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A B S T R A C T

F4-neuroprostanes, F3-neuroprostanesn-6 DPA, and F2-dihomo-isoprostanes, metabolites of non-enzymatic lipid
peroxidation of polyunsaturated fatty acids [docosahexaenoic acid, n-6 docosapentanoic acid, and adrenic acid
respectively], have become important biomarkers for oxidative stress in several diseases like epilepsy and
alzheimer. These biomarkers and the 15-F2t-isoprostane (also known as 8-iso-PGF2α), a F2-isoprostane isomer
measured as reference oxidative marker at systemic level, were analyzed by UHPLC-QqQ-MS/MS in the urine of
60 renal recipients from cadaveric donors of the Nephrology Unit of the University Hospital Virgen de la
Arrixaca, at six different times during the first six months after renal transplantation, and were compared with a
control group of 60 healthy subjects from the same hospital. A total of 11 metabolites were analyzed and
different patterns were observed. A tendency to decrease was observed in three metabolites (4-epi−4-F3t-
NeuroPn-6 DPA, ent−7(RS)−7-F2t-dihomo-IsoP, and ent−7(S)−7-F2t-dihomo-IsoP) and in our reference
oxidative marker (15-F2t-IsoP) when kidney function improved and the excretion of urine proteins decreased.
These results suggest that these three biomarkers of oxidative stress could be useful to assess renal function in the
postransplant phase. Unfortunately, little is known about this kind of biomarker in this cohort of patients, so
further investigation would be required in the clinical field to clarify the relationship between oxidative stress
and the graft function, as well as the usefulness of these biomarkers as rejection markers.

1. Introduction

Kidney transplantation is considered the best available treatment
for patients with end-stage renal disease. In recent decades, there has
been an increased demand for this kind of transplantation. This can be
attributed to the increasing number of patients with this pathology -
which may result from chronic diseases such as metabolic disorders,
diabetes mellitus, and hypertension [1], as a result of the new lifestyle
acquired in western countries.

Although short-term renal allograft survival has recently increased

due to new immunosuppressive therapies, allograft renal rejection is
still one of the most important complications after renal transplanta-
tion, directly leads to allograft loss, and is detrimental to long-term
survival. Graft rejection is a complex pathophysiological process that
requires analyses at different levels for its complete understanding [2]
and undermines the full benefits of the transplant [3]. Consequently,
timely detection and treatment of rejection is an important goal in the
postransplant surveillance.

The standard care with serum creatinine (CrS) measurements and
biopsy upon allograft dysfunction implies that rejection is detected at
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an advanced stage. CrS concentrations are dependent upon age, gender,
muscle mass, medication, and hydration status and may not be altered
until a significant amount of kidney function is lost [4]. Therefore, the
measurement of only the CrS as the gold standard marker of kidney
function carries the risk of missing an important therapeutic window
because of the time lag between the inciting insult and the diagnostic
elevation of creatinine. On the other hand, biopsy is an invasive
procedure and, although it has become safer and its interpretation
more standardized [5], bleeding and subsequent graft loss still occur,
while sampling errors and interobserver variability in biopsy reading
remain problematic.

Metabolomics, a relatively new tool for the investigation of meta-
bolic changes, is concerned with the high throughput measurement of
all the small-molecule metabolites in the metabolome of a system [6].
This capacity to measure hundreds of thousands of important metabo-
lites quickly has opened the door to many potential applications in a
large number of areas, including plant research [7], nutrition [8],
pharmaceutical research [9], cardiovascular disease [10], and organ
transplantation [11].

Metabolites measurements have been part of organ transplant
monitoring for more than 60 years [12]. While most measurements
have been restricted to just a few well known compounds - such as
creatinine, glucose, and urea - there is a large body of lesser known
metabolites involved in pathophysiologic process which remain to be
discovered.

Oxidative stress (OS) is a biochemical state in which reactive oxygen
species (ROS) are generated and it has been associated with several
pathological states, including renal transplantation [13]. The ROS are
extremely unstable and highly reactive metabolites, which makes them
difficult to detect in vivo. Oxidative damage in humans can be
measured as the oxidation of different biomolecules - such as lipids,
proteins, or nucleic acids - using metabolomics tools. In particular,
lipidomics (targeted metabolomics) might be used with the hope of
both identifying a biomarker of lipid oxidation that could reflect kidney
function and, in the future, seeking its involvement in rejections,
thereby trying to avoid the high risk associated with the graft biopsy.

Using a Ultra High Pressure Liquid Chromatography-triple quadru-
pole-Tandem Mass Spectrometry (UHPLC-QqQ-MS/MS), we measured
F3-neuroprostanes n-6 DPA (F3-NeuroPs n-6 DPA), F4-neuroprostanes
(F4-NeuroPs), and F2-dihomo-isoprostanes (F2-dihomo-IsoPs), biomar-
kers of the non-enzymatic lipid peroxidation of n-6 docosapentanoic
acid (n-6 DPA), docosahexaenoic acid (DHA), and adrenic acid (AdA),
respectively. Furthermore we measured the 15-F2t-isoprostane (15-F2t-
IsoP or also known as 8-iso-PGF2α), derived from arachidonic acid, as
reference oxidative marker at systemic level.

Thus, the main aim of our study was to evaluate the changes in the
evolution of these metabolites of lipid peroxidation during the short-
term postransplantation period, in comparison with a healthy group, in
order to identify potential biomarkers of prognosis and their applica-
tions in the evaluation of graft function after transplantation.

2. Subjects and methods

2.1. Selection of study participants

In a prospective longitudinal study between October 2013 and May
2015, we followed up 60 kidney transplant recipients from the
Nephrology Unit of the University Hospital Virgen de la Arrixaca, aged
between 16 and 72 years old. Sixteen of them were excluded from the
final data analysis since the technicians could not collect blood and
urine samples in a timely manner because of missed clinic appoint-
ments, two of them died, and another one had an acute cellular
rejection with allograft loss, leaving a final study population of 41
patients. Forty-eight percent of them suffered delayed kidney function
after the transplant and 13 were biopsied because of a worsening renal
function. Those patients with acute illnesses or a previous renal

transplant were excluded from the study. All the transplanted kidneys
were from cadaveric donors: 46 died from cerebrovascular accidents
and 14 from traumatic brain injury. Every patient selected received
anticalcineurinic drugs, steroids, and mycophenolate mofetyl as im-
munosuppressive therapy. In addition, we recruited 60 healthy subjects
from the same hospital, aged between 24 and 67 years old. All patients
gave written informed consent for the experiment and the study was
approved by the Bioethics Committee of the University Hospital Virgen
de la Arrixaca (Murcia, Spain), and the research was carried out in
compliance with the Declaration of Helsinki [14].

2.2. Blood samples

Blood samples were collected from the patients group at six
different times after transplantation: five days post transplant, ten days
post transplant, and at clinic visits at one month post transplant, two
months post transplant, three months post transplant, and six months
post transplant, according to the renal-transplant clinic schedules. From
the control group, only one blood sample was collected. Venous blood
was drawn into Vacutainer tubes (Becton-Dickinson, Franklin Lakes,
NJ) containing ethyldiaminetetraacetic acid, for whole blood, and into
serum separator tubes for serum.

Hematological parameters were immediately determined using an
XE-5100 automatic analyzer (Sysmex, Kobe, Japan). The serum in the
tubes was allowed to clot at room temperature before centrifugation.
The tubes were centrifuged at 4 °C, at 2500 rpm, for 10 min.
Biochemical parameters were measured in the serum by colorimetric
and turbidimetric assays, in a Cobas 8100 (Roche Diagnostics,
Manheim, Germany), performed according to the manufacturer's in-
structions [15]. For the evaluation of renal function we used: CrS,
estimated Glomerular Renal Filtration (eGFR) by the MDRD equation,
and Blood Urea Nitrogen (BUN). Moreover, the Serum Albumin (AlbS)
and Hematocrit levels (Hct) were considered for the evaluation of
nutritional status.

2.3. Urine sampling

First-morning urine samples were collected from the patients group
at the six different and consecutive postransplant moments. From the
control group, only one first-morning urine sample was collected. They
were collected in sterile, dark polystyrene pots with screw caps. The
urine samples from all patients and the control group were centrifuged,
aliquoted into Eppendorf tubes, and stored at −80 °C. To standardize
the results, we measured first-morning creatinine and protein levels by
colorimetry in a Cobas 8100 (Roche Diagnostics, Manheim, Germany),
according to the manufacturer's instructions [15], and we calculated
the protein/creatinine ratio (Prot/Creat ratio). The urinary excretion of
F4-NeuroPs, F3-NeuroPsn-6 DPA, and F2-dihomo-IsoPs was analyzed
using the method described below. This method pointed out the
importance of enzymatic hydrolysis of the urine samples, since F4-
NeuroPs, F3-NeuroPsn-6 DPA, and F2-dihomo-IsoPs are excreted in
urine as glucuronide and sulfate conjugates [16]. On the other hand, we
measured the concentration of 15-F2t-IsoP, in order to compare its
evolution with F4-neuroprostanes, F3-neuroprostanesn-6 DPA and F2-
dihomo-isoprostanes. This F2-isoprostane isomer is the most frequently
metabolite measured in the clinical assays, for this reason, it used as the
oxylipin reference compound for a lot of types of pathophysiological
disorders.

2.4. Chemicals and reagents

Nine NeuroPs −4-epi−4-F3t-NeuroPn-6 DPA; 4-F3t-NeuroPn-6 DPA;
4(RS)-F4t-NeuroP; 4-F4t-NeuroP; 10-epi−10-F4t-NeuroP; 10-F4t-NeuroP;
d4−4(RS)-F4t-NeuroP (Internal standard element (ISE 1); d4−10-
epi−10-F4t-NeuroP (ISE 2); and d4−10-F4t-NeuroP (ISE 3) - as well as
four F2-dihomo-IsoPs −17-epi−17-F2 t-dihomo-IsoP; 17-F2t-dihomo-
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IsoP; ent−7(RS)−7-F2t-dihomo-IsoP; and ent−7(S)−7-F2t-dihomo-
IsoP - were synthesized by Durand's team at the Institute des
Biomolecules Max Mosseron (IBMM) (Montpellier, France) [7–19]
The 15-F2t-IsoP (8-iso-PGF2α) were purchased from Cayman
Chemicals (Ann Arbor, Michigan, USA). The β-glucuronidase, type
H2, from Helix pomatia and BIS-TRIS (Bis-(2-hydroxyethyl)-amino-tris
(hydroxymethyl)-methane) used in this study were purchased from
Sigma-Aldrich (St. Louis, MO, USA). All LC-MS grade solvents were
obtained from J. T. Baker (Phillipsburg, NJ, USA). Chlorhydric acid was
purchased from Panreac (Castellar del Vallés, Barcelona, Spain) and the
Strata X-AW, 100 mg.3 mL−1 solid phase extraction cartridges from
Phenomenex (Torrance, CA, USA).

2.5. UHPLC-QqQ-MS/MS analysis of neuroprostanes and F2-dihomo-
isoprostanes

The separation and quantification of the F4-NeuroPs, F3-Neuro-
Psn-6 DPA, and F2-dihomo-IsoPs in the urine were performed using a
UHPLC coupled with a 6460 QqQ-MS/MS (Agilent Technologies,
Waldbronn, Germany), and the analytical method previously described
[16]. The chromatographic separation was carried out on an ACQUITY
BEH C18 column (2.1×50 mm, 1.7 µm pore size) (Waters, MA, USA).
The mass spectrometry analysis was performed by multiple reaction
monitoring in the negative ionization mode. The mobiles phases were
solvent A (Milli-Q water/acetic acid, 99.99:0.01, v/v) and solvent B
(methanol/acetic acid, 99.99:0.01, v/v). The flow rate was
0.2 mL min−1 using a linear gradient scheme: (t; %B): (0.0; 60.00),
(7.00; 70.00), (7.01; 90.00), (10.00; 90.00), (10.01; 60.00). The
electrospray ionization conditions and ion optics were those previously
described [16]. The separation and quantification of 15-F2t-IsoP was
performed by the analytical method previously described [20]. Data
acquisition and processing were performed using MassHunter software
version B.04.00 (Agilent Technologies, Walbronn, Germany). The
metabolites concentrations were calculated from standard curves
freshly prepared each day.

2.6. Statistical analyses

Quantitative data are presented as the median and interquartile
range for non-normally distributed data, and as the mean and standard
deviation for normally distributed data. Each metabolite measured was
analyzed after normalization with urinary creatinine and expressed as
ng mg creatinine−1. The analyses of the different variables at the
different postransplant moments were performed using the Wilcoxon
test. The comparison of groups at each evaluation was performed using
Kruskal–Wallis and Mann–Whitney tests. The correlations among the
study variables were performed by the Spearman rank-order correla-
tion. For continuous variables, univariate comparisons of the study
population and healthy controls were carried out using the Mann-
Whitney U test. The statistical analyses were performed using the SPSS
15.0 software package (LEAD Technologies Inc., Chicago, USA) and the
level of statistical significance was set at P< 0.05.

3. Results

3.1. Biochemical parameters evolution

In Table 1 the values of the different parameters measured at the six
postransplant moments, for the evaluation of kidney function and
nutritional status, are shown.

In this study, we compared the biochemical parameters measured
for the evaluation of allograft function at each moment with the
consecutive one and we expected changes in their evolution. Thus,
the serum levels of CrS and MDRD improved significantly between 5
and 10 days post transplant and between 10 days and 1 month post
transplant (P< 0.05 for all), with a maximum for MDRD and a

minimum for CrS at 6 months post transplant. Although BUN decreased
progressively at the six different moments after transplantation, we
only found a significant difference between 10 days and 1 month post
transplant (P<0.001). The reduction between the others consecutive
moment was not statistically significant (P> 0.05). The Prot/Creat
ratio in urine decreased between 5 days and 3 months post transplant,
with significant differences between 5 and 10 days post transplant and
10 days and 1 month post transplant (P<0.05 for all), and with a
minimum at 3 months post transplant. In addition we observed a
significant increases for AlbS and Hct between 10 days and 1 month
post transplant, and between 1 and 2 months post transplant (P< 0.05
for all), with a maximum for both at 6 months post transplant.

When we compared the study variables between 5 days and 6
months post transplant (corresponding to the worst and best eGFR,
respectively), we observed significantly differences in all the biochem-
ical parameters measured (P<0.001 for all).

3.2. Metabolites in renal recipients and healthy subjects

Concerning the qualitative profiles of the OS biomarkers of the
healthy and renal transplant patients of this study, NeuroPs were
mainly detected in renal recipients and not in healthy subjects, because
they were present at very low levels, below the limit of detection and/
or quantification (LOD/LOQ). In the control group, we only detected
one NeuroP, 4-F3t-NeuroPn-6 DPA, but we didn´t detect its 4-epimer, 4-
epi−4-F3t-NeuroPn-6 DPA, maybe due to the higher LOD/LOQ that we
obtained in our assay [16]. The F2-dihomo-isoprostanes were detected
in patients and healthy subjects. So, we compared the study variables in
the 41 renal recipients between five days and 6 months post transplant,
(corresponding to the worst and best eGFR, respectively), and with
those of healthy subjects. When a comparison was developed at five
days post transplant with the control group, the patients showed
significantly higher levels of ent−7(RS)−7-F2t-dihomo-IsoP (P<
0.05) and significantly lower levels of 4-F3t-NeuroPn−6 DPA (P<
0.05), 17-epi−17-F2t-dihomo-IsoP (P<0.01), 17-F2t-dihomo-IsoP (P
<0.001), and ent−7(S)−7-F2t-dihomo-IsoP (P<0.001). At 6 months
post transplant, significantly lower levels of 4-F3t-NeuroPn−6 DPA (P
<0.05), 17-epi−17-F2 t-dihomo-IsoP (P<0.05), 17-F2 t-dihomo-IsoP
(P< 0.05), and ent−7(S)−7-F2 t-dihomo-IsoP (P<0.001) were de-
tected in the patients. Furthermore, ent−7(RS)−7-F2t-dihomo-IsoP did
not differ significantly between renal recipients and healthy subjects at
6 months posttransplant (Fig. 1).

3.3. Qualitative and quantitative profiles of F4-NeuroPs, F3-NeuroPsn-6 DPA,
and F2-dihomo-isoprostanes in the transplant recipients

Eleven metabolites were analyzed in the urine of the volunteers.
Their identification was carried out according to their molecular mass,
tandem mass spectrometry fragmentation pattern, and retention time.

For three of the F4-NeuroPs from DHA measured, 4(RS)-F4t-NeuroP,
4-F4t-NeuroP, and 10-F4t-NeuroP, we observed oscillations at the
different moments and no correlation with renal function. On the other
hand, 10-epi−10-F4t-NeuroP, the other F4-NeuroP derived from this
fatty acid, increased over the postransplant stage. However, there were
no statistically significant differences when comparing the concentra-
tions of 10-epi−10-F4t-NeuroP at the different consecutive moments (P
>0.05 for all the comparisons) or when comparing day 5 and month 6
post transplant (P=0.182) (Fig. 2).

The F3-NeuroPsn-6 DPA, metabolites derived from n-6 DPA, differed
in their evolution over the six postransplant moments. For example, 4-
epi−4-F3t-NeuroPn-6 DPA decreased in a concomitant manner with the
improvement of the kidney function, with a minimum at 6 months post
transplant - which showed the best glomerular filtration and the
minimum Prot/Creat ratio. Despite this progressive decline, we did
not find statistically significant differences when we compared the
concentrations of this NeuroP between different consecutive moments
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(P>0.05 for all the comparisons), but we found a significant decrease
when we compared it at 5 days and six months post transplant
(P=0.01). 4-F3t-NeuroPn-6 DPA, the other F3-NeuroPsn-6 DPA mea-
sured, did not have a defined pattern, with oscillations at the different
moments and without correlation with renal function. The concentra-
tions of this metabolite were similar at the beginning and end of the

study (P=0.655) (Fig. 2).
In relation to the F2-dihomo-IsoPs, OS biomarkers of AdA, two

different patterns emerged. On the one hand, 17-epi−17-F2t-dihomo-
IsoP and 17-F2t-dihomo-IsoP presented increases and decreases, with no
correlation with renal function; on the other hand, we found a tendency
of the amounts of ent−7(RS)−7-F2t-dihomo-IsoP and ent−7(S)−7-F2t-
dihomo-IsoP to decrease during the postransplant period with a
minimum at 3 months post transplant. We compared their concentra-
tions at 5 days and 6 months post transplant, and we found only a trend
to decrease (P=0.072 and P=0.162, respectively), but when we
compared their concentrations at 5 days and 3 months post transplant,
corresponding to the highest and the lowest protein/creatinine ratios
respectively, a significant decrease in both metabolites was observed (P
<0.05 for both) between these moments (Fig. 2.). Therefore, the
ent−7(RS)−7-F2t-dihomo-IsoP and ent−7(S)−7-F2t-dihomo-IsoP con-
centrations decreased as renal function improved.

The 15-F2t-IsoP, the F2-isoprostane isomer measured as reference
oxidative marker at systemic level, showed a tendency to decrease
during the postransplant period such as it was detected for the other
metabolites. However, there was no statistically significant difference
when comparing its concentrations at the different consecutive mo-
ments (P>0.05 for all the comparisons). When we compared its
amount at day 5 (83,3 ng mg creatinine−1) and month 6 post transplant
(62,6 ng mg creatinine−1) only a trend to decrease (P=0.170) was
underlined.

When we examined the relationships between the metabolites, F4-
NeuroPs, F3-NeuroPsn−6 DPA, F2-dihomo-IsoPs and 15-F2t-IsoP, and
eGFR at the six different moments after renal transplantation, no
conclusive outcomes were observed.

Among the metabolites and the protein/creatinine ratio at the six
different moments after renal transplantation, there were several
significant correlations for 4-epi−4-F3t-NeuroPn-6 DPA: at 1 month
post transplant (rs=0.534; P<0.02), at 2 months post transplant
(rs=0.52; P=0.02), and at 6 months post transplant (rs=0.51; P<
0.01). At 3 months post transplant, there was a slight relationship
(rs=0.237; P<0.123), and at 5 and 10 days post transplant, no
correlation with urinary protein excretion was detected. For
ent−7(RS)−7-F2t-dihomo-IsoP we only found a significant correlations
at 1 month post transplant (rs=0.533; P=0.02), and for ent−7(S)−7-
F2t-dihomo-IsoP at 2 months post transplant (rs=0.362; P=0.035). For
our reference metabolite, 15-F2t-IsoP, we detected a significant correla-
tion at 3 months post transplant (rs=0.464; P<0.05), and at 6 months
post transplant (rs=0.612; P<0.02).

Furthermore, we separated the transplantation group, depending on
the protein/creatinine ratio, into two groups, group A1 for patients with
a ratio < 30 mg/g and group A2 for patients with a ratio > 30 mgg−1,
and we found no differences between the two groups.

Table 1
Evolution of biochemical parameters for six moments after transplantation.

Five days
posttransplant

Ten days
posttransplant

One month
posttransplant

Two months
posttransplant

Three months
posttransplant

Six months
posttransplant

Healthy
subjects

CrS (mg dL−1) 4.75 3.29 1.76 1.67 1.72 1.61 0.81
(2.40–6.03) (2.01–5.33) (1.64–2.22) (1.55–1.97) (1.56–2.07) (1.42–2.06) (0.73–0.93)

MDRD(mL/min/
1,73 m2)

13.71 19.81 41.04 40.54 41.42 45.91 88.50
(9.01–30.42) (10.12–34.71) (31.51–48.92) (35.91–51.79) (33.94–51.56) (34.52–55.50) (69.31–112.12)

BUN (mg dL−1) 141.00 168.00 71.50 66.54 68.07 61.01 31.00
(88.50–182.50) (96.02–214.58) (54.57–103.33) (50.71–85.02) (52.04–99.56) (46.02–85.55) (23.50–39.56)

Prot/creat ratio
(mg g−1 creat)

827.42 295.22 167.81 156.81 146.46 146.54 BTR
(507.03–2441.05) (205.25–943.02) (128.03–248.52) (95.12–312.41) (84.58–280.16) (81.56–279.62)

AlbS (g dL−1) 3.40 3.50 4.10 4.25 4.40 4.50 4.54
(3.00–3.80) (3.20–3.78) (3.65–4.45) (3.98–4.53) (4.15–4.60) (4.10–4.63) (4.12–4.96)

Hct (%) 30.82 29.92 34.34 37.77 40.12 40.74 42.92
(28.01–34.52) (27.21–34.36) (30.82–39.63) (33.42–41.71) (36.83–43.96) (36.55–45.91) (40.41–47.12)

Data are presented as median and (interquartile range). BTR (Below test range). CrS (Serum creatinine). Urea Nitrogen (BUN). Prot/creat ratio (Protein/creatinine ratio). Serum Albumin
(AlbS) and Hematocrit levels (Hct).

Fig. 1. Comparison at 5 days and 6 months post transplant with healthy subjects. Outlier
data points were removed.
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4. Discussion

The current lifestyle of Western societies is causing an increase in
the incidence of metabolic disorders [1] that trigger long-term chronic
diseases such as chronic renal failure. The best treatment of this disease
is a kidney transplant, since it improves the patient's quality of life and
decreases the numerous complications associated with dialysis [21].
The rejection of the transplanted organ is one of the most serious
complications of this kind of treatment and the graft prognosis gets
worse in the long-term, sometimes causing its complete loss. Although
this complication is becoming increasingly rare, thanks to new im-
munosuppressants, it remains a fact among kidney transplant recipients
[2].

The rejection of a solid organ is a complex pathophysiological
process that goes beyond the immunological rejection and to which
many factors contribute [1], including OS [13]. An oxidative imbal-
ance, caused by an increase in the generation of ROS, and a decreased
ability to restore the redox balance of the body produce negative effects
in cells, worsening their function and shortening life expectancy [22].

This adverse effect of OS on cells is partly due to the destruction of
fatty acids that make up the cell membrane, such as DHA, n-6 DPA, and
AdA [23]. Three of the major targets of the lipid peroxidation process
are the brain, kidney, and liver. Thus, the toxicity of lipid peroxidation
products in mammals generally involves neurotoxicity, nephrotoxicity,
and hepatotoxicity [24]. Additionally, the kidney is very vulnerable to
ROS damage because renal lipids are composed of an abundance of
long-chain polyunsaturated fatty acids. The kidneys are a site of both
the production and clearance of these metabolites, so the best way to
explore their production in kidney diseases is through urine samples.
Some recent studies related OS to kidney damage [25], but few of them

investigated the OS effect on kidney development after a kidney
transplant. Thus, we have studied the OS effect on kidney function by
determination of fatty acids metabolites generated by ROS action. In
addition, after a thorough bibliographic review, we have not found an
article which describes the monitoring of this specific type of metabo-
lite in these patients.

In this regard, OS evaluation in patients receiving transplants has
been carried out by monitoring four F4-NeuroPs, two F3-NeuroPsn-6 DPA,

and four F2-dihomo-IsoPs at six different established times, which
highlighted differences in their behaviors.

Focusing on the F4-NeuroPs, metabolites produced from n-3 DHA by
OS, all of them were detected only in patients receiving transplants.
This shows that these metabolites were produced in higher concentra-
tions than in the control group due to the increased inflammation and
OS that this kind of patient exhibits, as observed by Lauzurica et al.
[26]. 4(RS)-F4t-NeuroP, 4-F4t-NeuroP, and 10-F4t-NeuroP did not follow
a distinct pattern, showing increases and decreases that did not
correspond to the kidney function; however, 10-epi−10-F4t-NeuroP
-the other NeuroP derived from n-3 DHA- showed a non-significant
tendency to increase as time elapsed after the operation. We did not
expect this tendency as the postransplant phase progressed, which
could reflect some specific pathophysiological mechanism of trans-
planted organ damage. Clinical appearances of chronic rejection are not
noticeable until the existence of an advanced alteration of glomerular
structure. Thus, the long-term urinary excretion of this F4-NeuroP has
to be studied in order to establish the relationship between its increase
and the chronic rejection of the graft.

The F3-NeuroPsn-6 DPA, 4-epi−4-F3t-NeuroPn-6 DPA and 4-F3t-
NeuroPn-6 DPA, produced from the breakdown of n-6 DPA by OS,
didn’t follow a common pattern. So, 4-F3t-NeuroPn-6 DPA increased

Fig. 2. F4-NeuroPs, F2-IsoPs, F3-NeuroPs and F2-Diho-IsoPs evolution in the different postransplant moments. Outlier data points were removed. p-Tx: postransplant.
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and decreased, with no correlation with the kidney function of patients,
and showed no differences in concentration between the beginning and
the end of the study. Moreover, this metabolite was the only one found
in healthy patients, for some of whom it occurred at higher concentra-
tions: this needs to be studied thoroughly, to have a better under-
standing of the metabolism of this biomarker.

On the other hand, 4-epi−4-F3t-NeuroPn-6 DPA was detected only
in transplant patients, and its level clearly dropped as kidney function
improved, with no significant differences in its concentration at
different consecutive moments - whereas we found a significant
decrease when comparing the worst and best moments regarding
kidney function: 5 days and 6 months post transplant, respectively. In
addition, significant and positive correlations were discovered for the 4-
epi−4-F3t-NeuroPn-6 DPA concentration and Prot/Creat ratio at 1
month, 2 months and 6 months post transplant, as well as a slight
relationship at 3 months post transplant. For 5 and 10 days post
transplant, no correlation with urinary protein excretion was detected,
probably because this parameter is not assessable in the first four weeks
postransplant. We assigned the decrease in the urinary level of 4-epi−4-
F3t-NeuroPn-6 DPA, which depended on both the postransplant period
and the renal function improvement, to decreased OS in the kidney and
to decreased proteinuria when the graft function after the ischemia
period suffered at the time of the transplant become steady. The
positive correlation between the Prot/Creat ratio and the 4-epi−4-F3t-
NeuroPn-6 DPA concentration could be explained by increased oxygen
consumption by nephron cells when protein charge increases due to
absorption process [27,28]. Urinary albumin, the main globular protein
in proteinuria, is reabsorbed by endocytosis that is mediated by the
proximal tubular scavenger receptors megalin, cubilin, and CD36 [9–
33] Subsequently, these receptor-albumin complexes activate protein
kinase C signaling pathways, which lead to NAD(P)H oxidase-mediated
ROS generation [34,35]. Thus, the lower the proteinuria the lower the
concentration of ROS in proximal tubular cells; these species are among
the most toxic cellular factors that directly induce tubule interstitial
injury.

In the same sense, the reduction of urinary proteins excretion
between the start and the end of the study might be due to the fact
that during the transplant, and because of the ischemia-reperfusion
phenomenon, in over 90% of transplant patients acute tubular necrosis
and a variation of endothelial glycocalyx in the glomerular capillaries
happened [36,37]. These variations involved an increase in proteins
filtration that usually would be restored. The longer the ischemia
period of the organ, the greater the glomerular damage by OS since the
antioxidant defence mechanisms of kidney tissue, such as reduced
glutathione and vitamin E, were weakened. Hence, the progressive
restoration of the necrosis and endothelial damage suffered during
transplantation decreased albumin filtration and subsequent reabsorp-
tion, with a reduction in ROS levels and therefore decreased damage by
OS in proximal tubular cells.

Furthermore, F2-dihomo-IsoPs, AdA derived metabolites, reflect the
breakdown of this fatty acid by OS in the renal cortex and renal medulla
[38,39]. This degradation reduces the concentration-dependent func-
tion of AdA on maintenance of vascular tone in renal and adrenal
circulation, as Zhang et al. observed [39]. Its subsequent breakdown
would cause incorrect vascularization of kidney tissue, disrupting its
function and decreasing the life expectancy of the graft. We studied four
metabolites which were detected in both transplant patients and
healthy individuals. Three of them, 17-epi−17-F2t-dihomo-IsoP, 17-
F2t-dihomo-IsoP, and ent−7(S)−7-F2t-dihomo-IsoP were always de-
tected at lower concentrations in transplant patients. This could be
explained by the treatment. Kidney transplant patients in our institution
are given high doses of corticosteroids. This therapeutic group has a
wide range of effects and one of them is the phospholipase A2
inhibition. [40]. Unlike conventional prostanoids, these isomers are
formed by OS injury in cell membranes and subsequently released after
phospholipase activation [41]. Therefore, the inhibition of the enzyme

decreases the concentration of AdA metabolites.
The metabolites 17-epi−17-F2t-dihomo-IsoP and 17-F2t-dihomo-

IsoP increased and decreased with no correlation with the allograft
function. The other two metabolites of AdA studied, ent−7(RS)−7-F2t-
dihomo-IsoP and ent−7(S)−7-F2t-dihomo-IsoP, decreased as kidney
function improved and urinary proteins excretion decreased, with a
minimum for both at 3 months post transplant - which coincided with
the lowest proteinuria value. However, we only found a significant
correlation between this metabolites and urinary proteins excretion at
one of the six moments measured. The concentration of ent−7(S)−7-
F2t-dihomo-IsoP was always lower in transplant patients with respect to
ent−7(RS)−7-F2t-dihomo-IsoP. The ent−7(RS)−7-F2t-dihomo-IsoP
concentration was clearly higher in transplant patients at the beginning
of the postransplant phase, and at 6 months post transplant was similar
for both groups. The decline in these two biomarkers shows how OS
decreased as renal function improved. This finding could be used for
monitoring of the kidney function. Moreover, these compounds should
be studied in detail in acute rejection to see their possible predictive
value in these events in which OS is increased [42].

On the other hand, our reference metabolite, 15-F2t-IsoP, provided a
similar behavior than the three metabolites of our study which could be
considered as candidate indicators to monitor transplanted kidney
function: 4-epi−4-F3t-neuroprostanen−6 DPA, ent−7(RS)−7-F2t-diho-
mo-isoprostane, and ent−7(S)−7-F2t-dihomo-isoprostane. We ob-
served than 15-F2t-IsoP decreased as kidney function improved and
urinary proteins excretion decreased, and we discovered several
positive correlations for the 15-F2t-IsoP concentration and Prot/Creat
ratio. These outcomes have been discussed before for the other three
metabolites.

5. Conclusions

The analysis of F4-NeuroPs, F3-NeuroPsn-6 DPA, and F2-dihomo-
IsoPs in human urine provides a powerful approach to advance our
knowledge of the role of oxidative stress in kidney transplant patients.
Among the 11 biomarkers of lipoperoxidation measured, four of them,
4-epi−4-F3t-neuroprostanen-6 DPA, ent−7(RS)−7-F2t-dihomo-isopros-
tane, ent−7(S)−7-F2t-dihomo-Isoprostane, and 15-F2t-IsoP (8-iso-
PGF2α) could be considered as candidate indicators to monitor trans-
planted kidney development in the short-term period after the surgical
intervention. Unfortunately, little is known about these metabolites in
this kind of patient and so more studies are needed to explain their
influence on graft function and their possible ability to act as rejection
predictors.
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