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Abstract The benzoyl shift in monoprotected vic-diols is described.
Triggered under mild conditions, this transformation allows regioselec-
tive protection of the least acidic hydroxyl function of an activated vic-
diol.

Key words protecting groups, regioselectivity, diols, benzoyl shift,
acidity

Regioselective transformations of diols are ubiquitous in
organic synthesis.1 For this purpose, it is often necessary to
use selective protecting technologies to block the reactivity
of one hydroxyl group.2 For example, acetyl and benzoyl
protecting groups can be used to protect selectively one hy-
droxyl group in 1,2- or 1,3-diol systems.3 In the case of α,β-
dihydroxyesters, the α-alcohol can be regioselectively pro-
tected by an acetyl or benzoyl moiety using the correspond-
ing acyl chloride and an amine base at low temperature.4
Nevertheless, to the best of our knowledge, only three
methods allow regioselective protection of the β-alcohol
with an acetyl or benzoyl moiety,5–7 one of them being an
enzymatic method,6 the scope of which is limited to one
substrate. Among the two others, one requires the use of
trimethyl orthobenzoate under acidic conditions induced
by PTSA,5 while the other one relies on the use of dibutyltin
oxide and an acyl chloride.6 An alternative approach would
be to protect both hydroxyl functions and then regioselec-
tively deprotect the α-alcohol; although this last strategy
would be clumsy and not atom-economic. Herein, we de-
scribe a new mild method for the regioselective protection
of vic-diols.

In the course of our recent total synthesis of dihomo-
isofuran, we chose to protect α,β-dihydroxyester 1 regiose-
lectively at the β position,8 using the method of Oikawa et

al.5 generating β-protected ester 2 and α-protected ester 3
in a 4:1 mixture of regioisomers. However, we observed
that following the next step, namely an acidic cleavage of
the acetonide, only the β regioisomer was recovered in

Scheme 1  (a) Regioselective monoprotection and benzoyl shift during 
the synthesis of dihomo-isofuran precursor 4. (b) Confirmation of the 
benzoyl shift by NMR monitoring.
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good yield (Scheme 1, a). NMR monitoring of the acidic
deprotection of pure α-protected ester 3 was performed in
deuterated methanol and water, which only revealed the
deprotection of the acetonide leading to compound 5.
Therefore, we realized that basic workup of the reaction (10
equiv solid NaHCO3) initiated the migration of the benzoyl

moiety from the α to the β position (Scheme 1, b). This phe-
nomenon can be explained by the relative acidity of the α-
alcohol, which makes it a good leaving group during the mi-
gration process. Thus, we originally envisaged a one-flask
protocol to protect the least acidic alcohol regioselectively
in a vic-diol (Scheme 2).

Table 1  Scope of the Regioselective Benzoylation

Entry Diol Major product Ratio 7/8/9a Isolated yield (%)b

1

(±)-6a (±)-7a

6.8:1.2:1 69

2

(±)-6b (±)-7b

5:2.3:1 66c

3

6c 7c

13.2:1.3:1 62

4

6d 7d

3:0.3:1 66d

5

(±)-6e (±)-8e

0.6:4.7:1 54

6

6f 8f

0:1:0 82

7

6g 8g

0.8:7:1 69

8

(±)-6h (±)-8h

3.4:6:1 31

a Determined by NMR spectroscopy.
b Isolated yield of the major compound.
c Isolated as a 2.7:1 mixture of 7b and 8b.
d Isolated as a 13:1 mixture of 7d and 8d.
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Scheme 2  Proposed strategy for the β-protection of α,β-dihydroxy esters

The plan was to perform a monoacylation of vic-diols
using a cheap and straightforward procedure without con-
cern for the selectivity of the protection followed by basic
workup to initiate the benzoyl shift. The initial protection
was achieved using a standard procedure; that is, benzoyl
chloride and triethylamine in dichloromethane, catalyzed
by DMAP at 0 °C to room temperature over three hours.4
However, under these conditions, the subsequent one-flask
basic workup (10 equiv solid NaHCO3) needed to perform
the benzoyl shift led to unreproducible results in the migra-
tion. After experimentation, it was found that an acidic
workup was necessary to avoid reproducibility issues, elim-
inating the possibility to perform a one-flask transforma-
tion. Therefore the second step for that latter stage was per-
formed with solid NaHCO3 (5 equiv) in MeOH–H2O (9:1,
v/v).9 The use of different bases (KHCO3, Na2CO3) did not
improve the migration. Thanks to this procedure, syn-ethyl-
2,3-dihydroxybutanoate was regioselectively monoprotect-
ed on the β-position with a 6.8:1.2 ratio and 69% yield of
the desired isomer (Table 1, entry 1),10 while the initial ben-
zoylation gave a 1.8:10.2 ratio in favour of the α position.
Interestingly, the procedure by Oikawa et al. gave a similar
yield and ratio, even if in our case we also observed bispro-
tection inherent in our straightforward initial protection
conditions. However, benzoylation at lower temperature
(–78 °C) can minimize the bisprotection ratio if the diol
substrate is valuable. No epimerization was observed
during the reaction.

A number of other vic-diols was tested under these con-
ditions. Ethyl syn-2,3-dihydroxy-3-phenylpropanoate could
also be protected on the β-position, although with lower re-
gioselectivity (Table 1, entry 2). It appears that α,β-dihy-
droxy nitriles can also be regioselectively protected on the
β position (Table 1, entries 3 and 4).11 The presence of a ni-
trile function instead of the ester improves the regioselec-
tivity of the reaction. Again, substantially better regioselec-
tivity was observed with a methyl rather than a phenyl sub-
stituent in the β-position. Interestingly, when a highly
electron-withdrawing group was present in the β-position,
no migration was observed. Thus, in the case of ethyl 4,4,4-
trifluoro-2,3-dihydroxybutanoate, the major product has
the benzoyl moiety on the α position (Table 1, entry 5).
Comparative NMR analysis before and after the basic work-
up showed the same ratio, meaning that the first step is re-
gioselective for the α-position and that no benzoyl shift oc-
curs in this specific case. Moreover, with this substantially
more electrophilic substrate, we also observed traces of

transesterification of the ethyl ester by methanol as a by-
product. When one hydroxyl function is more sterically
hindered than the other, such as in the case of a tertiary al-
cohol vs. a secondary one (Table 1, entry 6) or in the case of
a secondary alcohol vs. a primary one (Table 1, entry 7), the
benzoyl shift does not take place and the protecting group
stays on the less substituted alcohol. Finally, in the case of a
substrate containing two ester moieties, low yields are ob-
tained, probably due to undesired side reactions such as
lactonization (Table 1, entry 8).

The regioselectivity of the benzoyl shift can be ex-
plained by the superior leaving-group ability of the α-hy-
doxyl group in comparison to the β-hydroxyl. To assess this
hypothesis, pKa calculations were made on the various sub-
strates studied in the scope of the reaction (Table 2).12 In-
deed, the results show a high correlation between the rela-
tive pKa of the two hydroxyl functions and the regioisomer-
ic ratio of the benzoyl-substituted compounds. Remarkably,
the reverse regioselectivity in the case of an ester with a CF3
substituent in the β-position matches with the pKa calcula-
tion that shows the β-hydroxyl group is more acidic (Table
2, entry 5). This acidity-controlled shift is limited by steric
hindrance (Table 2, entries 6 and 7), or when side reactions
can occur (Table 2, entry 8).

Table 2  Relative pKa of the Hydroxyl Functions

In conclusion, we have described a simple and conve-
nient method for the regioselective monoprotection of acti-
vated vic-diols, using only inexpensive and readily available
reagents. This method is a complementary approach to the
one described by Oikawa et al. because it gives similar ra-
tios but can be performed faster and cheaper. The regiose-
lectivity of the reaction is guided by the relative acidity of
the hydroxyl functions, when both are equally hindered.
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Entry Ratio 7/8/9 pKa (A)a pKa (B)a

1 6.8:1.2:1 14.75b 12.87b

2 5:2.3:1 13.83b 12.33b

3 13.2:1.3:1 14.22b 11.04b
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6 0:1:0 14.82c 12.94b
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a pKa calculated using ACDLabs 12.0.
b ± 0.20.
c ± 0.29.
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