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S U M M A R Y
We investigate the pressure torque between the fluid core and the solid mantle arising from
magnetohydrodynamic modes in a rapidly rotating planetary core. A 2-D reduced model of
the core fluid dynamics is developed to account for the non-spherical core–mantle boundary.
The simplification of such a quasi-geostrophic model rests on the assumption of invariance of
the equatorial components of the fluid velocity along the rotation axis. We use this model to
investigate and quantify the axial torques of linear modes, focusing on the torsional Alfvén
modes (TM) in an ellipsoid. We verify that the periods of these modes do not depend on the
rotation frequency. Furthermore, they possess angular momentum resulting in a net pressure
torque acting on the mantle. This torque scales linearly with the equatorial ellipticity. We
estimate that for the TM calculated here topographic coupling to the mantle is too weak to
account for the variations in the Earth’s length-of-day.

Key words: Core; Earth rotation variations; Numerical modelling.

1 I N T RO D U C T I O N

Decadal variations in the Earth’s length-of-day (LOD) have long
been associated with dynamics in the liquid outer core (Munk &
MacDonald 1960; Hide 1966; Jault et al. 1988; Gross 2015). More
specifically, a pronounced variation on a period of roughly six years
cannot be explained by atmospheric, oceanic and tidal forces, which
are responsible for LOD variations on shorter timescales (Abarca
del Rio et al. 2000; Holme & de Viron 2013). Torsional Alfvén
modes (TM) in the outer core, first studied by Braginsky (1970),
have been proposed later as the origin of the 6-yr variation in the
LOD (Gillet et al. 2010). In the sphere, these oscillations consist
of differentially rotating nested geostrophic cylinders, stretching
and shearing the magnetic field lines. Recent advances in magnetic
field observations and inverse modelling of the outer core flow at
the core–mantle boundary (CMB) have revealed recurring TM with
4-yr traveltime through the Earth’s outer core (Gillet et al. 2010,
2015). Gillet et al. (2017) investigated the LOD variations that
result from the TM propagation, assuming that the only stresses be-
tween the core and the mantle are electromagnetic. Relying on the
study of Schaeffer & Jault (2016), they inferred constraints on the
electrical conductivity of the lowermost mantle. To account for the
observed LOD variations, a conductance of the lowermost mantle
of 3 × 107 − 108 S is needed (Gillet et al. 2017). Another mecha-
nism of coupling outer core dynamics to the solid mantle is through
gravitational coupling between a deformed inner core and a non-
spherical CMB (Buffett 1996a,b; Mound & Buffett 2006). A phase

lag between the deformations leads to a torque on the mantle. Even
though recent advances in atmospheric and oceanic tide modelling
have improved the isolation of gravitational signals from core dy-
namics, the measurements are still inconclusive (Davies et al. 2014;
Watkins et al. 2018).

The third mechanism, investigated here, that may account for
exchange of angular momentum between core and mantle is topo-
graphic coupling. It has long been proposed that, for a non-spherical
CMB, there could be a significant pressure torque exerted by flows
in the outer core (Hide 1969). The fluid pressure should scale as
ρ�UR0, where ρ is the core density, � the angular speed of the
Earth’s rotation, U a typical horizontal velocity and R0 the core ra-
dius. A typical amplitude of O(103) Pa has been obtained from core
surface velocity models, assuming a local balance of force (tangen-
tial geostrophy) at the core surface (Jault & Le Mouël 1990). These
models have now been superseded by quasi-geostrophic (QG) mod-
els that rely on a global assumption, for which it is assumed that the
equatorial components of the fluid velocity are invariant along the
rotation axis, as observed at leading order in numerical simulations
(e.g. Gillet et al. 2011; Schaeffer et al. 2017). QG models have been
shown to capture the fundamental features of rapidly rotating hydro-
dynamics by comparing with 3-D numerical simulations (Gastine
2019; Guervilly et al. 2019). Furthermore, QG models incorporat-
ing the magnetic field have been used to investigate spherical TM
(Canet et al. 2014; Labbé et al. 2015). In this framework, the surface
pressure cannot be inferred from the velocity. In the most general
case, the pressure is a 3-D quantity given by the Lagrange multiplier
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associated to incompressibility. For QG models we can introduce a
Lagrange multiplier associated to incompressibility, but it is only a
2-D function of the coordinates in the equatorial plane. Therefore,
we cannot infer the 3-D pressure at the CMB from the velocity field
only.

For an axisymmetric core, the axial pressure torque vanishes ex-
actly for any flow. To investigate the influence of non-axisymmetric
CMBs, the ellipsoidal geometry can be considered as a first step.
From seismological observations a peak-to-peak amplitude of CMB
topography of about 3 km has been inferred (Koper et al. 2003; Sze
& van der Hilst 2003), corresponding to an equatorial ellipticity
O(10−3).

Here, we derive a generic QG model that does not assume ax-
isymmetry, which is then compared to a hybrid model using QG
velocities and 3-D magnetic fields in the case of an ellipsoid. We
present the linear modes and their axial angular momentum, as well
as the hydrodynamic pressure torque that the fluid exerts on the
solid container. Finally, we discuss the possible implications of this
study for Earth-like liquid cores.

2 P RO B L E M S E T U P

2.1 Magnetohydrodynamic equations

We consider a fluid of homogeneous density ρ, uniform kinematic
viscosity ν and magnetic diffusivity η, which is enclosed in a rigid
container of volume V and boundary ∂V . The time evolution of the
velocity field u and the magnetic field B is given by the incom-
pressible magnetohydrodynamics (MHD) equations. In the refer-
ence frame rotating with the angular velocity �, they read

∂u

∂t
+ (u · ∇) u = −2 � × u − 1

ρ
∇ p + ν ∇2u

+ 1

μ0ρ
(∇ × B) × B, (1a)

∂B

∂t
= ∇ × (u × B) + η ∇2B, (1b)

with p the reduced pressure and μ0 the magnetic permeability in
vacuum. MHD eq. (1) are completed by the solenoidal conditions
∇ · B = ∇ · u = 0. The characteristic length scale R0 is determined
by the container size, which is taken as its mean radius. In ellipsoids,
R0 is the geometric mean R0 = (abc)1/3 of the three semi-major
axes [a, b, c]. The angular velocity is given by � = �1� and the
characteristic background magnetic field strength is B0. We define
the characteristic time t0 = R0/uA, where u A = B0/

√
ρμ0 is the

characteristic Alfvén wave velocity. The characteristic pressure is
then given by ρu2

A. The dimensionless equations read

∂u

∂t
+ (u · ∇) u = − 2

Le
1� × u − ∇ p + Pm

Lu
∇2u

+ (∇ × B) × B, (2a)
∂B

∂t
= ∇ × (u × B) + 1

Lu
∇2B, (2b)

where we introduce the Lehnert number Le (measuring the strength
of the Lorentz force relative to the Coriolis force), the Lundquist
number Lu (comparing magnetic induction to magnetic diffusion)
and the magnetic Prandtl number Pm (comparing kinematic viscos-
ity to magnetic diffusion). They are given by

Le = B0

�R0
√

μ0ρ
, Lu = R0 B0

η
√

μ0ρ
, Pm = ν

η
. (3)

Typical values for the Earth’s outer core, with radius R0 ≈ 3478 km,
kinematic viscosity ν ≈ 10−6 m2s−1 (Wijs et al. 1998), mean radial
magnetic field strength B0 ≈ 3 mT (Gillet et al. 2010) and elec-
trical conductivity σ ≈ 1.55 × 106 Sm−1 (Pozzo et al. 2014), are
Le = O(10−4), Lu = O(105) and Pm = O(10−6). The dynamics we
will be considering operate on timescales shorter than magnetic dif-
fusion and viscous spin-up times. Hence, we will neglect viscous
and Ohmic dissipations. The governing equations are

∂u

∂t
+ (u · ∇) u = − 2

Le
1� × u − ∇ p + (∇ × B) × B, (4a)

∂B

∂t
= ∇ × (u × B) . (4b)

Eq. (4) are supplemented with appropriate boundary conditions.
In the diffusionless approximation, the velocity needs to satisfy only
the non-penetration condition u · n = 0 on ∂V. If B · n = 0 at an
initial time t = 0, the normal component of the induction equation
ensures that the normal component of B is zero at all later times
(see Backus et al. 1996).

2.2 Torque balance

The net torque balance of the system is given by

∂L

∂t
+ �c = �p + �L, (5)

with the angular momentum L, the hydrodynamic pressure torque
�p, the Coriolis torque �c and the Lorentz torque �L given by

L =
∫
V

r × u dV, (6a)

�p = −
∫
V

r × ∇ p dV = −
∫

∂V
p (r × n) dS, (6b)

�c = 2
∫
V

r × (� × u) dV, (6c)

�L =
∫
V

r × ((∇ × B) × B) dV . (6d)

We can further split up the Lorentz torque into magnetic pressure
torque �pm and a magnetic tension torque �b as

�L = �b + �pm, (7)

with

�pm = −1

2

∫
V

r × ∇ (
B2

)
dV = −1

2

∫
∂V

B2(r × n) dS, (8a)

�b =
∫
V

r × ((B · ∇) B) dV . (8b)

For a perfectly conducting boundary (with B · n = 0 on ∂V), �b

vanishes exactly [see eq. (45) in Roberts & Aurnou 2012] and only
the magnetic pressure torque �pm contributes to the torque balance
(5).

The axial component of the Coriolis torque �c also vanishes (see
equation 14.98 in Davidson 2016). In the axial direction, the torque
balance reduces to

∂Lz

∂t
= �p,z + �pm,z . (9)

Hence, any changes of the axial angular momentum of the fluid
can only result from the unbalance between the magnetic and hy-
drodynamic pressure torques. For the sphere, the transformation of
the volume integral into a surface integral shows that the pressure
torques (6b) and (8a) vanish, so that no change in angular momen-
tum is possible.
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2.3 Geostrophic motions and torsional Alfvén modes

In a container of volume V that can be continuously deformed into a
sphere, such that the height of the fluid column h along the rotation
axis is a homeomorphism between the volume V and the sphere, all
contours of constant h (geostrophic contours) are closed. Examples
of such containers include the full sphere (not a spherical shell) or
ellipsoids. It is often postulated that incompressible flows in such a
container can be expanded as (e.g. Greenspan 1968)

u =
∞∑
j

γ j (t) uG, j (r⊥) +
∞∑
i

αi (t) ui (r), (10)

where uG, j (r⊥) are the (degenerate) geostrophic solutions (e.g. Liao
& Zhang 2010, in spheres) that only depend on the position perpen-
dicular to the rotation axis r⊥. They are given by the geostrophic
equilibrium

2 � × uG, j = −∇ pG, j , (11)

and their superposition is commonly referred to as the geostrophic
mode uG = ∑

j uG, j (e.g. Greenspan 1968). Additionally, ui (r)
are the spatial eigensolutions of the inertial wave equation (e.g.
Vantieghem 2014, in ellipsoids)

∂ui

∂t
+ 2 � × ui = −∇ pi . (12)

Expansion (10) has proven to be exact for the ellipsoid (Backus &
Rieutord 2017; Ivers 2017).

From balance (11) it is clear that the axial geostrophic pressure
torque vanishes, as the axial Coriolis torque vanishes for any flow u.
However, this is no longer the case when the flow is time dependent,
even if it remains mainly geostrophic (or ’pseudo-geostrophic’,
Gans 1971), such that uPG(r⊥, t) � ∑

j γ j (t) uG, j (i.e. with |γ j|
	 |αi|). In the presence of a Lorentz force the pseudo-geostrophic
flow is governed by

∂uPG

∂t
= − 2

Le
1� × uPG − ∇ p + (∇ × B) × B. (13)

Using the geostrophic equilibrium (11) we substitute the Coriolis
acceleration for its pressure gradient. Additionally, rewriting the
Lorentz force in terms of the magnetic pressure gradient and the
Maxwell term, (13) takes the form

∂uPG

∂t
= −∇(pA + pm) + (B · ∇)B, (14)

with pA = p − ∑
jγ jpG, j and pm = B2/2. Besides the magnetic

pressure pm, an ageostrophic component pA remains in the pressure.
They may both exert a torque on the container if it is not spherical.

TM, also called ’torsional oscillations’ (Braginsky 1970), are ex-
amples of such pseudo-geostrophic flows. They are solutions of the
linearized eq. (4) for Le 
 1, and reduce to the ordinary geostrophic
mode in the limit Le → 0. When scaled by the reciprocal of the
Alfvén time scale TA, the TM frequencies are constant (see Fig. 1).
Their Alfvén wave nature is also evident in the ratio of kinetic en-
ergy to magnetic energy, which is O(1) as indicated by the grey
colour in Fig. 1. We define TM to have a frequency independent of
Le when Le 
 1 (if scaled by T −1

A ) and of approximately unit ratio
between kinetic and magnetic energy. These two features clearly
differentiate them from other modes present, namely the so-called
fast modes and slow modes. The fast modes are slightly modified
inertial modes, with frequencies on the order of the angular fre-
quency, and their energy is mostly kinetic (see Fig. 1, yellow dots).
The slow modes (or Magneto–Coriolis modes) have a frequency

Figure 1. Mode frequencies as a function of Lehnert number in the sphere.
The imposed magnetic field is B0 = (−y, x − z/10, x/10)T , following Vi-
dal et al. (2019). The colours indicate the ratio of kinetic energy to magnetic
energy, where yellow indicates a larger kinetic energy and blue a larger
magnetic energy. The modes are separated into slow modes, fast modes and
TM for Le 
 1.

much lower than the angular frequency and a small kinetic energy
compared to the magnetic energy (see Fig. 1, dark blue dots).

In the axisymmetric case, the geostrophic mode can be writ-
ten as uG = uG(s)1φ and a pseudo-geostrophic flow is simply
uPG � u PG(s, t)1φ (with s the cylindrical radius and φ the azimuthal
angle). The projection of the linearized momentum eq. (4a) onto the
geostrophic mode reduces to the 1-D equation

ρh
∂2u PG(s, t)

∂t2
= 1

s2

∂

∂s

(
hs3 ∂

∂s

(
u PG(s, t)

s

) ∫
B2

s dz

)
, (15)

only depending on the radial distance s to the rotation axis. Roberts
& Aurnou (2012) referred to this equation as the canonical torsional
wave equation. We refer the reader to Roberts (1972) and Jault
(2003) for details on the derivation. In the case of the ellipsoid, we
shall consider TM within the framework of a QG model retaining
ageostrophic components of the flow.

2.4 Quasi-geostrophic equation with generic geostrophic
contours

We assume that the horizontal velocity components are independent
of the coordinate z along the rotation axis, u⊥ = u⊥(r⊥, t). Together
with the non-penetration boundary condition, u · n = 0 on ∂V , the
mass continuity equation ∇ · u = 0 and the assumption of an equa-
torially symmetric volume V the QG velocity takes the form (e.g.
Bardsley 2018)

u = u⊥(r⊥, t) + uz1z = ∇ψ × ∇
( z

h

)
, (16)

with h = h(r⊥) the height of the fluid column, u⊥(r⊥, t) = 1
h ∇ψ ×

1z , uz = z
h u⊥ · ∇h and ψ = ψ(r⊥, t) a scalar stream function. By

construction, ψ is constant at the equator ∂A for the volume V
considered here. Following the boundary condition arising naturally
when h → 0 at ∂A (Maffei et al. 2017), we choose ψ = 0 on
∂A. Note that, if ψ is constant along geostrophic contours (i.e. it
is a function of h only), we recover the geostrophic velocity (see
Appendix A).

To derive an evolution equation for this scalar stream function,
we project the momentum eq. (4a) onto the subset u′ of QG ve-
locities (16) following Labbé et al. (2015) and Bardsley (2018).
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Figure 2. Schematic of a geostrophic column (blue) in an ellipsoid of vol-
ume V where one of the principal axes is aligned with the rotation axis �.
The area of the equatorial plane A is shaded in green.

This method is essentially a variational approach, which consists in
finding solutions u satisfying∫

V
u′ · f(u) dV = 0, ∀u′, (17)

where

f(u) = ∂u

∂t
+ (u · ∇)u + 2

Le
1� × u + ∇ p − (∇ × B) × B, (18)

with u′ and u of the form (16). Substituting (16) into (17) yields∫
V

u′ · f dV =
∫
V

∇ψ ′ × ∇
( z

h

)
· f dV, (19a)

=
∫
A

∇ψ ′ ·
〈
∇

( z

h

)
× f

〉
dS, (19b)

= −
∫
A

ψ ′∇ ·
〈
∇

( z

h

)
× f

〉
dS, (19c)

= −
∫
A

ψ ′Q(f) dS, (19d)

with the projection operator Q defined as

Q(f) = ∇ ·
〈
∇

( z

h

)
× f

〉
, (20)

where 〈·〉 = ∫ h
−h · dz is the integral along the rotation axis and

∫
A · dS

the integral over the equatorial surface plane A (shown in Fig. 2 for
the ellipsoid). In this step, we made use of the boundary condition
ψ = 0 at the equator ∂A. For expression (19d) to be zero for any
test function ψ

′
, the QG velocity u must satisfy

Q
(

∂u

∂t
+ u · ∇u + 2

Le
1� × u − (∇ × B) × B

)
= 0, (21)

where the pressure gradient is omitted, as it vanishes in the projec-
tion.

First, we consider the inertial term, which simplifies as

Q
(

∂u

∂t

)
= ∇ ·

〈
∇

( z

h

)
×

(
∇ ∂ψ

∂t
× ∇

( z

h

))〉
, (22a)

= 2D ∂ψ

∂t
, (22b)

with

D = ∇ · (
1
h ∇ + 1

3h ∇h × (∇ × ∇h)
)
. (23)

We can derive the projection for a force in the form of ξ × u as
follows:

Q (ξ × u) = ∇ ·
〈
−

(
∇

( z

h

)
· ξ

)
u
〉
, (24)

which holds for any u satisfying the boundary condition u · n = 0
on ∂V . We may further simplify this by considering � = −∇ (

z
h

) · ξ

∇ · 〈�u〉 = ∇ ·
〈
�

h
∇ × 1z + �z∇ψ × ∇

(
1

h

)〉
, (25a)

= ∇ ·
( 〈�〉

h
∇ψ × 1z + 〈z�〉 ∇ψ × ∇

(
1

h

))
, (25b)

=
{ 〈�〉

h
, ψ

}
, (25c)

with

{X, Y } = (∇ X × ∇Y ) · 1z . (26)

Let us write u · ∇u = (∇ × u) × u + ∇u2/2. Since the gradient
term vanishes exactly in the projection, the non-linear term can be
written in the generic form ξ × u, with ξ = ∇ × u. For the non-
linear term we thus have

〈�〉 =
〈
−∇

( z

h

)
· (∇ × u)

〉
, (27a)

=
〈
∇ ·

(
∇

( z

h

)
×

(
∇ψ × ∇

( z

h

)))〉
, (27b)

= 2Dψ. (27c)

We have used here 〈∇ · x〉 = ∇ · 〈x〉, which can be demonstrated to
hold for x = ∇ (

z
h

) × (∇ψ × ∇ (
z
h

))
. The non-linear term is then

given by

Q ((∇ × u) × u) = 2

{
1

h
Dψ, ψ

}
. (28)

For the Coriolis force ξ = 2/Le 1� and thus 〈�〉 =〈−∇ (
z
h

) · �
〉 = −4/Le, so that the Coriolis force reduces to

Q
(

2

Le
1� × u

)
= − 4

Le

{
1

h
, ψ

}
. (29)

The QG scalar momentum equation is then given by

D ∂ψ

∂t
+

{
1

h
Dψ,ψ

}
= 2

Le

{
1

h
, ψ

}
+ 1

2
Q ((∇ × B) × B) . (30)

We can close the system by assuming that the 3-D magnetic field
in (30) is advected only by the QG velocity. This is, to the authors’
knowledge, the first presentation of a hybrid model with QG veloc-
ities and 3-D magnetic field. Such a model is desirable especially
in geodynamo modelling, where it is found that a strong columnar
motion is accompanied by a magnetic field of 3-D structure (e.g.
Schaeffer et al. 2017).

To derive a fully 2-D model we assume the same form for the
magnetic field, as for the velocity

B = ∇ A × ∇
( z

h

)
, (31)

with A = A(r⊥, t) a scalar potential. By construction, such a mag-
netic field satisfies the perfectly conducting boundary condition
B · n = 0. This approximation has been used previously to inves-
tigate TM in QG models (Canet et al. 2014; Labbé et al. 2015).
Under this assumption, the Lorentz term simplifies analogous to
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(28), such that

Q ((∇ × B) × B) = 2

{
1

h
DA, A

}
. (32)

The scalar momentum equation is then written in terms of ψ and A
only

D ∂ψ

∂t
+

{
1

h
Dψ,ψ

}
= 2�

{
1

h
, ψ

}
+

{
1

h
DA, A

}
. (33)

The ideal induction eq. (4b) can be simplified as follows:

u × B = 1

h2
∇ψ × ∇ A − z

h3
{ψ, A} ∇h, (34)

= C

h
1z − Cz

h2
∇h, (35)

with C = 1
h

{ψ, A}. Taking the curl then gives

∇ × (u × B) = 1

h
∇C × 1z − z

h2
∇C × ∇h (36a)

= ∇C × ∇
( z

h

)
. (36b)

Thus, the induction equation is given by

∂ A

∂t
= 1

h
{ψ, A} . (37)

In the sphere, where cylindrical coordinates apply, the eqs (33) and
(37) are exactly equivalent to the equations obtained by Labbé et al.
(2015).

3 M E T H O D S F O R T H E E L L I P S O I D

We now consider the case of an ellipsoid with semi axes a, b and c
defined by

x2

a2
+ y2

b2
+ z2

c2
= 1. (38)

To keep equatorial symmetry, we also consider that the rotation axis
is aligned with the c-axis, 1� = 1z (Fig. 2).

3.1 Cartesian monomial basis in the ellipsoid

Since the ellipsoid is a quadratic surface, smooth-enough solutions
can be sought by using an infinite sequence of Cartesian polynomials
(Lebovitz 1989). This approach has proven accurate to describe 3-D
inviscid flows in ellipsoids (e.g. Vantieghem et al. 2015; Vidal &
Cébron 2017; Vidal et al. 2020). The 3-D inertial modes are exactly
described by polynomials in the ellipsoid (Backus & Rieutord 2017;
Ivers 2017), and also the QG and 3-D inertial modes in the spheroid
(Maffei et al. 2017; Zhang & Liao 2017). Additionally, the MHD
modes upon idealized background magnetic fields (e.g. Malkus
1967) also have an exact polynomial description in the spheroid
(Kerswell 1994) and the ellipsoid (Vidal et al. 2016).

Similarly, a 2-D polynomial decomposition in the Cartesian co-
ordinates can be obtained for arbitrary QG vector (16) in non-
axisymmetric ellipsoids as follows. To satisfy the polynomial form
of the velocity components, the stream function must be given as

ψ = h3 �(x, y) = h3
∑

i

α̂i�i , (39)

with the complex-valued coefficients α̂i and the monomials

�i = 1, x, y, xy, x2, ..., x N−1, yN−1 (40)

with i ∈ [0, N2] and N2 = N(N + 1)/2. At any point (x, y) we have

h2

c2
= 1 − x2

a2
− y2

b2
. (41)

If additionally we define G = h2/2, we can rewrite

h∇h = ∇G. (42)

Then, the QG basis vectors ui are given by

ui = h2∇�i × 1z + 3�i∇G × 1z − z∇�i × ∇G, (43)

with the first three basis elements

u0 = 3c2

⎛
⎝−y/b2

x/a2

0

⎞
⎠, (44a)

u1 = c2

⎛
⎝1 − x2/a2 − 4y2/b2

3xy/a2

−xz/a2

⎞
⎠, (44b)

u2 = c2

⎛
⎝ −3xy/b2

4x2/a2 + y2/b2 − 1
yz/b2

⎞
⎠. (44c)

The full velocity is reconstructed by

u =
N2∑

i=0

α̂i ui . (45)

For the linear hydrodynamic (Rossby wave) problem

D ∂ψ

∂t
= 2�

{
1

h
, ψ

}
, (46)

the polynomial degree of ψi = α̂i h3�i is preserved, that is the QG
inertia and Coriolis operators do not modify (increase) the polyno-
mial degree, similar to the 3-D Coriolis operator in the ellipsoid
(Backus & Rieutord 2017; Ivers 2017). This is no longer the case in
the presence of a background magnetic field within the QG model
(unless the magnetic field is only linear in the spatial coordinates,
see Malkus 1967), as the Lorentz term modifies the polynomial
degree. Then, the exact solutions cannot be obtained from a finite
set of �i. Hence, we must project the governing equations onto the
basis with a sufficiently large maximum polynomial degree.

3.2 Galerkin method

Since we are interested in the wave properties, we linearize equa-
tions (4) around a background state with no motion and steady
magnetic field B0. In the Earth’s core, the characteristic mean ve-
locity field is thought to be negligible compared to the Alfvén wave
velocity (Gillet et al. 2015; Bärenzung et al. 2018). Hence, the
velocity and magnetic perturbations [ũ, B̃] are given by

∂ũ

∂t
+ 2

Le
1� × ũ = −∇ p + (∇ × B0) × B̃

+ (∇ × B̃) × B0, (47a)

∂B̃

∂t
= ∇ × (ũ × B0) . (47b)

The linearized set of equations in the hybrid model then read

D ∂ψ̃

∂t
= 2

Le

{
1

h
, ψ̃

}
+ 1

2
Q((∇ × B0) × B̃

+ 1

2
Q((∇ × B̃) × B0), (48a)

∂B̃

∂t
= ∇ ×

((
∇ψ̃ × ∇

( z

h

))
× B0

)
. (48b)
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The linearization of the magnetic field translates to A = A0 + Ã for
the scalar potential and the scalar QG eqs (33) and (37) read

∂tDψ̃ − 2

Le

{
1

h
, ψ̃

}
=

{
1

h
D Ã, A0

}
+

{
1

h
DA0, Ã

}
, (49a)

∂ Ã

∂t
= 1

h
{ψ̃, A0}. (49b)

To solve such sets of linearized equations for eigenmodes, Fourier
expansions along the azimuthal direction could be used in the
sphere, combined with finite differences in the radial direction
(Labbé et al. 2015). Here, we use a Galerkin approach to project the
governing equations onto the respective polynomial bases (e.g. Vi-
dal & Cébron 2017; Vidal et al. 2020). This approach is suitable for
the Cartesian monomial basis, as we can analytically integrate the
Cartesian monomials occurring in the inner product (see formula
50 in Lebovitz 1989). For the QG model this projection is given by

fi j =
∫
A

ψ̃i f (ψ̃ j , Ã j ) dS, (50)

where now f (ψ̃, Ã) corresponds to a force in the scalar momentum
eq. (49a). In this way we create coefficient matrices Uij, Cij and Lij for
the inertial, Coriolis and Lorentz force, respectively. Analogously,
the induction eq. (49b) is projected onto the basis Ai = ζ̂i h3�i and
the coefficient matrices Bij and Vij correspond to the projections of
the temporal change of the magnetic field and magnetic advection,
respectively. For this model Uij and Bij are identical and Hermitian.
Assuming that ψ̃(r⊥, t) = ψ̂(r⊥) exp(iωt) (and the same for Ã), so
that ∂t ψ̃ = iωψ̃ , the resulting matrix form is

iωMx = Dx, (51)

with M, D ∈ R2N2×2N2 of the form

M =
(

Ui j 0
0 Bi j

)
, D =

(
Ci j Li j

Vi j 0

)
, (52)

and x = (α̂ j , ζ̂ j ) ∈ C2N2 . This form is referred to as a generalized
eigen problem solvable for eigen pairs (ωk, xk).

Note that using the reduced equation and projecting onto the
basis of stream functions ψ̃i is equivalent to projecting the 3-D
equations onto the QG basis ui , apparent from (19). We use this
fact for the hybrid model and project the 3-D momentum eq. (47a)
onto the QG basis vectors ui while keeping the full 3-D basis vec-
tors Bi with coefficients ζ i for the magnetic field. The induction
eq. (47b) is projected onto the basis Bi . The resulting matrices are
U ′

i j , C ′
i j ∈ RN2×N2 , L ′

i j ∈ RN2×N3 , Bi j ∈ RN3×N3 and V ′
i j ∈ RN3×N2 ,

so that M′, D′ ∈ RN2+N3×N2+N3 and x = (α̂ j , ζ j ) ∈ C N2+N3 . These
matrices can be built analytically, but this becomes tedious even for
a maximum polynomial degree as low as 2 and in practice this is
done by computer algebra systems or numerically.

3.3 Numerical implementation

The linear problems based on Cartesian monomials are imple-
mented in the Julia programming language (Bezanson et al. 2017).
The QG, hybrid and 3-D models are freely available at https:
//github.com/fgerick/Mire.jl. The reproduction of all the results and
figures from this article using these models is available through
https://dx.doi.org/10.5281/zenodo.3631244.

To solve for the eigen problems, different methods have been
employed. To calculate the full spectrum of eigensolutions, we use
either LAPACK or recent Julia implementations for accuracy be-
yond standard floating point numbers (e.g. in Fig. 9). Full spec-
trum eigensolutions are computationally demanding, which is why

we also apply targeted iterative solvers from the ARPACK library,
making use of the sparsity of the matrices M and D, where approxi-
mately 13 and 30 per cent of entries are non-zero, respectively. The
sparse solver is also applied to follow eigenbranches (i.e. to track a
specific eigensolution through the parameter space). To do so, we
apply a targeted shift-and-invert method (e.g. Rieutord & Valdettaro
1997; Vidal & Schaeffer 2015)

(D − σM)−1Dx = λx (53)

around a target σ ∈ C , with the new eigenvalue λ = (iω − σ )−1.
This strategy is efficient to compute the eigenvalues close to the
target σ (which is chosen close to the desired eigenvalue iω).

4 N U M E R I C A L R E S U LT S

We first validate our QG (and hybrid) model against the 3-D model
for a simplified background magnetic field (Malkus 1967), and
then consider a more complex background magnetic field that is
able to drive TM. In this section the QG model is considered and we
compare our results to a 3-D magnetic field with the hybrid model
in Appendix B.

4.1 Modes in the Malkus field

An interesting first study case is the mean field introduced by Malkus
(1967), originally given as a field of uniform current along the
rotation axis in a sphere with B0,M = s 1φ (hereafter Malkus field).
In his study, the slow and the fast modes were recovered from the
resulting dispersion relation (see eq. 2.28 in Malkus 1967).

In the ellipsoidal case, the Malkus field is modified to follow the
elliptical geostrophic contours. This translates into the background
magnetic field B0,z = c2(−y/b2, x/a2, 0)T in Cartesian coordinates
(e.g. Vidal et al. 2019) and a mean magnetic potential A0 = h3/3
for the QG model. Due to the lack of any magnetic field component
perpendicular to the geostrophic contours, the Malkus field does
not permit TM. However, that field allows us to investigate the slow
and fast modes in the ellipsoid. We report, for the first time, the
dependency of these modes on the equatorial ellipticity

ε = a2 − b2

a2 + b2
, (54)

where ε = 0 corresponds to the axisymmetric case. Here, we in-
vestigate the parameter range ε ∈ [0, 0.4]. For all the results shown
below, the semi-axis along the rotation axis is kept constant at c =
1. The influence of polar flattening has already been investigated
previously and is not discussed here (Maffei et al. 2017; Zhang &
Liao 2017). Throughout this study, the volume is preserved by set-
ting a = 1/b when increasing the ellipticity in the equatorial plane,
so that abc = 1.

We compute the frequencies of two of the largest-scale fast and
slow modes, and track their frequencies as a function of ε. The
results are shown in Fig. 3. The trends of all models agree well. The
fast modes decrease in frequency, whereas the slow modes increase
their frequency as the ellipticity is increased. The frequency is al-
most independent of the ellipticity when ε 
 1 , and the difference
with respect to the spherical values scales as |ω(ε = 0) − ω(ε)| ∼
ε2 for the fast and slow modes (see Fig. 3, bottom). This scaling
may be anticipated by the relation of the fast and slow modes to the
inertial modes in the ellipsoid, showing a similar scaling (compare
with eq. 3.24 in Vantieghem 2014).

The Malkus field is completely determined by the geostrophic
basis (as introduced in Appendix A). Hence, we do not observe
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Figure 3. Frequencies ωf, m of the fast modes (top) and ωs, m of the slow
modes (middle) as a function of ellipticity for radial complexity l = 1 and
azimuthal wave number m = 2, 3. Difference between the frequency as a
function of ε and the frequency in the sphere with ε = 0, normalized by the
frequency in the sphere, for the considered fast and slow modes (bottom).
The Lehnert number is 10−8. The different models are: QG (solid), hybrid
(dots) and 3-D (dashed).

any differences between the QG model (solid line) and the hybrid
model (dots). The differences in frequency magnitude between the
3-D model (dashed line) and the QG and hybrid model depend on
the modes’ complexity (see Labbé et al. 2015; Maffei et al. 2017).
The discrepancies observed between the different models are similar
over the entire range of ellipticities considered here (0 ≤ ε � 0.4).
We are thus confident in using the QG (or hybrid) models for further
analysis, as we do not observe strong 3-D effects on the modes by
the equatorial ellipticity.

4.2 Torsional Alfvén modes

To drive TM the imposed background magnetic field must have a
component perpendicular to the geostrophic contours. For the QG
model, we must consider a scalar potential A0 that is not only a

Figure 4. Convergence of frequencies as a function of truncation degree N
for a background magnetic field B0,QG, ε = 0.42 and Le = 10−5. Connected
lines indicate individual modes. Black lines correspond to TM and the
smallest frequency mode (in grey with triangles) is the U3-mode.

Figure 5. Equatorial sections (left) and meridional sections along the x-axis
(right) of the two largest scale TM using B0,QG, ε = 0.42 and Le = 10−5.
The colours indicate the velocity along the geostrophic contours uϕ and the
vertical velocity uz, respectively.

function of h. We choose A0 = h3(1 + x)/3, which yields

B0,QG = c2

3

⎛
⎝ −3(1 + x)y/b2

(3 + 4x)x/a2 + y2/b2 − 1
yz/b2

⎞
⎠. (55)

Since the components of such a magnetic field are no longer linear
in the Cartesian coordinates (contrary to the Malkus field), the con-
vergence of the modes depends on the truncation of the maximum
polynomial degree. We verify the convergence of the largest scale
TM (see black lines in Fig. 4). As N is increased more TM with a
larger polynomial complexity appear, with one additional TM per
two polynomial degrees. This is explained by the introduction of an
additional geostrophic basis vector at every second polynomial de-
gree (see Backus & Rieutord (2017), in the sphere and Appendix A
in the ellipsoid).

The equatorial and meridional sections of the two lowest fre-
quency (and thus largest scale) TM, calculated using B0,QG at N =
7, are presented in Fig. 5 for a strongly deformed ellipsoid with
equatorial ellipticity ε = 0.42. As in the sphere, the velocities of
TM follow the geostrophic contours that are now ellipses. The ve-
locity structure is almost purely horizontal, seen by the ratio of the
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Figure 6. Equatorial section (left-hand panel) and meridional section along
the x-axis (right-hand panel) of the U3-mode using B0,QG, ε = 0.42 and Le
= 10−5. The colours indicate the velocity along the geostrophic contours
uϕ and the vertical velocity uz, respectively.

velocity amplitudes uϕ /uz ∼ 105, where uϕ is the velocity along an
elliptical geostrophic contour and uz is the vertical velocity.

The lowest frequency mode (highlighted in grey triangles in
Fig. 4) is hereafter referred to as U3-mode. It is already present
for a truncation degree N = 1, where only components linear in the
Cartesian coordinates are included. The equatorial and meridional
section of the U3-mode are presented in Fig. 6 for an ellipsoid with
equatorial ellipticity of ε = 0.42 and N = 7. Compared to other TM,
it consists almost solely of a velocity with uniform vorticity along
the z direction.

4.2.1 Identification of torsional Alfvén modes

When the Lehnert number is not sufficiently small to separate the
branches of eigensolutions, as seen for the sphere in Fig. 1 at Le
> 10−3, a clear identification of TM in the spectrum of eigenso-
lutions is complicated. In Fig. 7 we show the dependency of the
frequency of the eigensolutions on the Lehnert number for an el-
lipsoid with ε = 0.42. For the TM represented in this Figure, no
dependency of the frequency on Le is observed for Le � 10−3, as
in the case of the sphere (compare Fig. 1, bottom). Similarly, the
U3-mode shows no dependency of its frequency on Le for Le <

7 × 10−4. For Le � 10−3 the TM shown here and the U3-mode
do not cross any other eigensolutions (and due to their indepen-
dence of Le they do not cross each other). In this region we have no
difficulty in identifying individual TM or the U3-mode. When Le
is increased to values greater than 10−3, more eigensolutions with
frequencies close to the TM or the U3-mode exist. Tracking these
eigensolutions as a function of Le (as described in Section 3.3)
reveals that they can undergo so-called avoided crossings, where
two eigensolutions approach each other without ever degenerating.
An example of such an avoided crossing is shown in the inset in
Fig. 7, where the U3-mode morphs into the fastest slow mode and
vice versa. The two modes exchange their properties, as shown here
by the ratio of kinetic to magnetic energy. Such a behaviour has
been similarly observed in other geophysical wave studies (Rogis-
ter & Valette 2009), even for non-vanishing diffusivities (Triana
et al. 2019), or in quantum systems (Rotter 2001). Labbé et al.
(2015) chose not to show the results, obtained in the spherical
case, for values of Le corresponding to avoided crossing (their
figs 6, 7, 11).

We differentiate in the following the modes, characterized by their
physical properties, and the eigenbranches, obtained by continuous
tracking of the eigensolutions. This way, we can continue the U3-
mode and the TM out of the Le 
 1 domain, where they are
clearly distinguishable. We have indicated the U3 mode and TM as
well as the fastest slow mode by the coloured lines in the bottom
Fig. 7.

Figure 7. Frequency of eigensolutions as a function of Lehnert number for
ε = 0.42, with colours indicating the ratio of kinetic to magnetic energy (top
panel). The inset shows an avoided crossing of the U3-mode and the fastest
slow mode, with dots indicating individual steps of the tracking algorithm.
The frequencies of TM (orange dash–dotted, green dashed and red dotted),
the U3-mode (blue solid) and the fastest slow mode (purple dash–dot–dotted)
are highlighted in the bottom panel.

4.2.2 Ellipticity effects

The dependency of the frequency on the equatorial ellipticity of
TM and U3-mode is presented in Fig. 8(top panel). It is observed
that, when ε � 10−1, the change of the TM frequency is small
and tends to their non-vanishing frequency in the sphere. To be
more quantitative, the difference between the frequencies in the
ellipsoid and the sphere scales with ε for the TM (see Fig. 8,
bottom panel).

A very different behaviour is observed for the frequency of the
U3-mode, since the frequency itself scales with ε1/2. This means that
the U3-mode has a vanishing frequency when ε = 0. Also, the ratio
of kinetic to magnetic energy of the U3-mode scales with ellipticity.
These two properties clearly differentiate the U3-mode from TM.
The restoring force for the U3-mode is the pressure force acting on
the elliptical boundary. At small ellipticities it is only the magnetic
pressure force.

4.2.3 Torque balance

The velocity and magnetic field of an eigensolution (ũk, B̃k, ωk) for
a given B0 and Le are normalized as∫

V
ũk · ũk dV +

∫
V

B̃k · B̃k dV = 1, (56)

such that they have a unit energy in dimensionless units. We can
then calculate the angular momentum Lk by inserting uk into (6a),
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Figure 8. Frequencies of TM (orange dash–dotted, green dashed and red
dotted) and the U3-mode (blue solid) as a function of ellipticity ε (top panel).
Difference between the frequency as a function of ε and the frequency in
the sphere with ε = 0 (bottom panel). The Lehnert number is Le = 10−5.

Figure 9. The z component of the torques for the background magnetic field
with truncating degree N = 7, ε = 0.42 and Le = 10−5. The U3-mode is
displayed slightly transparent.

and its time derivative is given by iωkLk . The linearized magnetic
pressure torque is given by

�pm = −
∫
V

r × ∇ (
B̃ · B0

)
dV, (57)

Figure 10. Axial angular momentum (top panel) and its change (bottom
panel) of TM and the U3-mode as a function of ellipticity for the background
magnetic field B0,QG and Le = 10−5. The colours correspond to those in
Fig. 8.

Figure 11. Axial angular momentum (top panel) and its change (bottom
panel) of TM and the U3-mode for the background magnetic field B0,QG

and a, b, c = 1.25, 0.8, 1 (ε = 0.42) with N = 7. At Le � 10−3, where
eigensolutions are influenced by avoided crossings, we have identified the
modes by choosing a frequency within ±10 per cent and an angular momen-
tum within ±50 per cent of the frequency and angular momentum at Le 

1. The colours correspond to those in Fig. 8.

and �pm,k follows by inserting B̃k and B0. The hydrodynamic pres-
sure torque (6b) is calculated by reconstructing the pressure gra-
dient, which cannot be done from the velocity field only. We re-
construct it instead by inserting ũk , B̃k and B0 in the momentum
eq. (47a).
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Figure 12. Change of axial angular momentum for the QG model with
B0,QG and N = 11. The full spectrum of eigensolutions is computed at
incremental steps of Le, without tracking an individual eigensolution.

Table 1. Estimation of change in angular momentum of TM for Earth’s
core, with ε = 10−3. The TM are normalized to have a period T = 6 yr. The
characteristic TM velocity is set to u0 = 5 × 10−6 m s–1.

Model ω Lz Le [10−4] B0 [mT] ωLz [Nm]

QG 0.48 113 9.5 29.5 9.5 × 1014

QG 0.865 18.3 5.28 16.4 1.54 × 1014

QG 1.45 0.92 3.15 9.8 7.76 × 1012

Hybrid 1.14 87.4 4.02 12.5 7.37 × 1014

Hybrid 2.06 9.24 2.22 6.89 7.79 × 1013

Hybrid 3.34 0.35 1.37 4.25 2.95 × 1012

The axial torques in a strongly deformed ellipsoid with a, b, c
= 1.25, 0.8, 1 (i.e. ε = 0.42) are shown in Fig. 9. We find non-
vanishing torques along the rotation axis for slow modes (10−5 <

ω < 10−2), TM (10−1 < ω < 10) and the fast modes (ω > 102). For
many modes the hydrodynamic, magnetic and total pressure (sum
of hydrodynamic and magnetic pressure) torques do not vanish.
For most fast modes �p, z balances �pm, z exactly. In case �p, z is not
exactly balanced by �pm, z, the total pressure torque is in balance with
the non-vanishing change in angular momentum ωLz, in agreement
with eq. (9). For example, the TM with largest scale (and smallest
frequency ω = 0.737) has �p, z = −1.285 + 1.414i, �pm, z = 1.159
− 1.275i and iωLz = −0.126 + 0.139i. Our results show that TM
yield pressure torques much larger than the slow and fast modes.

Ivers (2017) demonstrated that, in the ellipsoid, only flows of
uniform vorticity carry angular momentum. They are given by

û1 =
⎛
⎝ 0

−z/c2

y/b2

⎞
⎠, û2 =

⎛
⎝−z/c2

0
x/a2

⎞
⎠, û3 =

⎛
⎝−y/b2

x/a2

0

⎞
⎠, (58)

with a spatially uniform vorticity in the x-, y- and z-directions, re-
spectively. Therefore, we determine if the modes do contain such
uniform vorticity components and whether or not it accounts for the
non-vanishing angular momentum. To this end, we must project the
eigensolutions onto velocities (58) and the resulting angular mo-
mentum of the ith uniform vorticity component of an eigensolution
with velocity uk is given by

L̂ i,k = 1√∫
ûi · ûi dV

∫
V

(ûi · ũk)(ûi × r) · 1i dV . (59)

For all modes we find (within machine precision) that Lz,k = L̂3,k ,
in agreement with the predictions by Ivers (2017).

The U3-mode, shown slightly transparent in Fig. 9, has a velocity
almost exactly equal to û3 (thus the name U3-mode). It is associated
with the largest torque. However, the time scale at which this torque
acts increases as the ellipticity is decreased to more geophysically
relevant values, whereas it remains the same for TM.

4.2.4 Torque variation with the ellipticity and Lehnert number

We show in Fig. 10 the dependency on the ellipticity of the angular
momentum in z (top panel), and the associated changes (bottom
panel). The angular momentum scales with ε for the TM, and with
ε1/2 for the U3-mode. Since the frequency is almost independent of
ε for the TM, and scales with ε1/2 for the U3-mode, the change in
angular momentum scales with ε for all modes. A vanishing change
in angular momentum is necessary to satisfy the torque balance in
the sphere, where the pressure torque vanishes exactly. Departures
from the aforementioned scalings are only observed for strongly
deformed ellipsoids (i.e. ε > 0.1). For TM with higher frequencies,
the spatial complexity of the modes increases and their angular
momentum and the change in angular momentum decreases.

In Fig. 11 we show the evolution of the angular momentum and
change in angular momentum of TM and the U3-mode as a function
of the Lehnert number. For Le � 10−3 we observe no dependency
on Le for the angular momentum. Thus, because the frequency is
also independent of Le (see Fig. 7), there is no dependency of the
change in angular momentum on Le and the total pressure torque
must scale in the same way.

The frequencies of the eigenbranches are close-by when Le >

10−3, and they undergo the previously discussed avoided crossings.
However, we are still able to identify the TM and U3-mode by their
frequency and angular momentum when Le 
 1 (see Fig. 11). To
check the influence of truncation on the results, we have computed
the change in angular momentum of all the eigensolutions as a
function of Le for the truncation degree N = 11. The U3 mode and
the TM can be well characterized by their angular momentum (see
Fig. 12). Comparison between our results for N = 7 and N = 11
makes us confident that our angular momentum calculations for U3

and the largest scale TM are converged at N = 7.
To check the generality of these results, we have considered a

3-D magnetic field in the hybrid model. The results are presented
in Appendix B. No qualitative differences with the results of the
QG model are found, even if the background magnetic field has a
different topology. We follow from this that our results extend to
more complex background magnetic field geometries. Further veri-
fication was done using a fully 3-D model, where no QG assumption
is made on the velocity (not shown).

5 D I S C U S S I O N A N D C O N C LU S I O N S

5.1 Pressure torque and angular momentum of torsional
Alfvén modes in ellipsoids

We have found that TM in the ellipsoid can have a non-vanishing
angular momentum. Their angular momentum is fully accounted for
by their uniform vorticity flow component along the rotation axis.
This fully agrees with Ivers (2017), who proved that only uniform
vorticity flows have non-zero angular momentum. In the hydrody-
namic case (without magnetic field), only the geostrophic mode can
have a non-vanishing axial angular momentum. Since its frequency
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is zero, the change in axial angular momentum vanishes. All other
inertial modes in a non-conductive fluid enclosed in an ellipsoid
are orthogonal to the geostrophic mode and no inertial mode can
produce a net axial torque acting on the boundary. In MHD, the
modes have a magnetic component and we lose the orthogonality
properties between the velocity components. It is well known that
TM exist, whose frequency is non-zero, with a dominant veloc-
ity component along the geostrophic contours. We have shown that
these TM keep following the geostrophic contours for an ellipsoidal
domain, and carry angular momentum through their uniform vor-
ticity component when non-axisymmetry is present. This change in
angular momentum must be balanced by the total pressure torque,
as the Coriolis torque is exactly zero along the rotation axis and in
our model the magnetic tension torque �b also vanishes. Our results
confirm this balance, and there are modes for which the hydrody-
namic pressure torque is larger than the magnetic pressure torque.
It is worth discussing whether our results extend to the case of a
perfectly insulating boundary, where the magnetic tension torque
�b exactly balances the magnetic pressure torque �pm. Then, only
the hydrodynamic pressure torque can balance changes in angular
momentum. Investigating perfectly insulating boundaries remains
a future problem as it is inherently impossible by our methodology
and out of the scope of this work.

We have shown that the frequency of TM remains independent
of the Lehnert number, as is the case in the sphere. The angular
momentum is also independent of the Lehnert number, and thus
is the change of angular momentum and the associated pressure
torque. The frequency of TM is also almost unaffected by small
ellipticities. The angular momentum (and its change) of TM scales
as ε, so that it vanishes in the sphere (as it should).

In addition to the TM, we observed the particular U3-mode,
mainly of uniform vorticity in the axial direction, carrying angular
momentum. For a strongly deformed ellipsoid with ε = O(10−1)
the frequency of the U3-mode happens to be in the range of TM.
As for TM the frequency and the angular momentum of the U3-
mode does not depend on Le for small enough Le. However, in
contrast to TM its frequency scales with ε1/2, a mode behaviour so
far unknown to the authors. The U3-mode is thus geostrophic in
the sphere, with a vanishing frequency. Its frequency also vanishes
for the hydrodynamic case, regardless of the ellipticity. A magnetic
field with a component perpendicular to the geostrophic contours is
needed in addition to non-axisymmetry to drive this mode.

Another interesting application of our model is the extension to
more complex geometries (as long as closed geostrophic contours
exist). The derived equations are indeed independent of the (possibly
non-orthogonal) coordinate system. The ellipsoidal case presented
here can be used as a benchmark for follow up work in this direction.
We have additionally presented the first hybrid model, with the
velocity in the QG assumption and a 3-D magnetic field. A property
highly desirable in core flow dynamics, where a columnar flow
model seems appropriate, but the magnetic field is clearly three
dimensional (e.g. Schaeffer et al. 2017).

5.2 Geophysical implications

Our results suggest that TM in the Earth’s core, which have periods
on the scale of a few years, exert a pressure torque onto the solid
mantle, provided the CMB is non-axisymmetric. The observed vari-
ations in the LOD areO(10−4) s at the 6 yr period (Gillet et al. 2015),
which corresponds to a change in angular momentum O(1016) Nm.

To compare this to the torques of TM calculated here, we redimen-
sionalize our numerical results by assuming a characteristic velocity
u0 = 5 × 10−6 m s–1 of TM (see fig. 10 in Gillet et al. 2015). We
match the frequencies of the calculated TM to the 6-yr period, so
that a characteristic background magnetic field strength B0 and sim-
ilarly Le is defined. For an ellipticity ε = 10−3, estimated for Earth
(Koper et al. 2003; Sze & van der Hilst 2003), the resulting val-
ues are presented in Table 1. The frequency conversion to match a
6-yr period yields a characteristic magnetic field strength of B0 ∼
4 − 30 mT, hence a Lehnert number Le = O(10−4). These values
are in agreement with what is expected for the Earth’s outer core
(Gillet et al. 2010). The resulting change in angular momentum,
and thus the pressure torque, is at most O(1014) Nm for all modes.
These values are two orders below the value needed to explain the
variation of the LOD on the 6-yr period. This result can be better
understood from a dimensional analysis of the pressure. First, the
pressure varies linearly with the TM velocity. Secondly, the TM are
independent of �. Therefore, the pressure associated to the velocity
of TM scales with p0 ∼ ρu0u A = O(10−3) Pa. With this value, we
verify that the resulting hydrodynamic pressure torque is O(1014)
Nm.

In order to make the pressure torque significant, we need devi-
ations from geostrophy so that pressure depends on �. This may
happen in the presence of non-closed geostrophic contours. Then,
’pseudo-geostrophic’ modes are replaced by Rossby modes, whose
properties depend on �. These Rossby modes are not steady and
possess the mean circulation included in the geostrophic mode oth-
erwise (Greenspan 1968). Thus, Rossby modes driven by the mag-
netic field may play an important role for the pressure torque on a
non-spherical boundary, where non-closed contours exist. It is easy
to imagine this scenario in the presence of an inner core or at the
CMB of the core, with a trough directed inwards at the equator.
Stratification at the upper outer core may further increase the effi-
ciency of the topographic torque (Braginsky 1998; Glane & Buffett
2018; Jault 2020).

Another hypothetical geophysical application is the explanation
of the very long period variations in the LOD through the U3-mode.
These variations are O(10−3) s and have a period of around 1500 yr
(Stephenson et al. 1995; Dumberry & Bloxham 2006). The U3-
mode in our model has a period of 1800 yr for Le = 10−4 and
an ellipticity of ε = 10−3. The U3-mode could therefore be an
explanation for these long period variations, but this remains a very
speculative idea.
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A P P E N D I X A : G E O S T RO P H I C F L OW
D E S C R I B E D B Y A S T R E A M F U N C T I O N

The geostrophic part of the velocity can be regarded as the aver-
age over a geostrophic column. This is equivalent to considering a
stream function

ψ̃(h) =
∮

ψ(h, ϕ) dϕ∮
dϕ

, (A1)

depending only on the geostrophic column height h. Here, we
have chosen the coordinates (h, ϕ, z) conveniently, such that ϕ

is the coordinated along a closed geostrophic contour of constant
h and z ∈ [ − h, h] is along the rotation axis. In the axisymmetric
case these coordinates are identical to the cylindrical coordinates.
In the generic case, with arbitrarily shaped geostrophic contours,
we have to apply curvilinear coordinates, that are not necessar-
ily orthogonal. For non-orthogonal coordinates the dual, covari-
ant and contravariant, bases gi and gi are needed. We refer the
reader to Aris (1989) for more details on non-orthogonal curvilinear
coordinates.

Inserting (A1) into (16) the geostrophic velocity is given by

uG = ∇ψ̃(h) × ∇
( z

h

)
(A2a)

= uG(h, ϕ)g2, (A2b)

with uG(h, ϕ) = (Jh)−1 ∂ψ̃

∂h and the covariant basis vector in
ϕ-direction g2. Here, J (h, ϕ, z) = det(gi j ) is the Jacobian of
the coordinate mapping. The metric elements are given as
gi j = gi · g j . In case of the sphere or the ellipsoid J = J(h).

The geostrophic pressure pG is well defined and depends on
h only

2ρuG × � = −∇ pG (A3a)

⇔ 2ρ�

h

∂ψ̃

∂h
= ∂pG

∂h
. (A3b)

To construct a basis of geostrophic velocities uG,i being polyno-
mial in the Cartesian coordinates the stream function ψ i(h) has to
take the form

ψ̃i (h) = 1

3
h3+2i , (A4)

where h2 = c2(1 − x2/a2 − y2/b2). The basis of geostrophic velocities
is given as

uG,i = 1

h
∇ψ̃i × 1z = 1

3
(3 + 2i)h2i∇g × 1z, (A5)

with ∇g = −c2(x/a2, y/b2, 0)T .

A P P E N D I X B : H Y B R I D M O D E L

In the hybrid (or fully 3-D) model the background magnetic fields
are less restricted, and we select an admissible field from appendix
A in Wu & Roberts (2011). Namely, we consider the magnetic field

B0,hyb =
⎛
⎝ xy

−2b2(x2/a2 + z2/c2) + b2 − y2

yz

⎞
⎠, (B1)

named v8 in the quadratic basis of Wu & Roberts (2011). We choose
this field, as it clearly goes beyond the magnetic field (55) while
keeping the maximum polynomial degree sufficiently low to ensure
convergence.

The U3-mode and the two largest scale TM are presented in
Fig. B1. Even though the background magnetic field considered
here is topologically speaking very different to B0,QG, the modes
show a clear spatial similarity (compare Fig. 5). The axial torques
are presented in Fig. B2. No qualitative difference to the QG model
is observed. For modes with non-vanishing change in angular mo-
mentum the total pressure torque balances it. Again, the U3-mode
carries the largest angular momentum and for some slow modes and
fast modes the change in angular momentum is also non-vanishing.

The dependency of the frequency, angular momentum and the
change of angular momentum of the U3-mode and TM on the ellip-
ticity is shown in Fig. B3. The same scalings in ε are observed for
the U3-mode and the TM compared to the QG case.

Finally, we present the dependency of the angular momentum
and its time derivative of the TM and the U3-mode in Fig. B4. As
in the QG case, no dependency is observed. In comparison to the
QG case, the U3-mode and the TM seem to be less influenced by
avoided crossings at Le > 10−3 (compare to Fig. 11).
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Figure B1. Equatorial sections (left-hand panel) and meridional sections
along the x-axis (right-hand panel) of the U3-mode (top panel) and the two
largest TM (middle and bottom) using B0,hyb, ε = 0.42 and Le = 10−5.
The colours indicate the velocity along the geostrophic contours uϕ and the
vertical velocity uz, respectively.

Figure B2. The z component of the torques using B0,hyb, ε = 0.42 and Le
= 10−5 with truncating degree N = 9.

Figure B3. Frequency (top panel), axial angular momentum (middle panel)
and change in axial angular momentum (bottom panel) of the three largest
scale TM (orange dash-dotted, green dashed and red dotted) and the U3-
mode (blue solid) for B0,hyb and Le = 10−5 using the hybrid model.

Figure B4. Axial angular momentum (top panel) and change in axial angu-
lar momentum (bottom panel) for B0,hyb and a, b, c = 1.25, 0.8, 1 using the
hybrid model. The colours correspond to those in Fig. B3.
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