÿ

k“1

Rkptq.

The main steps of the proof of Theorem 2 are the following.

We consider a sequence of times Sn tending to `8, and un the sequence of solutions of (ZK) with final data

unpSnq “ RpSnq. We prove first that the error unptq ´ Rptq is controlled uniformly in n in H1 on a time interval of

the form rT0, Sns, where T0 independent of n:

@t P rT0, Sns, }unptq ´Rptq}H1pRdq ď Ce´σt.

This result uses monotonicity typical to (KdV)-like equations, see [22], and the coercivity of the linearised operator

around the sum Rptq of K solitons. The arguments are close to [22]. This is done in Section 2.

Then, we prove that the error is also controlled in Hs, for any integer s ě 2. This requires a special attention

due to space dimension d ě 2. For (gKdV), the arguments developed in Martel [22] are appropriate functionals of the

derivatives of u at level Hs combined with a Grönwall. In dimension d ě 2, the different combinations of derivatives

due to the non-linearity can not be managed by such an algebraic argument: the terms left aside would make the

Gronwall argument fails. To circumvent this requires a careful treatment, see (29) for more precision. The point is

that the variation of those terms can be dealt with by a monotonicity-type argument. This is done in Section 3.

We conclude, in Section 4, the existence of a multi-soliton R˚ in Hs: we take as initial condition for R˚ a weak

limit of unpT0q, show that it is actually a strong limit in L2, and so by interpolation in Hs for any s P R
`, and then

use continuity of the flow in Hs for large s to obtain the rate of convergence }R˚ptq ´Rptq}Hs .

We finish with uniqueness of multi-solitons, in Section 5. For this, we compute the difference between an arbitrary

multi-soliton, and R˚ that we just constructed. As this is the difference of two nonlinear solutions, we obtain better

estimates than before, taking advantage of smoothness and exponential rate of convergence for R˚. In particular,

some estimates are based on L8-norm of the third derivative of the difference between the multisoliton R˚ and R,

which implies a necessary a H3` d
2

`
control of R˚ ´R. It means that we actually use the H5 regularity of R˚ (see the

inequality (63)).
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2 Control of the H
1pRdq-norm of the error

We consider an increasing sequence of times pSnqn going to `8, and the backward solution un of (ZK) satisfying

unpSnq “ RpSnq.

As RpSnq P H8, the solution un is well defined on a time interval pT ˚
n ;Sns, and for all s ě 0, un P CppT ˚

n ;Sns, Hsq.
Our main concern in this section is to prove the following bootstrap proposition which states that if one has a

uniform small of the error }unptq´Rptq}H1 on some interval of time, the error does actually decay with an exponential

rate on the same interval of times.

Proposition 3. There exist constants L ą 0, α ą 0, A1 and a time T0 ą 0 all depending on σ0 satisfying A1e
´ 1

L

σ0

8
T0 ď

α
2
such that the following hold. Let t˚ P pmaxpT0, T ˚

n q, Snq. If

sup
tPrt˚;Sns

}unptq ´Rptq}H1 ď α, (4)

then

@t P rt˚;Sns, }unptq ´Rptq}H1 ď A1e
´ 1

L

σ0

8
t. (5)

This section is decomposed as follow. We first recall some basic properties of (ZK) solitons. The next subsection

introduces mass and energy related functional localized around each soliton. We then develop a modulation technique

to decompose the solution into a sum of modulated solitons and a remainder w which satisfies orthogonality conditions.

Third, we control the evolution of local masses and local energies by a monotonicity argument. Those local quantities

are quadratic in the remainder term w (at leading order): due to the orthogonality condition, and an Abel transform,

they are coercive and yield the desired bootstrap bound (5).

2.1 Bounds on the interaction and coercivity

As mentioned above, the interaction of two solitons is weak. For example, for the solitons R1 and R2, denoting

x0 :“ c1t`c2t
2

, we have (using also (2)), for i1, i2 P J1; dK:

ż

Rd

R1R2 ` |Bi1R1Bi2R2| ď Cc1,c2

x0ĳ

x1“´8

e´
?
c2|x´c2te1|dx ` Cc1,c2

8ĳ

x1“x0

e´
?
c1|x´c1te1|dx

ď Cc1,c2e
´?

σ0

|c1´c2|
2

t. (6)

We can also notice that, as Qc is radially symmetric, by the change of variable x1
i2

:“ ´xi2 , with i1 ‰ i2, there

hold:
ĳ

Bi1QckBi2Qckdx “ 1

4

ĳ
pBi1Qck ` Bi2Qckq2dx ´ 1

4

ĳ
pBi1Qck ´ Bi2Qckq2dx “ 0. (7)

The study of a solution close to a multisoliton brings us naturally to study the linearised operator Lc around a

soliton:

Lcpηq :“ ´∆η ` cη ´ pQp´1
c η. (8)

We recall some well known properties on the operator L :“ L1, see [37], [38], [39], [18], [9] and a good review in [5].

Proposition 4. The self-adjoint operator L satisfies the following properties:

1. KerL is generated by two directional derivatives of the soliton : KerL “ Span tBiQ, i P J1, dKu.

2. L has a unique negative eigenvalue ´λ0 (with λ0 ą 0) of multiplicity 1, and the corresponding eigenvectors are

engendered by a positive, radially symmetric function Z. For more convenience, we suppose }Z}L2 “ 1. Z also

satisfies the exponential decay (2).
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3. The essential spectrum of L is on the real axis, and strictly positive:

σess “ rλess;`8q, with λess ą 0.

4. Up to orthogonality conditions, the operator L is coercive:

• for (ZK2d) and (ZK3d), if u K BiQ for i P J1, dK and u K Q, then

pLu, uq ě λess}u}H1 .

• for (mZK), if u K BiQ for i P J1, dK, u K Q and u K Z then

pLu, uq ě λess}u}H1 .

A detailed proof of coercivity is given in appendix.

2.2 Cut-off functions, adapted masses and energies

As in [22], we use adequate cut-off function, defined on one direction, which will mainly see the mass of one soliton.

Consider the function ψ : R Ñ R defined by:

ψpx1q :“ 2

π
arctanpe´ 1

L
x1q,

with ψp´8q “ 1 and ψp`8q “ 0, and L to define later. We obtain

|ψ1px1q| ď 1

L
ψpx1q, |ψp3qpx1q| ď 1

L2
|ψ1px1q|. (9)

As in [22], the use of a parameter L will play a role in the study of the monotonicity of the mass and for the proof

of uniqueness, where we need to control the third derivative by the first. In this article, we make the choice to also

use this parameter to the condition of coercivity on each Hk, see (65). Considering the moving solitons, we want to

separate them at half of the distance between two following solitons:

@1 ď k ď K ´ 1 , mkptq :“ ck`1 ` ck

2
t ` yk`1

1 ` yk1
2

, and ψkpt, x1q :“ ψpx1 ´mkptqq, (10)

and each cut-off function φk isolates one soliton:

φ1pt,xq :“ ψ1pt, x1q , φKpt,xq :“ 1 ´ ψK´1pt, x1q ,

@2 ď k ď K ´ 1, φkpt,xq :“ ψkpt, x1q ´ ψk´1pt, x1q.

We define the new masses and energies, which mainly focus on the k-th soliton:

Mkptq :“
ż
uptq2φkptqdx and Ekptq :“

ż ˆ
1

2
|∇uptq|2 ´ 1

p` 1
uptqp`1

˙
φkptqdx.

For each k, the sum of mass
ř
lďk

M lptq enjoys an (almost) monotonicity property. For the energy, the same claim

is not clear. We consider adequate modified energies instead, which are better behaved:

ĂEkptq :“ Ekptq ` σ0

4
Mkptq. (11)

Remark 5. We could have used compactly supported cut-off functions, as ψ a real valued C3-function satisfying, on

R:

ψpx1q “
#

1 on s ´ 8,´1s
0 on r1,8r , ψ1px1q ď 0, φkpt, xq “ ψ

ˆ
x1 ´mkptq

L

˙
.

6



This is done for the Schrödinger equation in [25]. However, in order to prove uniqueness, we use monotonicity

argument and this requires exponentially decaying cut-off functions.

2.3 Modulation

We now use a modulation technique to obtain orthogonality conditions on the remainder term. For a sake of clarity,

we suppose in this part that all the solitons are positive, so σk “ 1; the proof is identical for different signs. For C1

functions pxkptqq1ďkďK and rckptq, we denote a modulated soliton, a modulated eigenvector defined in Proposition 4

and respectively the error by

ĂRkpt,xq :“ QĂckptqpx ´ yk ´ Ăxkptqq,
ĂZkpt,xq :“ ZĂckptqpx ´ yk ´ Ăxkptqq

and

wpt,xq :“ upt,xq ´ rRpt,xq.

We will ask for two types of orthogonality conditions:

@k P J1;KK,@i P J1; dK,

ż

Rd

wpt,xqBi ĂRkpt,xqdx “ 0. (12)

or

@k P J1;KK,

ż

Rd

wpt,xqĂZkpt,xqdx “ 0. (13)

Proposition 6. There exist a time T1 ą 0, α ą 0, K1 ą 0 such that the following holds. Let Sn ą T1 and an initial

condition upSnq such that the solution u of (ZK) satisfies, for some t˚ P rT1, Sns:

sup
t˚ďtďSn

}uptq ´Rptq}H1 ď α.

Then :

1. for the subcritical cases (ZK2d) and (ZK3d), there exist K unique functions pĂxkptqq1ďkďK in C1prT1, Sns,Rdq and

we take rckptq :“ ck, such that the error term wpt,xq satisfies the orthogonality conditions (12),

2. for the critical case (mZK), there exist 2K unique functions pĂxkptqq1ďkďK in C1prT1, Sns,Rdq and p rckptqq1ďkďK

in C1prT1, Sns,Rq, such that the error term wpt,xq satisfies the orthogonality conditions (12) and (13).

We obtain a bound on the H1-norm of the error and on the derivatives of pĂxki qi,k and of p rckqk, on rt˚, Sns:
ÿ

k

ˇ̌
ˇĂxkptq ´ ckte1

ˇ̌
ˇ `

ÿ

k

ˇ̌
ˇ rckptq ´ ckt

ˇ̌
ˇ ` }wptq}H1 ď K1 }uptq ´Rptq}H1 , (14)

and

@k,
ˇ̌
ˇĂxk

1
´ rcke1

ˇ̌
ˇ `

ˇ̌
ˇ rck

1 ˇ̌
ˇ ď K1

Kÿ

j“1

ˆż
w2ptqe´?

σ0|x´cjte1|
˙ 1

2

`K1e
´ 1

2
σ0

?
σ0t. (15)

Proof. Let prove the modulation lemma in the critical case (mZK). We use the classical implicit function theorem.

To do this, we consider the function:

g :

¨
˚̋

¨
˚̋

Ăx11 , ¨ ¨ ¨ , ĂxK1
Ăx12 , ¨ ¨ ¨ , ĂxK2
rc1 , ¨ ¨ ¨ , ĂcK

˛
‹‚, u

˛
‹‚Ñ

¨
˚̋

ş
wB1 ĂR1 , ¨ ¨ ¨ ,

ş
wB1ĄRK

ş
wB2 ĂR1 , ¨ ¨ ¨ ,

ş
wB2ĄRK

ş
wĂZ1 , ¨ ¨ ¨ ,

ş
wĄZK

˛
‹‚.

The derivative of gi1,k1
with respect to

Ă
xk2

i2
, with k1 ‰ k2, is an integral of the product of the derivatives of two solitons,
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considered far enough from each other. The terms along the diagonal of the differential of g will be dominant:

d

dĂxki
gi,k “

ż
wB2

i
ĂRk ´ }BiQck}2L2 .

We need to ascertain that the crossing derivatives of one soliton are small enough, with i1 ‰ i2 in J1; dK, by (7) and

by parity:

d

dĂxki2
gi1,k “

ż
wBi1Bi2 ĂRk ´

ż
Bi2QĂckBi1QĂck “

ż
wBi1Bi2 ĂRk and

d

d rck
gi1,k “

ż
wΛĂRk.

For the derivatives of the third components of g:

d

dĂxki2
g3,k “

ż
wBi2 ĂZk and

d

d rck
g3,k “

ż
wΛĂZk ´

ż
ΛĂRk ĂZk “

ż
wΛĂZk ´ 1

2λ0

ż
QZ.

Q and Z are both positive, so the last term is negative.

Finally the derivatives of g with respect to the variables pĂxki qi,k and p rckqk has a dominant diagonal. This proves

that ∇p Ăxk
i

qi,k,pĂckqk
g is invertible. We can then use the implicit function theorem: it gives us continuity and derivability

of the variables along u, see [27]. We also get an upper bound on u´ rR:

›››pu´ rRqptq
›››
H1

ď }pu´Rqptq}H1 `
Kÿ

k“1

›››Qck

`
¨ ´ yk ´ ckte1

˘
´QĂckp¨ ´ yk ´ Ăxkptqq

›››
H1

ď }pu´Rqptq}H1 `
ÿ

k

|Ăxkptq ´ ckte1| `
ÿ

k

|ckt´ rckptq|.

ď C}pu´Rqptq}H1 .

Now, it suffices to take the scalar product of the equation of the error:

dtw ` B1p∆wq “ ´B1
˜

p rR ` wqp ´
Kÿ

k“1

ĂRk
p

¸
`

Kÿ

k“1

´
Ăxk

1
ptq ´ rcke1

¯
¨ ∇ rRk ´ rck

1
ptqΛĂRk

by ĂZj with the orthogonality conditions d
dt

´A
w, ĂZj

E¯
“ 0 :

Kÿ

k“1

rck
1
ptqxΛĂRk, ĂZjy ´

ÿ

k‰j

pĂxk
1
ptq ´ rcke1q ¨ x∇ĂRk, ĂZjy

“
A
w, rcj

1
ΛĂZj ` Ăxj

1
¨ ∇ĂZj ´ B1∆

´
ĂZj

¯E
´

C
B1

˜
p rR ` wqp ´

Kÿ

k“1

ĂRk
p

¸
, ĂZj

G
,

and similarly by taking the scalar product with BiĂRj:

Kÿ

k“1

pĂxk
1
ptq ´ rcke1q ¨ x∇ĂRk, BiĂRjy ´

´
Ăxj

1
´ rcje1

¯
¨

A
w,∇Bi ĂRj

E
´

ÿ

k‰j

rck
1
ptqxΛĂRk, B1 ĂR1y ` rcj

1 A
w, BiΛĂRj

E

“
A
w,ΛĂRj

E
´

C´
rR ` w

¯p

´
Kÿ

k“1

ĂRk
p

´ pwĂRj
p´1

, B1BiĂRj

G
.

By taking the inverse of the system, we obtain the estimate of the proposition. One can notice that in the right

side of the second equation, the term Ăx1
1
can be transformed into Ăx1

1
´ rcke1 ` rcke1, and the main terms with Ăx1

1
´ rcke1

comes form the scalar product of xBi ĂRk, B1 ĂR1y, decreasing α if necessary.

We now go back to the proposition: once T1 is fixed, if the distance on rT1, Sns between u and the sum of the n

decoupled solitons is less than α, then we can modulate on the whole time inverval rT1, Sns.
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2.4 Evolution of the masses and energies

We can assume that L ě 1 ; in the following, the interaction between the different solitons will decay faster than the

interaction of a soliton ĂRk with a weight function φk
1
, and so will be neglected.

Proposition 7. The following expansion of mass and energy holds for all time t P rt˚, Sns:
ˇ̌
ˇ̌Mkptq ´

ˆż
Q2

ck ` 2

ż
wĂRkφk `

ż
w2φk

˙ˇ̌
ˇ̌ ď C

?
Le´ 1

L

σ0

4
tp1 ` αq, (16)

ˇ̌
ˇ̌Ekptq ´

ˆ
EpQckq ´ ck

ż
wĂRkφk ` 1

2

ż ˆ
|∇w|2 ´ pĂRk

p´1

w2

˙
φk

˙ˇ̌
ˇ̌ À

?
Le´ 1

L

σ0

4
t `

´?
Le´ 1

L

σ0

4
t ` α

¯
}w}2H1 , (17)

ˇ̌
ˇ̌
ˆ
Ekptq ` ck

2
Mkptq

˙
´

ˆ
EpQckq ` ck

2

ż
Q2

ck

˙
´ 1

2
Hkptq

ˇ̌
ˇ̌ À

?
Le´ 1

L

σ0

4
t `

´?
Le´ 1

L

σ0

4
t ` α

¯
}w}2H1 , (18)

with

Hkptq :“
ż ˆ

ckw2 ` |∇w|2 ´ pĂRk
p´1

w2

˙
φk.

Observe that, for k ‰ 1:

ż
p|ĂR1| ` |∇ĂR1|qφk À e´ 1

2
σ0t `

?
Le´ 1

L

σ0

4
t and

ż
ĂR1p1 ´ φ1q À e´ 1

2
σ0t `

?
Le´ 1

L

σ0

4
t.

This can be seen by considering the mass of φk is mainly far from the one of ĂR1, cutting for example at the middle

between m1 and the center of the soliton ĂR1. This estimate is also true for the other solitons ĂRk.

Proof. The first estimate comes from a classical development of the mass; the second estimate:

ˇ̌
ˇ̌Ekptq ´

ˆ
EpQckq `

ż ´
∇ rR ¨ ∇w ´ w| rR|p

¯
φk `

ż
1

2
∇w ¨ ∇w ´ 1

p` 1

´
p rR ` wqp`1 ´ rRp`1 ´ pp` 1qw rRp

¯
φk

˙ˇ̌
ˇ̌

ď Ce´ 1

2
σ0

?
σ0t ` C

ż
w2e´ 1

2
σ0

?
σ0tφk.

The only terms at which we should take care about to prove (17) are the higher power of w, for 3 ď j ď p ` 1, and

we use as in [5] the Sobolev embeddings H1pR2q ãÑ LqpR2q for q ě 2 and H1pR3q ãÑ L3pR3q:
ˇ̌
ˇ̌
ż
wjφk

ˇ̌
ˇ̌ ď C}w}j

H1 .

Now that we have obtained an estimate on the linearised operators Hk around each of the solitons, we need to

bound the evolutions of the energies and the masses. The following lemma expresses the (almost) monotonicity of the

different quantities. Some estimates mimic those obtained in [5].

Lemma 8. There exists L ą 0 and T2 ą 0 large enough, such that for all t˚ ą T2, the following evolutions of the

mass and modified energy hold, for all κ P J1,KK, t P rt˚, Sns:

κÿ

k“1

`
MkpSnq ´Mkptq

˘
ě ´CLe´ 1

L

σ0

4
t, (19)

κÿ

k“1

´
ĂEkpSnq ´ ĂEkptq

¯
ě ´CLe´ 1

L

σ0

4
t. (20)

Proof. By computing the evolution of the mass for κ ď K ´ 1, the definition of σ0, the decreasing function ψ, (9) and
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1
L2 ď σ0

4
:

d

dt

˜
κÿ

k“1

Mk

¸
“

ż ˆ
2p

p` 1
up`1 ´ |∇u|2 ´ 2pB1uq2 ´ cκ`1 ` cκ

2
u2

˙
B1ψκ `

ż
u2B3

1ψ
κ (21)

ě
ż ˆ

´ 2p

p` 1
up`1 ` |∇u|2 ` 2pB1uq2 ` 3

σ0

4
u2

˙
|B1ψκ|.

Only the term up`1 due to the non-linearity is non-positive. We deal with it by separating the integral into

different pieces, according to the position of x1. We use a parameter R0 to adapt later, and an interval centred in mκ:

Iκt “ rcκt` yκ1 `R0; c
κ`1t ` yκ`1

1 ´R0s.
Firstly, consider that we are far from the variation of ψ, so x1 P Iκt C , we obtain :

ˇ̌
ψ1px1 ´mκptqq

ˇ̌
ď 1

L
C0e

´ 1

L

σ0

4
t

with the condition T2 ě 2
σ0

sup
κ

ˇ̌
R0 ´ 1

2

`
yκ`1
1 ´ yκ1

˘ˇ̌
. Moreover, the assumption (4), and the Sobolev embeddings

H1pRdq ãÑ Lp`1pRdq, for pd, pq “ p2, 2q, p2, 3q or p3, 2q with a constant Cd :

ż

Iκ
t

C

´ 2p

p` 1
up`1ptq|B1ψκptq| ě ´ 2p

p` 1
C

p`1
d p}Rptq}H1 ` αqp`1

C0

1

L
e´ 1

L

σ0

4
t.

Secondly, the part where B1ψκ can not come to the rescue uses that u is close to R, and R collapses on Iκt :

ż

Iκ
t

´ 2p

p` 1
up`1|B1ψκ| `

ż
|∇u|2|B1ψκ| ` 3

4
σ0u

2|B1ψκ|

ě ´ 2p

p` 1
C

p`1

d

`
}u´R}H1 ` }R}H1px1PIκ

t q
˘p´1

›››u|B1ψκ| 1

2

›››
2

H1

`
ż

|∇u|2|B1ψκ| ` 3

4
σ0

ż
u2|B1ψκ|

ě
ˆ

´ 2p

p` 1
C

p`1

d

`
α ` }R}H1px1PIκ

t q
˘p´1 ` min

ˆ
1,

3

4
σ0

˙˙ ż `
|∇u|2 ` u2

˘
|B1ψκ|.

By choosing α small enough depending on σ0, and T2 and R0 large enough such that the constant on the right hand

side is positive, we thus obtain:

ż ˆ
´ 2p

p` 1
up`1 ` |∇u|2 ` 2pB1uq2 ` 3

σ0

4
u2

˙
|B1ψκ| ě ´Ce´ 1

L
1

4
σ0t.

An integration from t to Sn concludes the first estimate on the mass.

Now, we compute the derivative of the sum of energy, and we remember that ´B1ψk ą 0:

d

dt

κÿ

k“1

Ek “ ´1

2

ż
p∆u` upq2 B1ψκ ´

ż
|B1∇u|2B1ψκ ` 1

2

ż
|B1u|2B3

1ψ
κ

` p

ż
|B1u|2up´1B1ψκ `

ż ˆ
1

2
|∇u|2 ´ 1

p` 1
|u|p`1

˙
d

dt
ψκ (22)

ě ´ 1

2L2

ż
|B1u|2|B1ψκ| ´ p

ż
|B1u|2|u|p´1|B1ψκ| ´ 1

p` 1

cκ ` cκ´1

2

ż
|u|p`1|B1ψκ|.

We then use the same tools for ĂEk that we used for the mass. The first term is compensate by the ones of mass, while

L is large enough. The second is dealt again by considering separately Iκt and Iκt
C :

ż

Ik
t
C

|B1uptq|2|uptq|p´1|B1ψκptq| ď }uptq}p´1

L8

ˆ
α2 `

ż
pB1Rptqq2

˙
1

L
e´ 1

L

σ0

4
t ď C

1

L
e´ 1

L

σ0

4
t,

and
ż

Ik
t

|B1u|2|u|p´1|B1ψκ| ď C
p´1

d }u}p´1

H2pIk
t q

ż
|B1u|2|B1ψκ|.
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Increasing R0 if necessary to diminish }u}H2pIk
t q, this term will also be compensated by the mass. The last one has

already been done and uses exactly the same tools. This concludes the estimate for ĂEk.

2.5 Proof of the exponential decay (5)

Recall the bound (4) for t P rt˚, Sns:

}uptq ´Rptq}H1 ď α,

and recall the expression of the linearised operator localised around each soliton:

Hkptq :“
ż ˆ

|∇w|2 ´ pĂRk
p´1

w2 ` ckw2

˙
φk.

Using the local evolutions of mass and energy (18), we obtain for any sequence pbkq of scalar:

ˇ̌
ˇ̌
ˇ
Kÿ

k“1

bk
ˆ
Ekptq ` ck

2
Mkptq

˙
´

Kÿ

k“1

bk
ˆ
EkpSnq ` ck

2
MkpSnq

˙
´ 1

2

Kÿ

k“1

bkHkptq
ˇ̌
ˇ̌
ˇ

À
?
Le´ 1

L

σ0

4
t `

´?
Le´ 1

L

σ0

4
t ` α

¯
}w}2H1 . (23)

Let us motivate our choice of the coefficients bk :“ 1
pckq2 . In order to use the mass monotonicity property, we

develop the sum:

Kÿ

k“1

bkck

2
Mkptq “ bKcK

Kÿ

k“1

Mkptq
2

`
Kÿ

κ“2

`
bκ´1cκ´1 ´ bκcκ

˘ κ´1ÿ

k“1

Mkptq
2

,

and for it to apply, each term has to come with a non negative coefficient: we see the constraint of pbkckqk to be non

increasing. We could choose, for example, bk “ 1
ck
. Then, we obtain by the same formula a decomposition of the

energy :
ř
k

bk
`
Ekptq ´ EkpSnq

˘
. This is not suitable, because the energies

κř
k“1

Ekptq do not satisfy the monotonicity

property, as seen in Lemma 8 above. To circumvent it, we wish to consider instead the modified energies ĂEk by adding

some mass and we can now use the monotonicity of
κř

k“1

ĂEkptq. It implies the constraint that the sequence pbkckqk to

be stricly decreasing, and our choice of bk :“ 1
pckq2 comes from there (recall that the ck are increasing order). We then

obtain the following expansion:

Kÿ

k“1

1

pckq2
ˆ
Ek ` ck

2
Mk

˙

“ 1

pcKq2
Kÿ

k“1

ĂEk `
ˆ

1

2cK
´ σ0

4

1

pcKq2
˙ Kÿ

k“1

Mk

`
Kÿ

κ“1

«ˆ
1

pcκq2 ´ 1

pcκ`1q2
˙ κÿ

k“1

ĂEk `
ˆ
1

2

ˆ
1

cκ
´ 1

cκ`1

˙
´ σ0

4

ˆ
1

pcκq2 ´ 1

pcκ`1q2
˙˙ κÿ

k“1

Mk

ff
.

By the choice of σ0

4
in ĂEk, we observe that the coefficients in front of each sum of ĂEk and of Mk are positive, we

can thus use the monotonicity properties (19) and (20). (23) gives us:

Kÿ

k“1

1

pckq2Hkptq ď C
?
Le´ 1

L

σ0

4
t ` C

´?
Le´ 1

L

σ0

4
t ` α

¯
}w}2H1 (24)

A lower bound of the left hand side uses the coercivity property, given in the following lemma, with the proof

postponed to the appendix. It generalizes the classic coercivity of this quantity around one soliton.
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Lemma 9. For subcritical and critical (ZK), there exists C0 ą 0, such that:

C0}w}2H1 ´ 1

C0

Kÿ

k“1

ˆż
ĂRkw

˙2

ď
Kÿ

k“1

1

pckq2Hkptq. (25)

We now turn our attention to the terms
ş ĂRkw. The key to estimate this term is the appearance of a different sign

in the development of the mass and the energy in (16) and in (17). We then combine with the monotonicity. A first

estimate comes from mixing (16) and (19):

2

ż
wptqĂR1ptqφ1ptq ď M1ptq ´M1pSnq ´

ż
w2ptqφkptq ` C

?
Le´ 1

L

σ0

4
t

ď }wptq}2H1 ` CLe
´ 1?

L

σ0

4
t
.

Because of the lack of monotonicity for E1, we use again the mass M1 to find back ĂE1, and we obtain the other

inequality mixing (17) and (20):

´
c1 ´ σ0

8

¯ ż
wptqĂR1ptqφ1ptq ě ´ ĂE1ptq ` ĂE1pSnq ´ C}wptq}2H1

´
1 `

?
Le´ 1

L

σ0

4
t
¯

´ C
?
Le´ 1

L

σ0

4
t

ě ´C}wptq}2H1

´
1 `

?
Le´ 1

L

σ0

4
t
¯

´ C
?
Le´ 1

L

σ0

4
t.

For the other
ş
wĂRkφk, we proceed by induction using again the monotonicity. We conclude then the estimates:

ˇ̌
ˇ̌
ż
wptq ĂRkptqφkptq

ˇ̌
ˇ̌ À

?
Le´ 1

L

σ0

4
t ` }wptq}2H1 . (26)

(24) can now bound the H1-norm of the error into:

λ0}wptq}2H1 À
?
Le´ 1

L

σ0

4
t `

´?
Le´ 1

L

σ0

4
t ` α

¯
}wptq}2H1 .

Taking T0 ě maxpT1, T2q large enough, and α small enough, we infer

}w}H1 À
?
Le´ 1

L

σ0

8
t.

Now we can improve the bound on the parameter of modulation, by integrating (15) from t to Sn, and |ĂxkpSnq ´
ckSne1| “ rckpSnq ´ ckSn “ 0 :

Kÿ

k“1

|Ăxkptq ´ ckte1| ` | rckptq ´ ckt| À CL
3

2 e´ 1

L

σ0

8
t.

We then conclude using the bounds from the modulation:

}pu´Rqptq}H1 ď }wptq}H1 ` }Rptq ´ rRptq}H1 ď CL
3

2 e´ 1

L

σ0

8
t.

By taking A1 depending on L, and finally T0 large enough, we have proved (5). This concludes the proof of Proposition

3.

A straightforward bootstrap argument shows that the minimal time t˚ down to which (5) holds is actually t˚ “
maxpT0, T ˚

n q, that is:

Corollary 10. For all t P rpmaxpT0, T ˚
n q, Sns, there hold

}uptq ´Rptq}H1 ď A1e
´ 1

L

σ0

8
t.

Proof. This is a consequence of Proposition 3, the final condition upSnq ´ RpSnq “ 0, and a continuity argument

(u P Cprt˚, Sns, H1q).

We also obtain that the minimal time of existence T ˚
n is in fact lower than T0:
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Corollary 11. The interval of existence of un contains rT0, Sns, and T ˚
n ă T0. Furthermore, un is in CprT0, Sns, Hsq

for any s ě 1.

Proof. It is a consequence of the previous corollary and of the local well-posedness theory recalled in Appendix B. In

fact, we get that:

@t P rmaxpT0, T ˚
n q, Sns, }unptq}H1 ď A1e

´ 1

L

σ0

8
T0 ` max

T0ďtď`8
}Rptq}H1 “: C,

and the theory of local well-posedness can apply at any point of the interval rT0, Sns, with a time of existence T pCq.
The regularity of un comes from the initial data in Hs for any s ě 1, and the (local) continuity of the flow on the

interval of existence.

3 H
s-estimate

In the previous section, we proved that there exist a time T0, constants δ1 :“ 1
L

σ0

8
ě ?

σ0
σ0

8
and A1 such that :

@t P rT0, Sns, }unptq ´Rptq}H1 ď A1e
´δ1t.

In this section, we want first to prove that the Hs-norm of the error is exponentially decreasing. All the 9Hs-norm

decay exponentially with the same rate δ4, but the constants involved highly depend on s.

Proposition 12. Let s ě 4. There exist constants As, δ4 :“ δ1
2

and a time T4 ě T0 such that the following bound

holds :

@t P rT4;Sns, }unptq ´Rptq} 9Hs ď Ase
´δ4t. (27)

The constants above are independant of n, and more importantly, the time on which the exponential decrease

holds is independant of s.

Recall that the un satisfy unpSnq “ RpSnq, and un is defined on rT0, Sns. As above, we drop the index n and

denote un by u; in the computations below, the constants involved will not depend on n either. We denote v the

difference of the solution u with the sum of K decoupled solitons by v:

vpt,xq :“ upt,xq ´Rpt,xq. (28)

Estimate (27) was obtained by Martel [22] for subcritical and critical (gKdV). Let us explain why this proposition

requires a new argument in the context of (ZK). The goal of this part is to obtain an inequality of the type:

ˇ̌
ˇ̌ d
dt

`
}v}29Hs

˘
`Opl.o.t.q

ˇ̌
ˇ̌ À }v}H1 ` }v}2´ǫ

9Hs
}v}ǫH1 ` }v}39Hs , (29)

for some fixed ǫ ą 0 (possibly small). The idea here is that we already know the exponential decay of the H1-norm

of the error v, and we need by any means a bound better than }v}29Hs
, like a power equal to 3. In other words, an

inequality which fails the estimate would be of the kind:

ˇ̌
ˇ̌ d
dt

`
}u}29Hs

˘
`Opl.o.t.q

ˇ̌
ˇ̌ À }v}29Hs `Opl.o.t.q, (30)

Let recall the strategy for u a solution to the (KdV) equation in [22]. A direct derivative of the 9H2-norm of the

solution gives:

d

dt

ˆż
|B2

xu|2
˙

“ ´2

ż
B2
xuB3

xpu2q.

This term is trilinear in u. We next replace u by v ` R, and by developing those terms, we see some tricky terms

13



appear:

ˇ̌
ˇ̌
ż

B2
xvB2

xvBxpRq
ˇ̌
ˇ̌ À }v}29H2

, (31)

and prevent from achieving an inequality of the sense of (29). These quadratic terms with maximal number of

derivatives on v are precisely the ones that also prevent to construct a multi-solitons via fixed point argument using

dispersive estimate on the flat space.

To get rid of those terms, one solution is to modify the functional and consider

d

dt

ˆż
|B2

xu|2 ´ c

ż
BxuBxuu

˙
À “n-linear terms with lower derivatives and n ą p` 1”.

This strategy works in dimension d “ 1. However, this technique does not apply anymore in dimension d ě 2, let

us see why for (ZK2d). Following the same scheme, the derivative of the 9H2-norm is:

d

dt

˜
dÿ

i1,i2“1

ż
|Bi1Bi2u|2

¸
“ ´2

dÿ

i1,i2“1

ż
Bi1,i2uB1,i1,i2pu2q.

By replacing all the u by v ` R, we see that we need to compensate for the tricky terms
ş
pBi1i2vq2B1R to avoid the

problematic situation illustrated in (30). Trying to mimic the previous strategy, let us identify the different terms to

add to modify the derived quantity :

• The crossed-derivatives terms:
ş

B1uB2uu. They are not useful for those combinations. In fact, the time derivative

of this quantity will give terms with an odd number of derivative B2, which does not correspond to our situation.

• The terms with same derivatives:
ş

B1uB1uu and
ş

B2uB2uu. However, no combination of those terms can cancel

the trilinear term.

We thus need another method to deal with the trilinear terms, which is the purpose of our next result. The idea is

the following. Observe that the tricky terms are localised around the center of each soliton, which recalls the situation

of the derivative of the energies in (22), where the second derivative of uptq is localised around the main variation of

ψk, between two successive solitons:

d

dt

κÿ

k“1

Ekpuq “ ´1

2

ż
|∆u|2B1ψk ` “better behaved terms”.

In other words, the time derivative of a localised Hs´1 norm bounds a localised Hs-norm. After integration in time,

we get ż Sn

t

ż
|∆u|2B1ψk À EkpuqpSnq ´ Ekpuqptq À }vptq}2H1 .

Now, a similar bound can be obtained with v instead of u, and from the previous section, we already know that }vptq}H1

has an exponential decay rate. It remains to do one further observation: after performing the above computations, we

now don’t really need that ψk has its variation localized away from the solitons (because the H1 bound has already

been obtained), and so we can center it around Rk. Summing up in k, we obtain exponential decay for

ż Sn

t

ż
|∇2v|2B1pRp´1q,

and this is exactly what is needed to adapt the strategy for (gKdV) to (ZK).

The remainder of this section is dedicated to make the above outline rigourous, so as to complete the proof of

Proposition 12.

In dimension d, for i P J1, dK, we denote the derivative of a function f with respect to the ith variable by Bif or fi.

A multi-index is denoted by a bold letter i, with length |i| and coefficients i “ pi1, ¨ ¨ ¨ , i|i|q. Naturally, if |i| “ k with

k P N, then fi denotes the derivative in the following directions: Bi1 ¨ ¨ ¨ Bikf .
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Let A be a large enough constant to be chosen later, and which satisfies:

@k “ 1, . . . ,K, @x P R
d,

A

1 ` x21
ě |Qckpxq|p´1 ` |∇Qckpxq|p´1.

We introduce now an adequate monotone function:

ηpt,xq :“ 1 `
Kÿ

k“1

´
A arctanpx1 ´ ckt´ yk1 q ` π

2

¯
. (32)

We call this function a threshold function along the first axis. It increases along x1, and satisfy the fundamental

pointwise estimate, at each t and i P J1, dK:

η1ptq ě |Rptq|p´1 ` |∇Rptq|p´1.

Due to the previous discussion, it is natural to define the function:

Gsptq :“ e´δ1t ` }vptq}2´ 1

s

9Hs
}vptq}

1

s

H1 ` }vptq}29Hs}vptq}H3p1 ` }vptq}H1 qp´2. (33)

This functional controls the interaction of different solitons, and the terms with the H1-norm of the error:

e´?
σ0

σ0

2
t ď Gsptq,

}vptq}H1 ď A1Gsptq,
}vptq}p`1

H1 ď A
p`1
1 Gsptq.

We recall the useful Gagliardo-Niremberg interpolation, with s1 ď n ď s, and θ “ n´s1

s´s1 :

}f} 9Hn À }f}θ9Hs}f}1´θ
9Hs1 . (34)

Observe that the norms 9Hs with small s are somehow more difficult to deal with: we deal with the nonlinearity

using the Sobolev embedding 9HspRdq ãÑ L8pRdq which requires a high regularity index s ą d{2. This is not difficult

to overcome: we will prove (27) directly for s ě s0 large enough, and conclude by interpolation. For (ZK), we can

choose s0 “ 4.

3.1 Control of a localised 9H
s-norm of the error.

In this section we establish a lemma to control the 9Hs-norm of the error as (31), with a weight equal to the threshold

function.

Lemma 13. Let s P Nzt0u, a multi-index i “ pi1, ¨ ¨ ¨ , is´1q, with ij P J1, dK. The following estimate holds, for

t P rT0, Sns:

ż Sn

t

ż dÿ

l“1

|vilpt1,xq|2η1pt1,xqdxdt1 À
ż Sn

t

Gspt1qdt1 ` }vptq}29Hs´1
. (35)

Remark 14. By summing over i, we obtain the 9Hs-norm with the weight η1. Furthermore, we can notice that this

bound is acceptable in view of (29).

Proof. The error satisfies the following equation:

dv

dt
“ ´ d

dt
R ` B1 p∆R `Rpq ´ B1 p∆v ` pR ` vqp ´Rpq .
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We differentiate i times, multiply by viη and integrate in space to get:

dÿ

l“1

ż
v2ilη1 ` 2

ż
pv1iq2η1

“
ż
v2i η111 ´ d

dt

ˆż
v2i η

˙
`

ż
v2i
dη

dt
` 2p´1q|i|`1

ż
vBi

ˆ
Bi

ˆ
dR

dt
` B1 p∆R `Rpq

˙
η

˙
(36)

´ 2

ż
viB1i

`
pRp´1v

˘
η ´ 2

ż
viB1i

`
pR ` vqp ´Rp ´ pRp´1v

˘
η. (37)

The left side of this equation is the left side of (35) up to a constant. Consider now the terms of (36). We want to

integrate them in time. We accept a bound by the 9Hs´1-norm, because the function η and its derivative are bounded.

The last term of (36) uses that for each k, BtRk ` B1p∆Rk ` pRkq2q “ 0, and the interactions between the different

solitons are weak and exponentially decreasing in (6). We obtain:

ż Sn

t

p36qdt1 À }vptq}29Hs´1
`

ż Sn

t

}vpt1q}29Hs´1
` }vpt1q}L2e´ σ0

4

?
σ0t

1
dt1.

The tricky term is (37). The bilinear term in v gives us, by the embedding H2pRdq ãÑ L8pRdq:
ˇ̌
ˇ̌
ż
viB1ipRp´1vqη

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ż
viB1ivRp´1η `

ż
vi

`
B1ipRp´1vq ´ B1ipvqRp´1

˘
η

ˇ̌
ˇ̌

À
ˇ̌
ˇ̌1
2

ż
v2i B1pRp´1ηq

ˇ̌
ˇ̌ ` }v} 9Hs´1}v}Hs´1 À }v} 9Hs´1

`
}v} 9Hs´1 ` }v}L2

˘

À Gsptq. (38)

Now the trilinear (or quadrilinear) term of (37). We use the Cauchy-Schwarz inequality, the distribution of the

derivatives on the different terms and the embedding H2pRdq ãÑ L8pRq:
ˇ̌
ˇ̌
ż
viptqB1ipv2ptqqηptq

ˇ̌
ˇ̌ À }vptq} 9Hs´1

ÿ

jPpl,iq,|j|ďt s
2

u

}vptq} 9Hs´|j| }vjptq}L8

À }vptq} 9Hs´1

ÿ

jPpl,iq,|j|ďt s
2

u

}vptq} 9Hs´|j| }vptq}H|j|`2 .

Using the interpolation (34) with s1 “ 1:

ˇ̌
ˇ̌
ż
viptqB1ipv2ptqqηptq

ˇ̌
ˇ̌ À }vptq}1´ 1

s´1

9Hs
}vptq}

1

s´1

H1

ÿ

jPpl,iq,|j|ďt s
2

u

}vptq}1´ |j|
s´1

9Hs
}vptq}

|j|
s´1

H1

ˆ
}vptq}H1 ` }vptq}

|j|`1

s´1

9Hs
}vptq}

s´|j|´2

s´1

H1

˙

À }vptq}3H1 ` }vptq}29Hs}vptq}H1 À Gsptq, (39)
ˇ̌
ˇ̌
ż
viptqB1ipv3ptqqηptq

ˇ̌
ˇ̌ À }vptq}4H1 ` }vptq}29Hs}vptq}H1}vptq}H2 À Gsptq.

By integrating (38) and (39) from t to Sn, and the Gagliardo-Nirenberg interpolation (34), we obtain the bounds

(35).

3.2 Control of the variation of the 9H
s-norm of the solution.

Before giving the next lemma, let denote the different combinations of derivatives useful for the following. Let i a

multi-index of length s. In the next computations, we will deal with pp` 1q-linear forms, with different combinations

of derivatives:

Lpf0, ¨ ¨ ¨ , fpq “
ż

Bif0B1ipf1 ¨ ¨ ¨ fpq.

We need now to distribute the derivatives of B1ipf1 ¨ ¨ ¨ fpq, in the following way: the function f1 receives the set

j1 of derivatives among i1, ¨ ¨ ¨ , is, 1, . . . , the function fp which receives the set jp of derivatives among the same set.

One particular case, which we want to consider separately, is when all the derivatives fall on only one function: for
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this, we introduce the set Ii by:

Ii :“ tpj1, ¨ ¨ ¨ , jpq P pPpi1, ¨ ¨ ¨ , is, 1qqp ; j1 Y ¨ ¨ ¨ Y jp “ i Y t1u “ pi1, ¨ ¨ ¨ , is, 1q, with at least two jk not emptyu ,

and a special subset:

rIi :“ tpj1, ¨ ¨ ¨ , jpq P Ii; with at least one jk satisfies |jk| “ su .

In other words, the set rIi characterized the terms with all the derivatives on one term, except one on another term.

Finally, we want to find out the term with those s derivatives:

rIipfkq “
!

pj1, ¨ ¨ ¨ , jpq P rIi; |jk| “ s
)
.

The following lemma establishes a bound on the time evolution of s-derivatives of the solution, up to some terms

with s derivatives on each error v. Those terms correspond to those in (35), which we will deal with Lemma 13.

Lemma 15. Let i be a multi-index of length s. The following pointwise estimate holds, at each time t:

ˇ̌
ˇ̌
ˇ̌
d

dt

ż
ui ´ ppp ´ 1q

ż
v2i R

p´2B1R ` 2
ÿ

pj1,¨¨¨ ,jpqP rIipvq

ż
vivjk

ź

k1‰k

Rjk1

ˇ̌
ˇ̌
ˇ̌ À Gsptq. (40)

Proof. Let us compute the time derivative, with u a solution of (ZK):

d

dt

ż
u2i “ ´2

ż
uiB1ipupq.

Let us now distribute the s` 1 derivatives. Two cases occur:

• either the s ` 1 are all on the same term, and we obtain:

´2p

ż
uipB1uiqup´1 “ ppp´ 1q

ż
puiq2up´2B1u.

• or the derivatives are not all on the same term, we find back the definition of Ii.

We thus develop the time derivative into:

d

dt

ˆż
u2i

˙
“ ppp´ 1q

ż
puiq2up´2B1u´ 2

ÿ

pj1,¨¨¨ ,jpqPIi

ż
ui

pź

k“1

ujk . (41)

To obtain the estimate (40), we replace in (41) u by v`R, we develop, and then estimate each term. By developing,

the pp ` 1q-linear forms are applied l times on v and p` 1 ´ l times on R. We decompose the different cases.

First case : l “ 0. We obtain the terms:

ppp´ 1q
ż

pRiq2Rp´2B1R ´ 2
ÿ

pj1,¨¨¨ ,jpqPIi

ż
Ri

pź

k“1

Rjk .

The number of derivatives is odd, then by parity of each soliton, this pp ` 1q-linear form applied to the same soliton

pRk, ¨ ¨ ¨ , Rkq is null. Only remains the interaction between the different solitons. We thus get by (6):

ˇ̌
ˇ̌
ˇ̌ppp´ 1q

ż
pRiptqq2Rp´2ptqB1Rptq ´ 2

ÿ

pj1,¨¨¨ ,jpqPIi

ż
Riptq

pź

k“1

Rjkptq

ˇ̌
ˇ̌
ˇ̌ ď Ce´ 1

2
σ0

?
σ0t.

Second case : l “ 1. In that case, it means that v appears only once in the expression (41), with a certain

number of derivatives. By integration by parts, all the derivatives can be put on the other terms, and those terms are

finally bounded by a Cauchy-Schwarz inequality by C}vptq}L2 .
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Third case : l “ 2. We need to identify how many derivatives the terms v possesses. In both v have exactly s

derivatives, we find the terms in (40) bilinear in v. Observe that the sum is made on rIi. Those terms will need the

monotonicity argument, developed in the previous subsection, and applied in the next.

The second possibility is that the two errors v do not possess s derivatives. By a Cauchy-Schwarz inequality, it

implies that there are bounded by C}v}Hs}v}Hs´1 , or more generally by:

C}v}2´ 1

s

9Hs
}v}

1

s

H1 ` C}v}2H1 .

Fourth case : l “ 3 or l “ 4. First for l “ 3, let focus on the number of derivatives on the three v. In the worst

case, one has s derivatives, and the two others have s and 1, or s´ 1 and 2 derivatives. We obtain, with |j1| “ s, and

|j2| “ 1, and by the embedding H2pRdq ãÑ L8pRdq:
ˇ̌
ˇ̌
ż
vivj1vj2R

p´2

ˇ̌
ˇ̌ ď C}v}29Hs}vj1}L8 ď C}v}29Hs}v}H3 .

If we consider |j1| “ s´ 1, and |j2| “ 2:

ˇ̌
ˇ̌
ż
vivj1vj2R

p´2

ˇ̌
ˇ̌ ď C}v} 9Hs}v} 9Hs´1}vj2}L8 ď C}v} 9Hs}v} 9Hs´1}v}H4

C ď }v} 9Hs

`
}v} 9Hs}v}H3 ` }v}2H1

˘
.

The other terms with l “ 3 have a lower number of derivatives, and thus are easier to deal with.

Now for l “ 4, this situation is possible if p “ 3, and the bound is similar to l “ 3 with 9H2pRdq ãÑ L8pRdq.
Since p ď 3, there is no other case for l.

Remark 16. Notice that in the case l “ 3, with j1 “ s´ 1 and j2 “ 2, the bound on s ě s0 “ 4 is necessary in order

that the argument works.

3.3 H
4 and H

s bounds of the errors

Now we establish a bound of the 9Hs-norm for s ě 4. Recall that the error vptq “ pu´Rqptq (equal to 0 at time Sn),

has a nice H1-norm on rT0, Sns with a bound given in the previous section:

@t P rT0, Sns, }vptq}H1 ď A1e
´δ1t. (42)

Let us continue the discussion of the beginning of this section, before a rigorous explanation. By the previous

computation, we obtain that, for time t when the solution u exists:

ˇ̌
}vptq}29Hs ´ }vpSnq}29Hs

ˇ̌
ď Cs

˜
}vptq}29Hs´1

`
ż Sn

t

Gspt1qdt1 `Opl.o.tq
¸
.

Gspt1q contains two main terms which lead the exponential decay.

First, Gspt1q contains bilinear terms in v of the form }vptq}2´ 1

s

9Hs
}vptq}

1

s

H1 . If we consider only the bilinear terms,

the adequate power closes the bootstrap argument, and we obtain a bound }vptq}2Hs ď Ase
´δst, on the time interval

rT0, Sns, with a constant As growing exponentially with s.

Second, Gspt1q contains trilinear terms in v, on the form }vptq}29Hs
}vptq}H3 . If we consider the bound as }vptq}3Hs ,

the previous computation with the bilinear terms still holds, but on a time interval rTs, Sns, with no way to complete

before Ts to a time independant of s : a bootstrap type argument gives the bound }vptq}2Hs ď Ase
´δst, on a time

interval rTs, Sns. The trilinear terms are the source of the dependance of T on s. We require a uniform time T on

which we obtain the exponential decay of all Hs-norms. The procedure needs to be accurate : we first deal with the

H4-norm, and obtain the adequate decay on rT4, Sns. We thus bound the trilinear term by }vptq}29Hs
A4e

´δ4t. We define

for each s larger than 5, a time Ts on which the bound of the trilinear terms is lower than the bound of the bilinear

terms. We use a bootstrap type argument on rTs, Sns with an estimate on the time Ts ě T4. On the interval rT4, Tss,
we bound the trilinear term by }vptq}29Hs

A4e
´δ4T4 , and then complete by a bootstrap type argument and compactness.

This procedure influences the constant As, but the exponential decay with the same coefficient δ4 holds on rT4, Sns.
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Let us now detail the computation to prove the proposition 12.

H4-norm

Let s “ 4. We prove the following bootstrap. There exist constants A4, δ4 :“ δ1
2

and a time T4 ě T0 such that the

following bootstrap holds. Let t˚ P rT4, Sns. If

@t P rt˚, Sns, }vptq} 9H4 ď A4e
´δ4t, (43)

then

@t P rt˚, Sns, }vptq} 9H4 ď 1

2
A4e

´δ4t. (44)

If this bootstrap is true, because }vpSnq} 9H4 “ 0, it immediately proves the proposition 12 for s “ 4.

Let assume the bootstrap assumption (43) with constants A4, T4 to define later. With |i| “ 4, the estimate (40)

with the help of (35) can now be integrated into:

ˇ̌
ˇ̌
ż
u2i pSnq ´

ż
u2i ptq

ˇ̌
ˇ̌ ď C4

˜
}vptq}29H3

`
ż Sn

t

G4pt1qdt1
¸
.

We obtain a bound on the error:

ÿ

|i|“4

ż
v2i ptq “ ´

ÿ

|i|“4

ż Sn

t

d

dt

ˆż
pu´Rq2i pt1q

˙
dt1

“
ÿ

|i|“4

ˆż
u2i ptq ´

ż
u2i pSnq

˙
` 2p´1q1`4

ÿ

|i|“4

ˆż
uptqRiiptq ´

ż
upSnqRiipSnq

˙

`
ÿ

|i|“4

ˆż
RiptqRiptq ´

ż
RipSnqRipSnq

˙

À
ÿ

|i|“4

ˇ̌
ˇ̌
ż
u2i ptq ´ uipSnq

ˇ̌
ˇ̌ ` }uptq ´Rptq}L2 ` }upSnq ´RpSnq}L2 ` e´ σ0

2

?
σ0t

À }vptq}29H3
`

ż Sn

t

G4pt1qdt1 ` }vptq}L2 ` e´ σ0

2

?
σ0t (45)

ď Cσ0,A1,δ1,δ4

´
e´δ1t `

`
A4e

´δ4t
˘2´ 1

4
`
A1e

´δ1t
˘ 1

4 `
`
A4e

´δ4t
˘3 `

1 `A1e
´δ1t

˘p´2
¯
.

This estimate is sufficient to conclude. In fact, by taking δ4 :“ δ1
2
, we choose A4 and T4 large enough such that:

Cσ0,A1,δ1

´
e´δ1t `

`
A4e

´δ4t
˘2´ 1

4
`
A1e

´δ1t
˘ 1

4 `
`
A4e

´δ4t
˘3 `

1 `A1e
´δ1t

˘p´2
¯

ď A2
4

22
e´2δ4T4 .

This gives the bootstrap conclusion (44).

We now fixed T4, and δ4 “ δ1
2
.

Hs-norm for s ě 5

As pointed out before, the arguments for s “ 4 almost hold to prove (27) for s ě 5. However, the bound holds

until a time Ts, and the exponential decay is not uniform on a time interval. We thus separate the interval into two

pieces, and prove the following bootstrap. There exists a constant Bs, such that the following holds. Let the time

Ts :“ max
´
T4,

1
δ4

lnpA4B
1

s
s q

¯
, and t˚ P rTs, Sns. If

@t P rt˚, Sns, }vptq} 9Hs ď BsA4e
´δ4t, (46)

then

@t P rt˚, Sns, }vptq} 9Hs ď 1

2
BsA4e

´δ4t. (47)
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Let us suppose that this bootstrap holds on rTs, Sns. We obtain the exponential decay on rTs, Sns. A bootstrap

type argument with }vptq}29Hs
}vptq}H3 ď }vptq}29Hs

A4e
´δ4T4 , shows that }vptq}2Hs is bounded on rT4, Tss by a certain

constant rBs. Gathering those tow results, we obtain the exponential decay of }vptq}Hs on rT4, Sns, and concludes the

proof of proposition 12.

It remains, assuming (46), to deduce (47). The proof focuses on the case p “ 2, the same holds for p “ 3. By the

same computations made in (45), the expression (33) of Gs, the bound (46) we obtain:

ÿ

|i|“s

ż
v2i ptq ď Cs

˜
e´ σ0

2

?
σ0t ` }vptq}L2 ` }vptq}29Hs´1

`
ż Sn

t

Gspt1qdt1
¸

ď Cs

˜
e´ σ0

2

?
σ0t ` }vptq}L2 ` }vptq}2´ 2

s

9Hs
}vptq}

2

s

9H4
`

ż Sn

t

e´δ1t
1 ` }vptq}2´ 1

s

9Hs
}vpt1q}

1

s

H1 ` }vpt1q}29Hs}vpt1q}H4dt1
¸
.

(48)

By the special choice of Ts, the bound on the last trilinear term in the integral is bounded by the bound of the bilinear

term:

`
BsA4e

´δt
˘2
A4e

´δ4t ď
`
BsA4e

´δt
˘2´ 1

s pA4e
´δ4tq 1

s ô pBsq
1

s A4e
´δ4t ď 1

ô t ě Ts ě 1

δ4
lnpA4B

1

s
s q.

We thus obtain:

ÿ

|i|“s

ż
v2i ptq ď Cs

˜
e´ σ0

2

?
σ0t `A1e

´δ1t `B
2´ 2

s
s A2

4e
´2δ4t `

ż Sn

t

e´δ1t
1 `B

2´ 1

s
s A2

4e
´2δ4t

1
dt1

¸

ď Cs

ˆˆ
1 ` 2

σ0
?
σ0

˙
e´ σ0

2

?
σ0t `

ˆ
1 ` 1

δ1

˙
e´δ1t `

ˆ
1 ` 1

2δ4

˙
B

2´ 1

s
s A2

4e
´2δ4t

˙
.

By choosing any Bs satisfying:

Cs

ˆ
1

A2
4

ˆ
1 ` 2

σ0
?
σ0

` 1

δ1

˙
`

ˆ
1 ` 1

2δ4

˙
B

2´ 1

s
s

˙
ď 1

2
B2

s ,

the conclusion of the bootstrap estimate (47) is then proved.

Remark 17. A dependency to underline is that Bs ě
´

2Cs

δ4

¯s

, with the constant Cs depending on the number of

combination of s derivatives: Cs „ ds. In fact, the optimal constant is expected to be Ks, with K large enough : it is

not reach here.

4 End of the construction of a smooth multi-soliton

We now complete the existence part of Theorem 2. At this point, we dispose of a sequence of solutions punqn of (ZK)

defined on rT0, Sns for some fixed T0 P R and Sn Ñ `8, and such that for all s ě 0, there exist As ą 0 such that for

all n P N

@t P rT0, Sns, }unptq ´Rptq}Hs ď Ase
´δ1t{2. (49)

Consider the sequence punpT0qqn: it is bounded in each Hs, and so, up to a subsequence that we still denote

punpT0qqn, it admits a weak limit U0 which belongs to all Hs for s ě 0.

Let us show that the convergence is actually strong.

Lemma 18. punpT0qqn Ñ U0 strongly in L2, and more generally, Hs, for all s ě 0.

Proof. It suffices to prove:

@ǫ ą 0, DKǫ ą 0,@n,
ż

|x|ąKǫ

|unpT0q|2 ă ǫ. (50)
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The bound (50) comes from the estimate (4). In fact, let t˚ ą T0 such that A1e
´ 1

L

σ0

8
t˚ ď ǫ

2
. The aim is to control

the evolution of the mass outside a compact set. Let a function g P C3pR`q, null on r0, 1s and equal to 1 on r2,8s.
With γ ą 0 and Kǫ ą 0 to define later, the evolution of the mass outside a compact set gives:

ˇ̌
ˇ̌ d
dt

ż
u2npt,xqg

ˆ |x| ´Kǫ

γ

˙ˇ̌
ˇ̌ “

ˇ̌
ˇ̌´

ż
d1g|∇un|2 ´ 2

ż
d1g pB1unq2 `

ż
d31gu

2
n ` 4

3

ż
d1gu

3
n

ˇ̌
ˇ̌

ď C

γ
}un}2H1 p1 ` }un}H2q ,

where the last term comes from Sobolev embedding. By (4), the H1-norm is uniformly bounded by a constant C, so

it suffices to take Kǫ and γ large enough to obtain:

ˇ̌
ˇ̌ d
dt

ż
u2npt, xqg

ˆ |x| ´Kǫ

γ

˙ˇ̌
ˇ̌ ď ǫ

2pt˚ ´ T0q .

Choose γ larger to obtain }Rpt˚q1|x|ąK`γ}2
H1 ď ǫ

4
, and integrate from T0 to t˚ of the previous equality imply:

ż

|x|ě2pKǫ`γq
unpT0q2 ď ǫ

2
`

ż

|x|ěKǫ`γ

unpt˚q2 ď ǫ

2
` 2

ż

|x|ěKǫ`γ

Rpt˚q2 ` 2}pun ´Rqpt˚q}2H1 ď ǫ,

and concludes the proof of (50), and the strong convergence of punpT0qqk Ñ U0 in L2. Given s ě 0, by interpolation

with Hs`1 (where weak convergence hold), we conclude that punpT0qqn Ñ U0 strongly in Hs.

Now consider the solution R˚ of (ZK) with initial data R˚pT0q :“ U0, defined on the maximal interval to the right

rT0, T`q.
Let s ą 1{4 and t P rT0, T`q. As unpT0q Ñ R˚pT0q in Hs, due to the continuity of the flow in Hs (see Theorem 22

in Appendix B, where the local well posedness theory is recalled), we obtain that unptq Ñ R˚ptq in Hs. In particular,

taking the limit in n in (49) we obtain

}R˚ptq ´Rptq}Hs ď Ase
´δ1t{2. (51)

By inspection, }Rptq}Hs is bounded for t P R, so that }R˚ptq}Hs is bounded on rT0, T`q. Due to the blow up criterion

in Theorem 22, we infer that T` “ `8 (this part of the arugment is only relevant for (mZK)). The bound (51) is

therefore valid for all t ě T0: this means that R˚ is the desired multi-soliton associated to R.

Finally, observe that for all t P T0, R˚ is smooth (it lies in all Hs, s ě 0), so that, using the equation (ZK), we see

that BtR˚ is smooth too, and by a straightforward induction, R˚ P C8prT0,`8q ˆ R
dq.

This concludes the existence part of Theorem 2.

Now we establish a corollary on any multi-soliton. If u is a multi-soliton in the sense of the definition (3), then the

convergence of u to the sum of the K decoupled soliton is exponential.

Corollary 19. Let u P CprT,`8q, H1pRdq be a multi-soliton solution of (ZK) in the sense of definition (3), and

denote R the associated profile. Then the convergence of u to R occurs at at an exponential rate: there exist A1 ą 0,

and γ1 ą 0 such that:

@t ě T, }uptq ´Rptq}H1 ď A1e
´γ1t.

Proof. It follows the ideas of Martel [22, Proposition 4]. Proving this lemma is equivalent to proving Proposition 3,

except that we consider u instead of un. Let us consider a sequence of time Sn Ñ 8, and the solutions with the initial

conditions unpSnq “ upSnq on the interval rT, Sns (by uniqueness, for t P rT, Sns, uptq “ unptq). By assumption, the

sequence }unpSnq ´ RpSnq}H1 goes to 0. If we can prove the proposition 3 for this new punqn, it concludes the proof

of the corollary.

To prove (5) for the new un, we mimic the proof that we already done. The difference is then only in the initial

condition. The parameters L, α, T1 and A1 are to be found during the proof. The lemma of modulation applies

similarly. The lemmas on the evolution of the masses and energies are identical : in fact, they concern the time

derivative of these quantities, so it does not see the change of initial condition. The formula (23) see in fact the change

of initial conditions EkpSnq and MkpSnq. However, the arguments of monotonicity apply similarly, and allow to get

rid of those terms. The argument of coercivity is then exactly the same.
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Remark 20. At this point, nothing is known about the convergence in Hs of uptq ´Rptq, since we ignore if the initial

condition uptq belongs Hs for s ą 1. In fact, by uniqueness, this will be the case!

5 Uniqueness

The goal of this section is to prove uniqueness in the following sense. If two solutions behave both as t Ñ `8 to the

same multisoliton, then they are equal. For now, we denote R˚ptq the solution established in the previous section, on

a time interval rT0,8q. This is a multisoliton close to Rptq.

Proposition 21. Let u P CprT0,8q, H1q be a solution of (ZK), and satisfying:

}uptq ´Rptq}H1 Ñ
tÑ8

0.

Then u ” R˚.

The proof is inspired by the techniques used by Martel on the subcritical and critical (gKdV) equations in [22],

Proposition 6.

Proof. First, we can notice that it is equivalent to consider that u ´ R˚ or u ´ R goes to 0 at infinity. For now, we

will use the following notations:

uptq “ zptq `R˚ptq.

For now, we prove the uniqueness for (ZK2d) and (ZK3d). The critical case (mZK) is dealt with at the end.

The new function z satisfies the equation:

zt ` B1
`
∆z ` z2 ` 2zR˚˘

“ 0.

To follow the scheme on the existence, we decompose the error along the different directions, which are the

derivatives along an l-axis of the kth soliton:

rzptq :“ zptq ´
dÿ

i“1

Kÿ

k“1

aikRk
i , with a

ikptq :“ 1
ş `
Rk

i ptq
˘2
dx

ż
Rk

i ptqzptqdx.

We obtain the following estimates, for some constants C1 and C2:

@t ą T0, C1}zptq}H1 ď }rzptq}H1 `
ÿ

i,k

|aikptq| ď C2}zptq}H1 .

We need to show that:

}rzptq}H1 `
ÿ

ik

|aikptq| ď Ce´γ1t sup
t1ět

}zpt1q}H1 . (52)

If we admit this inequality, we conclude that for t large enough, }zptq}H1 “ 0, and so u ” R˚. Let show this

inequality in different steps.

Step 1. Estimate on rzptq.
We use the decreasing function hpt,xq :“

Kř
k“1

1
ck
φkpxq. Let recall that mk are defined in (10). h is close to 1

ck
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where the jth soliton is localised:

››››
ˆ
hpt,xq ´ 1

c1

˙
1s´8, 1

2
pm1ptq`c1t`y1

1
qs

››››
L8

ď Ce´γ1t,

@2 ď k ď K ,

››››
ˆ
hpt,xq ´ 1

ck

˙
1r 1

2 pmk´1ptq`ckt`yk
1 q, 12 pmkptq`ckt`yk

1 qs

››››
L8

ď Ce´γ1t,

››››
ˆ
hpt,xq ´ 1

cK

˙
1r 1

2 pmK´1ptq`cKt`yK
1 q,`8r

››››
L8

ď Ce´γ1t.

In the other regions where the variations of h are higher, the solitons collapse, and we will not see those variations.

We claim the estimate, for a constant λ2 ą 0:

ż `
|∇rz|2 ´ 2Rrz2

˘
h` rz2 ě λ2}rz}2H1 ´ 1

λ2

ÿ

k

˜ˇ̌
ˇ̌
ż

rzRk

ˇ̌
ˇ̌
2

`
ÿ

i

ˇ̌
ˇ̌
ż

rzRk
i

ˇ̌
ˇ̌
2
¸
. (53)

The proof of this estimate of coercivity is close to the one obtained for the existence, so we will skip it.

We already know that
ş

rzRk
i “ 0 due to the orthogonality. We have to handle the other term. In fact, because of

the weak interaction between solitons:

ˇ̌
ˇ̌
ˇ
ÿ

i,k

aikptq
ż
R

j
iR

k

ˇ̌
ˇ̌
ˇ ď Ce´γ1t sup

t1ąt

}zpt1q}H1 ,

we obtain
ˇ̌ş

rzRk ´
ş
zRk

ˇ̌
ď Ce´γ1t supt1ąt }zpt1q}H1 which allows to focus on

ş
zRk.

Step 1.1 Control of
ş
zRk. By the equation satisfied by a soliton, we have 0 “ ´ckRk

1 ` ∆Rk
1 ` 2RkRk

1 , and it

implies:

ˇ̌
ˇ̌ d
dt

ż
Rkz

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ż
Rk

1

`
´ckz ` ∆z ` pz `R˚q2 ´ pR˚q2

˘ˇ̌
ˇ̌

ď
ˇ̌
ˇ̌
ż
Rk

1

´
pz `R˚q2 ´R˚2 ´ 2R˚z

¯ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż
Rk

1 p2R˚ ´ 2Rq z
ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż
Rk

1

`
2R´ 2Rk

˘
z

ˇ̌
ˇ̌

`
ˇ̌
ˇ̌
ż

p2RkRk
1 ´ ckRk ` ∆Rkqz

ˇ̌
ˇ̌

ď Ce´γ1t}zptq}L2.

In the previous estimate, we notice that we earn an error of z because we made the difference between two solutions,

instead of the difference of a solution with R : see the comparison with (26). Then integrating the previous estimate

from t to `8:

ˇ̌
ˇ̌
ż
Rkz

ˇ̌
ˇ̌ ď Ce´γ1t sup

t1ąt

}zpt1q}H1 .

We can now modify (53) into:

λ2}rzptq}2H1 ď Ce´γ1t sup
t1ąt

}zpt1q}2H1 `
ż `

|∇rzptq|2 ´ 2Rptqrz2ptq
˘
hptq ` rzptq2. (54)

Step 1.2 Control of the operator Lh. Let the operator Lh defined by Lhpzq :“ p´∆z ´ 2Rzqh` z. An immediate
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computation gives us:

ż `
|∇rz|2 ´ 2Rrz2

˘
h` rz

“
ż `

|∇z|2 ´ 2Rz
˘
h` z2 ´ 1

2

ż
z2∆h` 1

2

ż
rz2∆h ´

ÿ

ik

aik
ż
LhzR

k
i ´

ÿ

ik

aik
ż
LhR

k
i z

`
ÿ

i1,i2,k1,k2

ai1k1ai2k2

ż
LhR

k1

i1
Rk2

i2
.

The first term will be dealt with in the next step. We need to watch how the operator Lh acts on the ith-derivative

of the kth soliton.

LhR
j
i “

`
´∆Rk

i ´ 2RRk
i

˘ ˆ
h ´ 1

ck

˙
` 1

ck

`
´∆Rk

i ´ 2RRk
i ` ckRk

i

˘

implies the following control:

|LhR
k
i | ď Ce´γ1te´ σ0

2
|x´yk´ckte1|.

Furthermore, we can control the term which enables the operator Lh to be self-adjoint:

ż
LhzR

k
i “

ż
zLhR

k
i ´

ż
z

`
∆hRk

i ` 2∇h ¨ ∇Rk
i

˘
,

which gives, by the localization of the derivatives of h:

ˇ̌
ˇ̌
ż
LhzR

k
i

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż
LhR

k
i z

ˇ̌
ˇ̌ ď Ce´γ1t}zptq}L2.

By a Cauchy-Schwarz inequality on the term aij , we obtain:

ż `
|∇rz|2 ´ 2Rrz2

˘
h ` rz2 ď Ce´γ1t}z}2L2 `

ż `
|∇z|2 ´ 2Rz2

˘
h ` z2. (55)

Step 1.3 Control of
ş `

|∇z|2 ´ 2Rz2
˘
h ` z2. In order to study the previous quantity, we express the operator as

a linearisation by the function:

F pt, zq :“ 2

ˆ pzptq `R˚ptqq3
3

´ R˚ptq3
3

´R˚2ptqzptq
˙
.

We obtain, with the embedding H
d
2

`
ãÑ L8:

ˇ̌
ˇ̌
ż
F pt, zq ´ 2Rz2

ˇ̌
ˇ̌ ď

ˇ̌
ˇ̌
ż
F pt, zq ´ 2R˚z2

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż
2R˚z2 ´ 2Rz2

ˇ̌
ˇ̌

ď }pR˚ ´Rqptq}L8

ż
zptq2 ď Ce´γ1t}z}2L2.

For now, we study the functional:

Hptq :“
ż `

|∇zptq|2 ´ F pt, zq
˘
hptq ` z2ptq,

and claim that

DK ą 0,@t ą T0, Hptq ď Ke´γ1t sup
t1ąt

}zpt1q}2H1 . (56)
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It suffices to study the time variation of H , and find a lower bound by monotonicity. A computation gives us:

d

dt
Hptq “

ż `
|∇z|2 ´ F pt, zq

˘ dh
dt

` 2

ż
B1∆z∇z ¨ ∇h (57)

` 2

ż
B1

´
pz `R˚q2 ´R˚2

¯
∇z ¨ ∇h (58)

´
ż ´

∆z ` pz `R˚q2 ´R˚2
¯2

B1h (59)

´ 2

ż
B1

´
∆z ` pz `R˚q2 ´R˚2

¯
z ´ 2

ż
R˚

t

´
pz `R˚q2 ´R˚2 ´ 2R˚z

¯
h (60)

To find a lower bound of dH
dt

, we notice first that the term (59) is positive, because h is decreasing in the first direction.

We can now deal with (57):

p57q “
ż `

|∇z|2 ´ F pt, zq
˘ dh
dt

´ 2

ż `
|∇B1z|2

˘
B1h`

ż
pB1zq2 B3

1h

ě
ż

|∇z|2dh
dt

`
ż

pB1zq2 B3
1h ´

ż
|F pt, zq|dh

dt

This is where the choice of the function h is crucial. Because of the estimate on ψ, we have dh
dt

ě 1
4

|B3
1h|, and the

sum of the two first terms is non-negative. We obtain, with }h1ptqRptq}L8 ď Ce´γ1t, the definition of z and corollary

(19):

p57q ě ´C
ż `

|z|3ptq ` |R˚ptq ´Rptq|z2ptq ` |Rptq|z2ptq
˘ dh
dt

ě ´Ce´γ1t. (61)

We now develop (58):

p58q “ 2

ż
z21zh1 ` 2

ż
z21R

˚h1 ´
ż
z2h11,

so the estimate is straightforward, with }u ´ R}L8 ď }R˚ ´ R}Hd ď Ade
´δt, and the embedding H2pRdq ãÑ L8, or

}B1pR˚ ´Rq}L8 ď A2`1e
´δt :

|p58q| ď Ce´γ1t}z1}2L2 ` 2

ż
z21 |Rh1| ` 2

ż
z21 |R˚ ´R||h1| ´

ż
z2|R˚

1h1 `R˚h11|

ď Ce´γ1t}z}2H1 , (62)

with C depending on A1, A2, A3 and γ1 lower than δ.

It remains the terms of (60). We notice that
ş

B1∆zz “
ş

B1pz3q “ 0. The remaining terms give us:

|p60q| “
ˇ̌
ˇ̌2

ż
pB1R˚ ´R˚

t hq z2
ˇ̌
ˇ̌ ď 2}B1R˚ ´R˚

t h}L8 }zptq}2L2

ď 2
´

}B1
´
∆R˚ `R˚2 ´ ∆R ´R2

¯
h}L8 ` }B1

`
∆R `R2

˘
h´R1}L8 ` }B1pR ´R˚q}L8

¯
}z}2L2

ď Ce´γ1t}zptq}2L2 , (63)

with C depending on A3`3 and 0 ă γ1 ă δ due to the bound by the H2`3-norm of the error. Notice that for this step

it was necessary to get the H5-norm of the error.

By summing up (61), (62) and (63), we obtain a lower bound on the time derivative of H : dH
dt

ptq ě Ce´γ1t}zptq}H1 .

An integration from t to `8 gives us (56).

End of Step 1

By summing up the estimates (53), (54), (55) and (56), we obtain the desired estimate (52) for the term }rzptq}H1 .

Step 2. Estimate on the aikptq.
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Let derive rz along the time.

d

dt
przptqq “ dz

dt
ptq ´

ÿ

ik

daik

dt
ptqRk

i ptq `
ÿ

ik

aikptqRk
i1ptqck.

We can then express the linearised part of the equation of the error around R˚:

Btrz ` p∆rz ` 2R˚rzq1 “ ´
ÿ

ik

daik

dt
Rk

i `
ÿ

ik

aik
`
´B1∆Rk `Rkck ´ 2B1p2R˚Rkq

˘
i

` B1
´
2R˚z ´ pR˚ ` zq2 `R˚2

¯
.

The scalar product of this expression with Rk1

i1
gives us, by reminding that 0 “ d

dt

ş
rzRk

i “
ş

drz
dt
Rk

i ´ ck
ş

rzRk
i1:

ˇ̌
ˇ̌
ˇ̌
dai1k1

dt

ż
pRk1

i1
q2 `

ÿ

pi,kq‰pi1,k1q

dai,k

dt

ż
Rk1

i1
Rk

i

ˇ̌
ˇ̌
ˇ̌ À

ÿ

ik

|aik|e´γ1t ` }rzptq}H1 ` }zptq}2H1

ď Ce´γ1t}zptq}H1

where in the last inequality we used the step 1. One can notice that
ş
Rk1

i1
Rk

i is small while pi, kq ‰ pi1, k1q. In

particular, we find as in the modulation a matrix with a dominant diagonal, which implies that

@pi, kq,
ˇ̌
ˇ̌da

ik

dt

ˇ̌
ˇ̌ ď Ce´γ1t}zptq}H1 .

An integration from t to 8 gives us the estimate (52) for the coefficients aikptq, and finishes the proof.

The critical case.

The estimates for (mZK) are similar, except that we add orthogonality conditions with respect to Zk:

rzptq :“ zptq ´
dÿ

i“1

Kÿ

k“1

aikRk
i ´

Kÿ

k“1

bkZk,

with

aikptq :“ 1
ş `
Rk

i ptq
˘2
dx

ż
Rk

i ptqzptqdx and bkptq :“ 1ş
Zkptq2dx

ż
Zkptqzptqdx.

With the estimate (25) on rzptq, we obtain the lower bound asked in (52). The other arguments apply similarly.

Once again, we use repetitively the exponential decay of Rk
i and of Zk.

A Coercivity

We recall the lemma 9 of coercivity :

Lemma. For (ZK), there exists C0 ą 0, such that:

C0}w}2H1 ´ 1

C0

Kÿ

k“1

ˆż
ĂRkw

˙2

ď
Kÿ

k“1

1

pckq2Hkptq.

Proof. Let deal first with the cases of (ZK2d) and (ZK3d). The proof is close to the step 2 of the appendix A of [24].

We know a property close to coercivity of the operator Hkptq: by the article of Weinstein, if we consider a function v

with the orthogonality conditions v K Q, and @i P J1; dK, v K BiQ, then the following operator is coercive:

DC1 ą 0 ,

ż
p∇vq2 ` v2 ´ pQp´1v2 ě C1}v}2H1 . (64)

We claim that in the case of the operators pHkptqqk, we obtain a similar coercivity condition. The cut-off function
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φk and the unsatisfied orthogonality condition w K ĂRk will change the previous estimate. Let the bilinear form

Bkpv, wq :“
ş
∇v ¨ ∇w ` ckvw ´ 2ĂRkvw. By developing the expression of Hkptq:

Hkptq “ Bkpw
a
φk, w

a
φkq ´ 1

4

ż
w2 pBx1

φkq2
φk

´
ż
wB1wB1φk.

The first term can be developed, by decomposing w
a
φkptq :“ α0

ĂRk `
dř

i“1

αiBi ĂRk ` wk, with

α0 :“ xw
a
φk, ĂRky

}Qck}2
L2

, αi :“
xw

a
φk, Bi ĂRky

}BiQck}2
L2

, xwk, ĂRky “ xwk, Bi ĂRky “ 0,

and using the Young inequality:

Bkpw
a
φk, w

a
φkq “ Bkpwk, wkq ` α2

0Bkp ĂRk, ĂRkq ` 2α0Bkp ĂRk, wkq

ě C2

2
}wk}2H1 ´ 1

C2

ˆż
ĂRkwk

a
φk

˙2

,

with C2 ą 0 a constant small enough. Furthermore, by the norm:

}wk}H1 ě }w
a
φk}H1 ´ C

dÿ

i“0

|αi| so }wk}2H1 ě 1

2
}w

a
φk}2H1 ´ C

dÿ

i“0

|αi|2,

we obtain the upper bound:

Bkpw
a
φk, w

a
φkq ě C2

4
}w

a
φk}2H1 ´ C

C2

˜ˆż
ĂRkwk

a
φk

˙2

`
dÿ

i“1

ˆż
Bi ĂRkwk

a
φk

˙2
¸
.

By the definition of φk, the derivative with respect to x1 will make a factor 1
L

appear:
ˇ̌
B1φk

ˇ̌
ď 1

L
φk, see (9), which

implies by taking L large enough depending on C2 :

Hkptq ě C2

16

ż
p∇w2 ` w2qφk ´ C

˜ˆż
ĂRkwk

a
φk

˙2

`
dÿ

i“1

ˆż
Bi ĂRkwk

a
φk

˙2
¸
.

Let k P J2,K ´ 1K, and the interval Jk
t :“

“
1
2

`
xk1 ´ ckt´ yk1 `mk´1ptq

˘
; 1
2

`
xk1 ´ ckt´ yk1 `mkptq

˘‰
. We obtain :

ˇ̌
ˇ̌
ż

ĂRkwk
a
φk ´

ż
ĂRkwk

ˇ̌
ˇ̌ À

ˆż ´a
φk ´ 1

¯2

1Jk
t

˙ 1

2

}wk}H1 `
ˆż

ĂRk
2

1
Jk
t
C

˙ 1

2

}wk}H1

À
?
Le´ 1

L

σ0

4
t}wk}H2 `

´
e´ σ0

2
t ` |Ăxkptq ´ rckte1|

¯
}wk}H1 ,

and similarly:

ˇ̌
ˇ̌
ż

ĂRkwkp
a
φk ´ 1q

ˇ̌
ˇ̌ `

dÿ

i“1

ˇ̌
ˇ̌
ż

Bi ĂRkwkp
a
φk ´ 1q

ˇ̌
ˇ̌ ď C

´?
Le´ 1

L

σ0

4
t ` |Ăxkptq ´ rckte1|

¯
}wk}H1 ,

with C depending on the pykqk and on the pckqk. Adding the previous estimates from 1 to K with the weights 1
pckq2 :

Kÿ

k“1

1

pckq2Hkptq ě C2

16pcKq2
Kÿ

k“1

ż `
|∇w|2 ` w2

˘
φk ´ C

pc1q2

˜
?
Le´ 1

L

σ0

4
t `

ÿ

k

|Ăxkptq ´ rckte1|
¸

}w}2H1

´ C

Kÿ

k“1

˜ˆż
ĂRkwk

˙2

`
dÿ

i“1

ˆż
Bi ĂRkwk

˙2
¸
.

We find back the H1-norm of the error on the all space by summing the φk. Thus, we replace the last wk by there
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expression with w
a
φk, the weak interactions between ĂRk and p1´

a
φkq, by the Young inequality and (14), we obtain:

Kÿ

k“1

1

pckq2Hkptq

ě C2

16pcKq2 }w}2H1 ´ C

pc1q2
´?

Le´ 1

L

σ0

4
t ` e´ σ0

2
t ` α

¯
}w}2H1 ´ C

Kÿ

k“1

˜ˆż
ĂRkw

˙2

`
dÿ

i“1

ˆż
Bi ĂRkw

˙2
¸
. (65)

By taking L large enough depending only on C2, T2 large enough depennding on the different velocities, α small

enough and the orthogonality conditions (12), there exists a constant C0 small enough concluding the lemma for

(ZK2d) and (ZK3d).

Let us now deal with the case of (mZK). The result is similar, except that we asked for an other orthogonality

condition (13), so we use an other parameter of modulation p rckptqqk. Let p¨, ¨q denotes the L2-scalar product. We

claim, as in [23] and [38], that

v K Q, v K Z ñ pLv, vq ě 0. (66)

We use a result of [38] concerning the operator L :“ ´∆ ` 1 ´ pQp´1:

inf
pv,Qq“0

pLv, vq “ 0. (67)

Let suppose by contradiction that there exists v, satisfying v K Z, such that pLv, vq ă 0. Let consider the operator L

restricted to SpantZ, vu. By definition of Z, pLpZq, Zq “ ´λ0. Thus we can find v0 P SpantZ, vu, v0 K Q such that

pLv0, v0q ă 0, which contradicts (67), and proves (66).

To obtain a similar coercivity inequality (64), suppose by contradiction that:

0 “ inf tpLv, vq; }v}L2 “ 1, v K Z, v K B1Q, v K B2Qu .

By taking a sequence in L2 for which the infimum is attained, up to a subsequence, it converges to an element v. It

satisfies the orthogonality condition (12) and (13), and by rescaling arguments as in [38], we can suppose that the

norm of v is 1. The minimum is thus attained at a point v ‰ 0, and there exists pα0, α1, α2, βq among the critical

points of the Lagrange multiplier problem:

$
’’’&
’’’%

Lv ´ βv “ α0Z ` α1B1Q` α2B2Q,
pLv, vq “ 0,

v K Z, v K B1Q, v K B2Q,
}v}L2 “ 1.

The scalar product with respect to v gives us β “ 0, with the eigenvector Z gives α0 “ 0 and with BiQ gives αi “ 0.

This contradiction leads to a positive infimum, and the existence of a positive constant C1 satisfying (64).

The rest of the proof is then similar to the one of (ZK).

B Local well posedness

Let us recall the local well posedness result that we will use.

Theorem 22 ([32], [14], [16] and [20, Theorem 1.1]). Let s ą 1{2. There exists a function T : r0,`8q Ñ p0,`8q such
that for any u0 P Hs, there exists a mild solution u P Cpr´T p}u0}Hsq, T p}u0}Hsq, Hsq (to the Duhamel formulation)

of (ZK), which is furthermore unique in some subspace. The maximal interval of existence pT´pu0q, T`pu0qq is open

and does not depend on s ą 1{4, and if T`pu0q ă `8, then }uptq}Hs Ñ `8 as t Ñ T`pu0q.
Furthermore, the flow u0 ÞÑ u is continuous in the following sense: given u0 P Hs, then for any compact interval

J Ă pT´pu0q, T`pu0qq and E ą 0, there exists δ ą 0 such that if }v0 ´ u0}Hs ď δ, then J Ă pT´pv0q, T`pv0qq and

suptPJ }vptq ´ uptq}Hs ď δ (u and v are the solutions to (ZK) with initial data u0 and v0 respectively.

In particular, in the L2 subcritical cases (ZK2d) and (ZK3d), if the initial condition is in H1, one has global

existence: pT´pu0q, T`pu0qq “ R. The blow up criterion is relevant for our purpose only for the case of (mZK) which
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is L2 critical.
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