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Abstract

The photolysis of S,0s> was studied for the removal of acetic acid in aqueous solution and
compared with the H,O,/UV system. The SO4 " radicals generated from the UV irradiation of
SZOgZ' ions yield a greater mineralization of acetic acid than the ‘OH radicals. Acetic acid is
oxidized by SO4" radicals without significant formation of intermediate by-products.
Increasing system pH results in the formation of "OH radicals from SO, radicals. Maximum
acetic acid degradation occurred at pH 5. The results suggest that above this pH, competitive
reactions with the carbon mineralized inhibit the reaction of the solute with SO4~" and also
‘OH radicals. Scavenging effects of two naturally occurring ions were tested; in contrast to
HCOj™ 1ons, the presence of CI” ions enhances the efficiency of the 82082'/UV process
towards the acetate removal. It is attributed to the formation of the CI" radical and its great

reactivity towards acetate.
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1. Introduction
Advanced Oxidation Processes (AOPs) that usually involve ultraviolet irradiation,
ozone, and/or hydrogen peroxide to generate hydroxyl radicals (OH) are commonly used to

destroy organic contaminants in various types of water. However oxidation by "OH radicals is
sometimes slow with some refractory pollutants as organic acids or can lead to harmful by-
products.

The sulfate radical SO, is known to be a very strong oxidant, i.e. E°(SO4/SO4%) =
2.43 V vs. NHE (Stanbury, 1989). This radical could be generated by the scission of the
peroxide bond of persulfate. In previous studies, the persulfate degradation has been
performed by photolysis at wavelengths from 248 to 351 nm (Herrmann, 2007). The
photolysis of S,0s> has been postulated to result in the formation of two SO4” radicals (Eq.
1) (Tsao and Wilmarth, 1959).

S,05” + hv = 2 SO, (1)

The radical was identified from its optical absorption spectrum with a maximum at
440-450 nm and a molar extinction coefficient between 460 and 1600 M cm™ (Dogliotti and
Hayon, 1967a; Chawla and Fessenden, 1975; McElroy and Waygood, 1990; Clarke et al.,
2008). Alternatively, the sulfate radical was also formed by thermal (Huang et al., 2005;
Johnson et al., 2008; Liang and Bruell, 2008; Mora et al., 2009), radiolytic (Chitose et al.,
1999) or transition metal activation of persulfate (Anipsitakis and Dionysiou, 2004; Liang et

al., 2009).
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The sulfate radical was studied for the removal of refractory pollutants. Manoj et al.
(2002) studied the cyanuric acid degradation by persulfate laser flash photolysis and steady

state radiolysis; they determined a second order rate constant of 1.9x10” M s

by
monitoring the decay of absorption of SO4 " as a function of cyanuric acid concentration.
Others (Hori et al., 2005; Hori et al., 2007) showed the photochemical decomposition of
perfluorocarboxylic acids induced by persulfate as photochemical oxidant; these compounds
were transformed to F~ and CO, and small amounts of perfluorocarboxylic acids with shorter
chain lengths. Liang et al. (Liang et al., 2004; Liang et al., 2006) described an application of
in situ chemical oxidation for trichloroethylene oxidation by thermal or transition metal
activation of persulfate. Moreover, Mora et al. (2009) showed the degradation of
trichloroacetic acid by persulfate thermal activation in presence of formate as an additive to
produce CO,~ which are radicals available for degrading trichloroacetic acid by a reductive
pathway.

The sulfate radical reacts in three different ways: electron transfer, addition or
hydrogen abstraction (Chawla and Fessenden, 1975; Neta et al., 1977; Huie et al., 1991a).
However a particular reaction occurs with carboxylic acids; whereas their reactions with
hydroxyl radicals result in little decarboxylation, most aliphatic acids undergo efficient
decarboxylation by SO4~ (Madhavan et al., 1978; Davies et al., 1985).

Owing to its high redox potential, the sulfate radical produces radicals from many
anions by electron transfer (Chawla and Fessenden, 1975). It makes the sulfate radical very
reactive with many constituents of water such as chloride and bicarbonate ions. The reaction
of sulfate radicals with chloride ions leads to the production of CI" (McElroy, 1990). Then,
competitive side reactions can result in scavenging of SO~ and could limit its oxidation

efficiency.
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The objective of this work was to investigate the sulfate radical reactivity towards
acetic acid, a persistent by-product in numerous oxidation processes like O3 and AOPs. The
by-products formed from oxidation of acetic acid by the hydroxyl radicals are known; they
consist mostly in oxalic and formic acids (Schuchmann et al., 1985; Leitner and Dor¢, 1997).
Thus, this molecule was chosen to compare the action of SO, and "OH radicals generated by
two processes, S,0s> and H,0, irradiation at 254 nm respectively. In addition, the influence

of chloride and bicarbonate ions was examined for both conditions.

2. Materials and methods
2.1.  Experimental setup

Irradiation experiments were conducted in a 5 L cylindrical batch reactor without
headspace to prevent the loss of volatile by-products. This reactor is equipped with a low
pressure mercury vapor lamp (Hanau NN/40/20) in the axial position with an optical width of
6.3 cm. The lamp emits a monochromatic radiation at 253.7 nm. The incident photonic flux
(Io = 9.9x10° E s™) was determined by chemical actinometry using a 4x 10 M hydrogen
peroxide solution (and with the quantum yield ® = 1 for the overall reaction of H,O;
photolysis). During all experiments the solutions were thermostated at 25+1 °C.
All reagents were reagent grade and were used without further purification: K,S,Og
(Aldrich), H,O; (30% Fulka), Acetic acid (> 99%, Riedel de Haén), NaCl and NaHCOs (>
99%, Fischer).

All solutions were prepared in ultra pure water (MilliQ water; TOC < 0.2 mg L™'; 18
MQ cm). The pH was left uncontrolled or controlled during the course of the reaction by
addition of sodium hydroxide or perchloric acid. Dissolved oxygen concentration was

initially set at 20-30 mg L' by bubbling O, to prevent the anoxic conditions due to oxygen
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consumption during the experiments. The persulfate or hydrogen peroxide/acetic acid molar
ratios used were approximately 4/1.
2.2.  Analysis

Persulfate was determined using the Alcian Blue colorimetric method developed by
Villegas et al. (1963). H,O, was determined iodometrically (for actinometry) and
photometrically using the TiCly method for [H,O,] <2 mM as described previously (Leitner
and Dor¢, 1997). pH and dissolved oxygen were measured with respectively a pH electrode
Sentix 81 and an oxygen probe CellOx 325 (WTW), both inserted in the reactor.

Organic acids were determined by HPLC with an anionic column (Supelco C-610H)
eluted with 0.1% of H3PO4 in water. For the experiments performed with H,O,, organic acids
were determined with an anionic column (Aminex HPX-87H) eluted with 5 mM H,SO,4
solution after H,O» neutralisation with sodium thiosulfate. Oxalic acid was determined with a
Nucléosil C;s column eluted with mixed (NH4),HPO,, Acetonitrile and octylamine in water.
Detection was performed with UV detector at 210 nm (Waters 486). The relative standard
deviation was always below 3%. Quantification of TOC was performed with a TOC thermal

analyser (Shimadzu Vcgp).

Results and Discussion
3.1. Comparison of acetic acid removal by S 2082'/U V and H;OyUV systems

It was shown that without any solute, the decay of the sulfate radical concentration can
be described by the following reactions: the bimolecular reaction (Eq. 2), the reaction with
S,05” (Eq. 3) and the reaction with the water molecule (Eq. 4) or hydroxide ions (Eq. 5)
(Hayon et al., 1972; Neta et al., 1988; Schuchmann and Von Sonntag, 1988; McElroy and
Waygood, 1990; Chitose et al., 1999; Herrmann et al., 2000).

SO, + SO, = $,08 ky=1.6x10"t0 8.1x10° M s (2)



123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

SO4" + S,08” = $,08” + S04~ k3=1.5x10"t0 1.2x10° M 5! (3)
SO4" +H,0 - SO, +H + "'OH ks=360to< 10’ s 4)
SO4" + OH - SO, + 'OH ks=1.4x10"t0o 7.3x10" M ™! (5)

In our study, the evolution of S,04” concentration in pure water during the photolysis
at 254 nm wavelength has enabled the determination of the global quantum yield (®;) value
of photodissociation equal to 0.7. The reaction system has been simulated with a deterministic
kinetic model (Software Copasi). The imput to the kinetic model includes a list of all reacting
species, their initial concentration obtained from the experimental measurements and the rate
constants (Egs. 1-5 with additional Egs. 6-7). A good prediction of the experimental data was
obtained for the rate constants k, = 4x10° M s'l; ks = 6x10* M s'l; ks = 360 s'l; ks =
6.5x10" M™! s'l; ke = 8x 10* M s and ky=1x 10 M s, The corresponding ®-value for
the formation of sulfate radical (Eq. 1) is estimated to be equal to 0.52. Literature data extend
from 0.5 to 1.4 (Ivanov et al., 2000; Hori et al., 2005; Herrmann, 2007).

S50 + 'OH —» HSO4 + 0.5 0, + SO~ ke<10°to 1.2x10" M5! (6)
SO4" + "OH — HSO4 + 0.5 O, k;=1x10"to 1x10"" M s (7)

The photodegradation of persulfate leads to the production of two mol of SO4> per
mol of S,0¢> removed. Moreover, a pH decrease and a formation of 0.2 mol O, mol™ S,05>
were observed. H' ion formation was studied and quantified by Mark et al. (1990a, 1990b);
they found a H™ quantum yield of 1.8.

Two series of UV irradiation experiments were carried out on aqueous solution of
acetic acid under similar initial conditions of pH, temperature and concentrations of solutes:
one in the presence of hydrogen peroxide for the generation of ‘OH radicals and the other in
the presence of persulfate ions for the production of SO, radicals.

Figures la and 1b show the evolution of the concentrations of acetic acid and TOC at an

uncontrolled pH. The quantification of persulfate and hydrogen peroxide consumption during
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photolysis shows no difference between the two systems. Moreover, the evolution of S,0¢”
was not significantly influenced by the presence of 500 uM of acetic acid under the
experimental conditions of Fig. 1 (not presented).

During the acetic acid removal in the S,04”/UV system, the pH decreased
dramatically from the initial value of 7 to 3.3 after 15 min of irradiation due to SO42'
formation and more slowly down to a final value of 2.6 as reported by Neppolian et al.
(2008). Without regulation, the rapid pH decrease converts acetate ion into acetic acid (pKa =
4.76). The rate constant of the sulfate radical towards this latter form is smaller (Table 1).
According to Fig. 1, the S,04>/UV system led to a fast acetic acid degradation i.e. the acetic
acid was almost totally removed after 60 min. During the photolysis, the oxygen
concentration decreased from 1.1 to 0.7 mM after 60 min. This O, evolution is the resultant of
production and consumption in the reaction system and represents an apparent oxygen
consumption of 0.8 mol mol™ acetic acid removed. Concurrently, the TOC removal measured
during the persulfate photolysis is also fast and the mineralization by the sulfate radicals was
found to be complete after 80 min. Only small amounts of carboxylic acids were formed in
the S,05/UV system. Formic, glycolic and glyoxylic acids were identified and their
concentrations were found to reach a maximum concentration of 14, 15 and 5 uM
respectively.

During the acetic acid oxidation by the H,O,/UV system, only one pH unit decrease
was observed. The oxygen consumed after 90 min irradiation time was 0.5 mM corresponding
to 1 mol mol™ acetic acid removed. The rate of acetic acid degradation was similar to the
S,05”/UV system (Fig. la). In the H,O»/UV system, oxalic acid was the main by-product
with a maximum concentration of 140 uM representing 30% of the acetic acid removed for 90

min irradiation time. The data are consistent with the previous work of Leitner and Doré
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(1997) where they detected the formation of approximately 20% of oxalic acid. In addition,
traces of formic acid were detected and did not exceed 13 uM.

Although similar initial concentrations of 82082' and H»>O, lead to the same rate of
acetic acid degradation, the TOC evolution in the H,O,/UV and 82082'/UV systems is very
different. A greater TOC removal is observed during the persulfate photolysis. After 60 min,
the mineralization by the sulfate radicals is complete, while more than 20% of the initial
organic carbon is still present in solution after 180 min of hydrogen peroxide photolysis. In
both systems, the carbon content from the products quantified i.e. the remaining acetic acid
and the carboxylic acids analyzed (TOC calculated values), accounts for the TOC measured
with a great accuracy (Fig. 1b). The carbon mass balance from TOC and inorganic carbon
showed that no volatile compounds were formed. Most of the by-products were identified.
Thus it appears that compared to the hydroxyl radical, the sulfate radical enables a direct
mineralization of the acetic acid molecule without significant formation of intermediates. The
presence of intermediates and the competitive reactions induced in the H,O,/UV system
(including the consumption of "OH by H,0,) accounts for the similar evolution of acetic acid
in the two systems despite the highest reactivity of the hydroxyl radicals.

The attack of the hydroxyl radical on acetic acid yields ‘CH,COOH/'CH,COO
radicals from H-abstraction (Eqs. 8-9). This radical is known to react rapidly with oxygen (k
=1.7x10° M" s™") to form the corresponding peroxyl radicals ‘0,CH,COO™ (Eq. 10) source of
glyoxylic acid, glycolic acid and formaldehyde (Schuchmann et al., 1985). These by-products

are then oxidized into oxalic acid and CO, (Leitner and Doré¢, 1997).

"OH + CH;COOH — "CH,COOH + H,0 (8)
"OH + CH;COO™ - ‘CH,COO" + H,0 (9)
‘CH,COOH/'CH,COO™ + 0, - "0,CH,COOH/'0,CH,COO" (10)
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According to Chawla and Fessenden (1975), the sulfate radical attack leads to the
formation of the H3C' radical (Egs. 11-12) by electron transfer. This radical was detected by
Gilbert and Stell (1990) after reaction between sulfate radical and acetic acid.

SO4" + CH;COOH - H3C' + CO, + H™ + SO,* (11)
SO4" + CH;COO™ — H3C" + CO, + SO4* (12)

Under our experimental conditions, in the presence of oxygen in solution, the methyl
radicals are subsequently converted into methylperoxyl radicals (OOCHj3). The reactions of
the methylperoxyl radicals have already been investigated in detail (Schuchmann and Von
Sonntag, 1984). They are known to decompose into methanol, formaldehyde and formic acid
with formation of H,O,. These by-products are rapidly mineralized owing to their high rate
constant values with SO4 " and "OH radicals compared to acetic acid. Under our experimental
conditions in the two systems, the solutions were nether anoxic and consequently by-products
from dimerization of the primary radicals were not expected. This was confirmed by the

almost complete carbon mass balance.

3.2.  Influence of pH

A kinetic change with the pH is expected in the SO, reaction system. Indeed (i) the
rate constants of the sulfate radical on the acetic acid and acetate ion are different (1.4 to
20x10* and 4.3 to 28x10° M 5! respectively; Table 1) and (ii) the increase of pH favors the
contribution of the SO, radical consumption from the reaction with the hydroxide ions to
form the hydroxyl radical (Eq. 5). The rate constant for the reaction of ‘OH radicals with
acetate ions is higher than the rate constant with acetic acid (8.5x10” and 1.5x10" M s’
respectively). Regarding the species present for different pH values and their reactivity, an

improvement of the organic acid removal would be expected in the S,05*/UV system when

the pH is increased. Figure 2 confirms the better removal at pH 5 compared to pH 2 and 3 due
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to the higher reactivity of the acetate ion. However, the kinetic of acetic acid removal is
slower at pH 7 than at pH 5 and decreases for higher pH values (Fig. 2). The pH influences
the formation of the active species (SO, and ‘OH), the reaction of the active species with the
substrate (acetic acid and acetate ions) but also competitive reactions with the by-products
(organic acids, carbonic acid and bicarbonates). From the rate constants of the sulfate radical
with acetate and hydroxide ions (k;; = 4.3 to 28x 10°M' st and ks = 1 to 7x10” M s’
respectively) and considering the reactivity of the hydroxyl radicals towards acetate ions (kg =
8.5x10” M s it can be calculated that the contribution of the ‘OH radicals in the removal
of acetate becomes significant only for pH above 9. In a basic solution, the reaction of sulfate
radical with hydroxide ions becomes very significant. This reaction is considered as
predominant for a pH higher than 10.5. Chawla and Fessenden (1975) showed the radical
conversion in alkaline condition by electon spin resonance study.

In the pH range 2 to 7, i.e. when SO, is the main active species, considering the
pseudo first order expression (Eq. 13), the constant k., was found to increase up to pH 5 and
then decrease for higher pH values (Fig. 2).

- d[—f] = (ki1 [CH;COOH] + ky» [CH;COO]) [SO4™]

_ds]_ .
I isisosis
d[S
-~ ki [5) (13)

with [S] = [CH;COOH] + [CH;COO']

[SO4 ]ss = Concentration of SO, at steady state

kiKa+ki[H']
[H']+Ka

and ks =

10
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The concentration of the SO, radical (Eq. 16) is the resultant of the formation from
S,05> photolysis and the consumption by acetic acid, acetate ions, inorganic carbon (Egs. 14-
15) and also by persulfate ions (Eq. 3).
SO4" + H,CO3 - CO5™ + H,S04 ks~ 10° M s (14)

SO4" +HCO5 - CO5™ + HSO4 kis=9.1x10° M s (15)

. (-£1[S,0,7])
_diSO«")s _ P:loc — (k[S]+ ki[1]+ k4[S,0," 1)[SO, * ]

dt v
_—d[SOC;; Is 4 ~B[SO, *]s=0 (16)

with

@ ,: quantum yield of sulfate radical formation (0.52)

Iy: incident photonic flux (9.9x10° E s™)

&: molar absorption coefficient (19 mol” cm™)

[: optical width (6.3 cm)

V: reactor volume (5 L)

ky=6x10"M"s"

[1] = [H,CO5] + [HCO;] for pH 2 to 7; pKa (H,CO3/HCO5') = 6.4

_kisKa+k 4[H"]
[H ]+ Ka

ki

According to the pKa values (pKa (HCO;/CO5%) = 10.3), at pH 9 (with [I] = [HCO3]
+ [CO5™]), the expression k; is calculated with the corresponding rate constants: k (SO4
°/C032') =6.1x10°M"' s and k;s. From the analysis of persulfate ions, acetic acid and acetate
ions and from the TOC removed (i.e. I values), the concentration of SO, radicals could be

determined from Eq. 16 at different irradiation times and pH values (Table 2). It is noted that

11
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the evolution of S,0¢> concentration is not influenced by the pH. In Table 2, for a given
irradiation time, A doesn’t vary with the pH.

The values of SO, reported in Table 2 and the rate constants ks enable the calculation
of the apparent rate constants k,p, for different irradiation times and pH. The data show that
the values of k.p, calculated from the kinetic expression are in accordance with the
experimental values of Fig. 2. Data from kinetic expressions confirm that k,p, increases from
pH 2 to pH 5. From pH 5 to 9 data indicate that even if the global rate constant of acetic acid
with SO,™ radicals increases, the apparent constant ky,, decreases. This is due to the smaller
SO, concentrations at the highest pH values as a consequence of an increasing consumption
by both the substrate and inorganic carbon as shown in Table 2. Thus, from pH 5 it was
shown that the contribution of the inhibiting reactions with carbonic acid, bicarbonates and
carbonates increases with regard to acetic acid degradation. These results explain the optimum
rate of acetic acid removal observed at pH 5. Up to pH 9 the data processing is much more
complex since ‘OH radicals are involved from SOy reaction with OH  ions (Eq. 5).

The oxidation of acetic acid in the S,0s°/UV system was tentatively simulated at
various pH using the previous kinetic model (Copasi) taking into consideration the photolysis
of S,0¢” (Eqs. 1-7) and the reactions with the sulfate and hydroxyl radicals (Egs. 8-12, 14-15)
(Fig. 3). This simulation predicts reliably the existing optimum pH value. However, at this pH
(pH = 5) the initial rapid decrease of acetic acid concentration is badly described up to 20 min
of irradiation.

The different by-products formed from the action of sulfate and hydroxyl radicals on
acetic acid can be used to identify the nature of the active species in the S,04*/UV system.
Indeed in this system, the experiment carried out at pH 11 shows oxalic acid formation which

is not found at lower pH levels. Same by-products are formed in the same order of

12
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concentration from H,O»/UV and S,05*/UV at pH 11 (Fig. 4) which confirms the Eq. 5 and
the main contribution of the ‘OH radical.

However, in the 82082'/UV process the elimination of acetic acid is slowed down after
30 min of photolysis. This point could arise from the existing reaction between ‘OH and
persulfate (Chitose et al., 1999). This reaction depletes the persulfate concentration and could
produce other radical less reactive than the sulfate radical. The same reaction (Eq. 3) exists

between persulfate and sulfate radical but rate constants are lower than with ‘OH.

3.3  Influence of chloride and bicarbonate ions

Like the hydroxyl radical, the sulfate radical leads to the formation of radicals from
numerous anions. Both, hydroxyl and sulfate radicals can react with the bicarbonate ions to
produce the carbonate radical CO;™” (Egs. 15 and 17).
"OH + HCO; — CO5™ + H,0 ki7=8.5x10°M" s (17)
In the case of the chloride ion, ‘OH reacts with CI to give the chloride atom CI (Egs. 18-19).
In the presence of an excess of Cl ions, chlorine atoms are immediately scavenged to give
Cl,” (Eq. 20). Cl,” is believed to be relatively unreactive with aliphatic acids (Gilbert et al.,
1988). According to the intermediate reactions, ‘'OH gives the CI" and Cl,” radicals in acidic
conditions only. However the SO4 " radical would react with CI” to produce the CI" radical

even in neutral solutions (Eq. 21).

CI'+ ‘'OH — CIOH kis=43x10° M s (18)
CIOH +H' S CI' + H,0 (19)
CI'+ClI'5CL” koo =8.5%x10° M s ko =6x10"s (20)
SO," + CI' = S04~ + CI' ko =2.7-6.6x10° M 57! 21)

The influence of the chloride and bicarbonate ions on the acetic acid degradation

during S,05> photolysis was studied and compared with the H,O,/UV system. Experiments

13
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were carried out in the presence of NaCl (500 or 5000 uM) or NaHCO; (10 mM) at pH 7
controlled with NaOH. The Fig. 5a illustrates the results.

Considering the rate constants for the reaction of SO, radicals with acetate ions (k =
5.0x10° M s™") and chloride ions (k = 3.1x10® M s™), chloride ions concentrations of 500
and 5000 uM induce a consumption of SO, radicals respectively 60 and 600 times greater
than acetate. According to the Fig. 5a, although the reaction of SO, with the chloride ion is
dominating, the elimination of the acetic acid is faster in the presence of chloride ions in the
persulfate/UV system. This acceleration can be explained considering that the Eq. 21 between
the sulfate radical and the chloride ion which leads to the CI radical is followed by the
reaction of this latter with acetate. The CI’ radical with a rate constant of 3.7x10° M s
(Buxton et al., 2000), i.e. three orders greater than the SO, radical, (Table 1) is highly
reactive with the acetate ion. Liang et al., (2006) showed an inhibition of trichloroethylene
degradation for a chloride ion concentration higher than 0.2 M; no significant variation was
observed for lower concentrations.

With equal concentrations of chloride and acetate used in this experiment, the

''s1) over the

formation of dichlorine radical ion is somewhat favored (k = 8.5x10° M’
reaction of chlorine atom with acetate (k = 3.7x10° M s™"). However, the dichlorine radical
jon reacts slowly with acetate (k = 2.6x10° M s™) compared to the chlorine atom and then
the reaction of acetate with CI' is believed to be significant (Gilbert et al., 1988). The
experiment carried out with the highest chloride ions concentration (5000 uM) shows that the
chloride ion concentration has no influence on the reactivity towards acetate. It reflects that
increasing chloride ion concentration, the sulfate radical ion becomes the limiting reagent.

Concerning the mineralization of the carboxylic acid, the organic carbon removal is

similar with or without chloride ions (Fig. 5b). The TOC balance including the formic acid
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detected is incomplete in the presence of chloride ions. Unidentified by-products must be
formed from the action of CI’ radicals on acetate.

As concerns the influence of the inorganic carbon, the concentration of bicarbonate
ions was chosen in order to represent a competitive factor towards acetate ions close to the
experiment with chloride ions (500 uM). Indeed, 10 mM of bicarbonate ions were introduced
in the presence of the acetate ions in the S,05>/UV system. Thus, the reaction of the sulfate
radical with the bicarbonate ions (k;s = 9.1x10° M s™) was expected to be 30 times faster

"'s1). According to Fig. 5a, contrary to

than the reaction with acetate (k;» = 5.0x10° M’
chloride ions, bicarbonate ions slow down dramatically the degradation of acetic acid in the
S,04°/UV system. This inhibition is consistent with the low reactivity of the CO5™ radical.
The influence of the two ions, CI" and HCOs towards acetate removal, was also
examined in the H,O,/UV system. Rate constants of reaction of hydroxyl radical with acetate

1 -1 .
s”. The experiment was

and bicarbonate ions are respectively 8.5x 107 and 8.5x10° M~
carried out with a bicarbonate concentration of 0.18 M so as to obtain the same competitive
factor (k;7 [HCO;])/ko [CH3COO] = 30) as in the persulfate/UV system. However in the case
of the chloride ion, the rate constant with the ‘OH radical is known in acid media only. Since
the rate constant of ‘OH with bicarbonate is close to the rate constant of SO4" with
bicarbonate, it was assumed that the rate constant of ‘OH with CI" was similar to those
between SO, and CI radical (i.e. about 3x 108 Mm! s'l). Then, from an initial CI
concentration of 5000 uM, the rate constant k [C1'] was almost 35 times greater than the value
ko [CH3COQO]y. The experiment about the influence of chloride ions in the H;O,/UV system
was performed with a chloride ion concentration of 5000 pM.

Figure 5a shows that the presence of chloride ions does not have any effect on acetic

acid degradation in the H,O,/UV system. This result highlights that the rate constant of the

hydroxyl radical with CI” ions at neutral pH is much smaller than the rate with the SO4”
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radical. Chloride ion does not compete for ‘OH radical under pH conditions used in this study.
By comparing the effect of bicarbonate ions addition in the Sgng'/UV and H,O,/UV systems,
the inhibition appears to be greater in the "OH radical generation process. As expected,
bicarbonate ions addition in the H,O,/UV system leads to the total inhibition of acetic acid

elimination and TOC removal by ‘OH.

3. Conclusions

From this study it appears that the sulfate radical generated from the S,05°/UV system
(with a quantum yield of formation found to be 0.52) is of interest with regard to the
mineralization of acetic acid in pure water. Under these conditions, at neutral pH or below,
the persulfate photolysis could advantageously compete with the more common process based
on hydrogen peroxide photolysis. The earlier by preventing the formation of by-products,
favors the reaction of the active radical with the substrate. The promoting effect of the
chloride ions could also render this advanced oxidation process attractive for the treatment of
waters containing ions. However it was found that like ‘OH radicals, the SO, radicals are
scavenged by bicarbonates. This inhibiting effect together with the conversion of SO4”
radicals into "OH by reaction with OH™ ions is also responsible for the limited efficiency of the

S,05™/UV process observed with the increase of pH.
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Fig. 1. Acetic acid removal by persulfate and hydrogen peroxide photolysis
a) CH;COOH; b) TOC

$,047/UV: [$,047]i = 1755 pM; pHi = 7.05; [0,]i = 1.1 mM

H;0,/UV: [H20,]i = 1780 uM; pHi = 6.93; [O,]i = 1.0 mM.
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Fig. 4. Acetic acid removal and by-products formation by H,O,/UV and S,05>/UV at pH
11 AH,0,/UV; e S;04°/UV

H,0,/UV: [H,0,]i = 1780 pM; pHi = 6.9; [O,]i = 1.0 mM

$,057/UV: [S;057]i = 1650 pM; pH controlled at 11; [O,]i = 0.56 mM.
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Fig. 5. a) Impact of CI' and HCO3 on the SZOSZ'/UV and H,0,/UV systems
® $,05"/UV:
- without CI' nor HCOj;: [82032']i =2030 uM; [O;]i = 0.56 mM; pH 7
- with CI': [CI'] =500 nM; [S2057]i = 1740 pM; [O:]i = 0.66 mM; pH 7 (solid symbol)
- with Cl-: [CI'] =5000 nM; [S2032']i =1950 uM; [O;]i = 0.77 mM; pH 7 (open symbol)
- with HCO;: [HCO5] = 10 mM; [S,0s%]i = 1830 uM; [O;]i = 0.64 mM; pH 8.2
A HzOz/UV:
- without CI' nor HCOj™: [H;0,]i = 1950 pM; [O,]i = 0.80 mM; pH 7
- with CI': [H,0,]i =1750 uM; [CI'] = 5000 uM; [O;]i = 0.68 mM; pH 7
- with HCOj5": [H,0,]i = 1720 pM; [HCO;5] = 0.18 M; [O,]i = 0.73 mM; pH 8.4
b) TOC Mineralization in the SzOsz'/UV system
- without CI': [SZOSZ']i = 1580 uM; pH 7; [O;]i = 0.68 mM
- with CI': [CI'] =500 uM; [82082']i = 1740 pM; [O;]i = 0.66 mM.
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Table 1. Rate constants for the reaction of SO, ,

OH and CI' radicals (M s™).

SO4 ‘OH Cr
CH;COOH 2.0x10° (Herrmann et al., 2000) 1.5x10’ 3.2x10’
8.8 x 10* (Dogliotti and Hayon, 1967b) (Buxton et al., 1988)  (Buxton et al., 2000)
1.4x10* (Buxton et al., 2000)
CH;COO 5.06 x 10° (Huie and Clifton, 1990) 8.5x10’ 3.740.4x 10°
5.0 10° (Chawla and Fessenden, 1975)  (Buxton etal., 1988)  (Buxton et al., 2000)
2.8x10’ (Herrmann et al., 2000)
4.3 x 10° (Buxton et al., 2000)
Cr 2.7 x 10 (Huie and Clifton, 1990) 43%x10% 8.5x10°
3.1x10° (Chawla and Fessenden, 1975) (Buxton et al., 1988)  (Buxton et al., 2000)
4.28+0.05x 10 (George and Chovelon,
2002)
2.7-6.6x 10® (McElroy, 1990)
6.1+0.2x 10* (Buxton et al., 1999)
4.7x10% (Huie et al., 1991b)
HCOs" 3.53 x 10° (Huie and Clifton, 1990) 8.5x10° 2.2x108
9.1x10° (Dogliotti and Hayon, 1967a) (Buxton et al., 1988) (Mertens and Von
1.6+0.2x 10° (Zuo et al., 1999) Sonntag, 1995)
2.4+0.5x 10
(Buxton et al., 2000)
COs>

6.1£0.4 x 10° (Zuo et al., 1999)
4.1x10° (Padmaja et al., 1993)

3.9x10°
(Buxton et al., 1988)

5.0x10°
(Mertens and Von
Sonntag, 1995)

bold characters : constants used for calculations

“atpH<1

Table 2. Experimental and calculated k,p, and S04~ radical concentrations calculated
for different pH and different reaction times (steady state).

10 min (A =8.8x10™)

20 min (A=9.0x10")

30 min (A=9.2x10")

pH ks k' 1/8 [304-.]ss 1/B [804-.155 1/B [304-.]ss
o'sh  tsT (s) (M) (s) (M) (s) (M)
2 2.1x10° 1.0x10° 26x10°  2.3x10° 1.8x10° 1.6x10° 1.5%x107° 1.4x10°
3 2.8x10° 1.0x10° 2.3x10°  2.0x10° 1.6x10° 1.4x10° 1.4%x107° 1.3x10°
5 32x10° 1.3x10° 7.0x10*  6.1x10°  8.0x10* 7.2x10"  7.7x10* 7.5x107™°
7 50x 10° 7.4%10° 24x10%  21%x10™  19x10* 1.8x10" 1.7x10* 1.6x107°
9 50x%10° 9.0x10° 2.0x10%  1.7x10™ 16x10* 15x10" 14x10* 1.3x107°
Kapp (5”)
pH Experimental k,, 10 min 20 min 30 min
(s™)

2 53x10™ 4.8x10™ 3.3x10* 2.8x10*

3 6.0x10™ 56x10™ 4.0x10™ 3.3x10*

5 1.4%x107 1.9%x10° 2.3x10° 2.3x10°

7 1.0x10° 1.1x1073 8.8x10™ 7.7x10*

9 8.5x10™ 8.6x10™ 7.4%x10™* 6.4x10™
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