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Abstract

We revisit the modeling of the diauxic growth of a pure microorganism on two distinct
sugars which was first described by Monod. Most available models are deterministic and
make the assumption that all cells of the microbial ecosystem behave homogeneously with
respect to both sugars, all consuming the first one and then switching to the second when
the first is exhausted. We propose here a stochastic model which describes what is called
“metabolic heterogeneity”. It allows to consider small populations as in microfluidics as
well as large populations where billions of individuals coexist in the medium in a batch
or chemostat. We highlight the link between the stochastic model and the deterministic
behavior in real large cultures using a large population approximation. Then the influence
of model parameter values on model dynamics is studied, notably with respect to the
lag-phase observed in real systems depending on the sugars on which the microorganism
grows. It is shown that both metabolic parameters as well as initial conditions play a
crucial role on system dynamics.

Keywords: Diauxic growth, metabolic heterogeneity, stochastic model, deterministic model.

1 Introduction
Described for the first time by Monod [8], the diauxic growth consists in a biphasic growth in
a bacterial population consuming two different sugars in a closed medium. The corresponding
curve of biomass density at the macroscopic scale shows two distinct exponential phases sepa-
rated by a “plateau” called lag-phase. The explanation proposed by Monod is that the preferred
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†Email: jerome.harmand@inrae.fr
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sugar (which is in some sense “easier” to metabolize) is consumed first while the metabolic path-
way allowing the consumption of the second one is suppressed. When the concentration of the
first sugar becomes low enough, this repression is lifted. Then, the microorganism may pro-
duce the enzymes necessary to metabolize the second sugar: this is the lag-phase. The second
exponential growth is observed until the second sugar is eventually consumed.

Figure 1: Growth of Escherichia coli in the presence of different carbohydrate pairs serving as
the only source of carbon in a synthetic medium (Monod [8])

Until recently, it was admitted that the explanation given above was homogeneous within
the cell population in the sense that each individual adopted exactly the same behavior at the
same time: each cell first consumed the sugar that was “easiest to metabolize” first, then the
other one after a duration corresponding to the lag-phase. Such an assertion implies that the
latency time would simply be a constant depending only on the sugars involved. In order to
better understand this phenomenon and test hypotheses, many models of diauxic growth have
been proposed in the literature ([7, 11, 10]). All such models have in common to make the
hypothesis that each cell of the microorganism under consideration exhibits the same behavior
with respect to both substrates at a given time. In addition, most approaches make use of
deterministic models that are not suited for low biomass densities.

However, recent investigations suggest that lag phases are controlled by the inoculum history
and organized with heterogeneity among individual cells (Bertrand [4]). This fact was called
“metabolic heterogeneity”. Takhaveev and Heinemann [9] suggested that this heterogeneity
could be induced by mechanisms linked to ecological factors, gene expression, and other inherent
dynamics, or by interaction between individuals, which all also depend on environment changes.

In this paper, following the idea that there is an intrinsic heterogeneity of cells within the
ecosystem – which yields a metabolic heterogeneity – we develop a stochastic model of diauxic
growth. More precisely, we propose a model of a batch culture of a pure strain growing on
two different sugars. In this model, the metabolic heterogeneity is modeled via the possible
emergence of a subpopulation able to consume the second sugar while the first one is not yet
totally consumed. In other words, all cells do not exhibit the same behavior with respect to each
substrate at a given time. To be as close as possible to the observations, the model accounts for
the fact that in such situations the acetate produced – which is a growth-inhibiting metabolite
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– is co-consumed by each cell, as shown by Enjalbert et al. [5]. One goal of this work is to link
both stochastic and deterministic approaches in order to explain the observations available at
different scales, and to study the main parameters that control the length of the lag-phase.

The paper is organized as follows. First, the stochastic model is presented. Secondly, its
behavior for large populations is approximated, allowing us to write a model consisting in a
set of deterministic differential equations. Then, the model is used to investigate the role of a
number of model parameters and of initial conditions on the substrate consumption dynamics
and on the length of the lag-phases. Eventually the main conclusions and perspectives are
drawn. An appendix provides some additional information on proofs and simulations.

2 The stochastic model
First and foremost, let us introduce the parameter K > 0 that scales the initial number of
individuals. Indeed, the population size varies widely between different kinds of bacterial
cultures, and may range from a few individuals in microfluidics (then K is very small) to
billions or more in fermenters (then K is very large).

Let us consider two different substrates, Sugar1 which is preferential and Sugar2, and a
stochastic population of bacteria split into two compartments constituted respectively of Sugar1
consumers and of Sugar2 consumers. Let NK

1 (t) and NK
2 (t) denote respectively the numbers of

individuals in each compartment and

NK(t) =
(
NK

1 (t), NK
2 (t)

)
, t ≥ 0 .

Here we are introducing the specific scaling in which K can be seen as proportional to the
carrying capacity of the medium and 1/K as proportional to the individual biomass, and in
order to capture the two subpopulation densities we introduce the rescaling

nK(t) =
(
nK
1 (t), nK

2 (t)
)

=

(
NK

1 (t)

K
,
NK

2 (t)

K

)
, t ≥ 0 .

The mass concentration of each sugar is described by a continuous process

RK(t) =
(
RK

1 (t), RK
2 (t)

)
, t ≥ 0 ,

which corresponds in the same order to Sugar1 and Sugar2. We also take into account the
mass concentration AK(t) of a metabolite produced during the consumption of sugars by each
individual and co-consumed with them. As an illustration, we may consider a mixed medium
with glucose and xylose as Sugar1 and Sugar2, and acetate as the metabolite.

We describe the complete culture medium by the Markov process

(nK(t), RK(t), AK(t))t≥0 = (nK
1 (t), nK

2 (t), RK
1 (t), RK

2 (t), AK(t))t≥0 (1)

evolving as follows.

• Demography. An individual growing on Sugar1 divides at rate b1(RK
1 (t), AK(t)) due

to Sugar1 and metabolite co-consumption. Likewise, an individual growing on Sugar2
divides at rate b2(RK

2 (t), AK(t)) due to Sugar2 and metabolite co-consumption. This
results in the jumps

n1 −→ n1 +
1

K
at rate b1(R

K
1 (t), AK(t))n1 ,

n2 −→ n2 +
1

K
at rate b2(R

K
2 (t), AK(t))n2 .
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• State transitions. An individual growing on Sugar1 switches its state in order to con-
sume Sugar2 at rate η1(RK(t)), which depends on both resources since this is inhibited
by the catabolic repression due to Sugar1, the preferential sugar. Likewise, an individ-
ual growing on Sugar2 switches its metabolic state to consume Sugar1 at rate η2(RK

1 (t))
which depends only on the abundance of Sugar1. This results in the jumps

(n1, n2) −→
(
n1 −

1

K
,n2 +

1

K

)
at rate η1(R

K(t))n1 ,

(n1, n2) −→
(
n1 +

1

K
,n2 −

1

K

)
at rate η2(R

K
1 (t))n2 .

• Resource dynamics. These are linked to the biomass and metabolite synthesis by the
biochemical reactions that happen inside the batch. An individual growing on Sugar1
consumes continuously a small amount µ1(R

K
1 (t), AK(t))/q1K of Sugar1 and produces

continuously a small amount θ1µ1(R
K
1 (t), AK(t))/K of metabolite per unit of time, be-

fore dividing as a result of this consumption. Similarly, an individual growing on Sugar2
consumes continuously a small amount µ2(R

K
2 (t), AK(t))/q2K of Sugar2 and produces

continuously a small amount θ2µ2(R
K
2 (t), AK(t))/K of metabolite per unit of time, be-

fore dividing as a result of this consumption. Finally, each individual consumes a small
amount µ3(A

K(t))/q3K of metabolite per unit of time before dividing as a result of this
consumption. This leads us to describe the resource dynamics by the dynamical system

dRK
1

dt
(t) = −µ1(R

K
1 (t), AK(t))

q1V
nK
1 (t) ,

dRK
2

dt
(t) = −µ2(R

K
2 (t), AK(t))

q2V
nK
2 (t) ,

dAK

dt
(t) = −µ3(A

K(t))

q3V

(
nK
1 (t) + nK

2 (t)
)

+
θ1
V
µ1(R

K
1 (t), AK(t))nK

1 (t)

+
θ2
V
µ2(R

K
2 (t), AK(t))nK

2 (t) .

(2)

The typical situation we will consider is the following. The initial conditions satisfy

nK(0) =

(
bn0

1Kc
K

,
bn0

2Kc
K

)
, RK(0) = r0 , AK(0) = 0 ,

in which (n0, r0) = (n0
1, n

0
2, r

0
1, r

0
2) is fixed. The above rate functions involve Monod-type and

classic inhibition functions and are of the forms

µj(rj, a) = µ̄j
rj

κj + rj
· λ

λ+ a
, j = 1, 2 , µ3(a) = µ̄3

a

κ3 + a
· λ

λ+ a
,

η1(r) = η̄1
r2

k1 + r2
· ki
ki + r1

, η2(r1) = η̄2
r1

k2 + r1
.

In addition, the choice
bj(rj, a) = µj(rj, a) + µ3(a) , j = 1, 2 , (3)

ensures a conservation law on average:

E
{
nK
1 (t) + nK

2 (t) + V
[
q1(1 + θ1q3)R

K
1 (t) + q2(1 + θ2q3)R

K
2 (t) + q3A

K(t)
]}

= Cst. (4)
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Parameter Biological signification Default value
for simulations

µ̄1 Maximal growth rate on Sugar1 6.50e-01
κ1 Monod constant on Sugar1 3.26e-01
λ Inhibition coefficient due to the metabolite 4.70e-01
µ̄2 Maximal growth rate on Sugar2 5.70e-01
κ2 Monod constant on Sugar2 4.68e-01
µ̄3 Maximal growth rate on the metabolite 1.47e-01
κ3 Monod constant on the metabolite 6.45e-01
η̄1 Maximal switching rate from Sugar1 to Sugar2 2.04e-03
k1 Regulation coefficient of the Sugar1 to Sugar2 transition 1.20e-02
ki Inhibition coefficient of the Sugar1 to Sugar2 transition 1.03e-03
η̄2 Maximal switching rate from Sugar2 to Sugar1 6.60e-01
k2 Regulation coefficient of the Sugar2 to Sugar1 transition 4.50e-02
q1 Individual yield on Sugar1 5.50e-01
θ1 Metabolite yield on Sugar1 6.00e-01
q2 Individual yield on Sugar2 4.50e-01
θ2 Metabolite yield on Sugar2 5.60e-01
q3 Individual yield on the metabolite 2.50e-01
V Bioreactor volume 1.0
n0 Initial subpopulation densities (2.80e-01, 0.0)
r0 Initial sugar concentration (8.15, 9.05)

Table 1: Parameters for the rate functions in the example.

To illustrate this model, we use the parameters described in Table 1 taken from recent batch
experiments (Barthe et al. [3]) for the sugars glucose and xylose.

Figure 2 shows that this model is able to predict the diauxic growth observed by Monod
(see Figure 1). This can be observed even for a small number of individuals. We additionally
observe that the trajectories oscillate randomly for smallK and become smoother as K becomes
larger. This observation will be developed in the next section, in which the stochastic model
will be shown to be approximated by a deterministic model when K increases to infinity.
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Figure 2: Total population densities and resource concentrations for a small (K = 10) and a
moderately large (K = 1000) population.

5



3 Large population approximation
The amplitude of any jump occurring in the population is bounded by a factor of the weight
1/K attributed to a single individual and hence has a variance of order 1/K2. Moreover,
the mean number of jumps per unit of time is of order K, the order of magnitude of the
number of individuals. Heuristically, for a large population the process should approach a
limit deterministic continuous process dictated by the mean values, with random oscillations
around this limit corresponding to variances of order 1/K and hence to standard deviations of
order 1/

√
K. We can build on these heuristics and prove that the stochastic model is indeed

approximated by a deterministic model in the limit of large K. This yields the following
deterministic limit.

Theorem 3.1. Let us assume that

∀ε > 0 , P
(∥∥(nK(0), RK(0), AK(0)

)
−
(
n0, r0, a0

)∥∥ > ε
)
−−−→
K→∞

0 ,

and that supK E
(∥∥(nK(0), RK(0), AK(0)

)∥∥) < +∞. Let (n(t), r(t), a(t))t≥0 be the unique solu-
tion with initial condition (n0, r0, a0) of the differential system

n′1(t) =
{
b1(r1(t), a(t))− η1(r(t))

}
n1(t) + η2(r1(t))n2(t) ,

n′2(t) =
{
b2(r2(t), a(t))− η2(r1(t))

}
n2(t) + η1(r(t))n1(t) ,

r′1(t) = −µ1(r1(t), a(t))

q1V
n1(t) ,

r′2(t) = −µ2(r2(t), a(t))

q2V
n2(t) ,

a′(t) = −µ3(a(t))

q3V
(n1(t) + n2(t)) +

θ1µ1(r1(t), a(t))n1(t) + θ2µ2(r2(t), a(t))n2(t)

V
.

(5)

Then the stochastic process (nK(t), RK(t), AK(t))t≥0 is approximated by (n(t), r(t), a(t))t≥0 for
large K in the sense that

∀T > 0, ε > 0 , P

(
sup

0≤t≤T

∥∥(nK(t), RK(t), AK(t))− (n(t), r(t), a(t))
∥∥ > ε

)
−−−→
K→∞

0 .

This theorem allows to explain on a rigorous basis the observations we have made on the
simulations in the previous section. Before discussing the proof methods, let us address the
important question of the range of validity of the approximation.

For smallK and most notably for populations consisting of a few individuals, the determinis-
tic system is not a good approximation of the stochastic model and does not provide a pertinent
model for the population. On the contrary, when K is large enough for the approximation to
be accurate, the deterministic system provides a pertinent model on which theoretical studies
and numerical computations can be performed for qualitative and quantitative investigations
on the population.

Therefore, it is fundamental to obtain a precise evaluation of the size of K required for
the approximation to be tight and to assess the error made in terms of K. The heuristics
given before the theorem indicate that that the error terms should be of order 1/

√
K. Under

6



adequate assumptions on the initial conditions, this can be made rigorous through a functional
central limit theorem: the process

√
K
((
nK(t), RK(t), AK(t)

)
− (n(t), r(t), a(t))

)
, t ≥ 0 ,

converges as K goes to infinity to a Gaussian process of Ornstein-Uhlenbeck type, with mean
and covariance structure expressed solely in terms of the limit process (n(t), r(t), a(t))t≥0 and
of the variance of the jumps in a sufficiently explicit fashion to be well evaluated. This allows
to evaluate the minimal size of K required for a tight approximation and to provide confidence
intervals on this, as well as the possibility for intermediate sizes of K to simulate the deter-
ministic limit process and add to it fluctuations simulated according to this Gaussian process
in order to obtain a tighter approximation.

The proofs of Theorem 3.1 and of the functional central limit theorem build on the heuris-
tic explanation given before the theorem using probabilistic compactness-uniqueness methods.
Ethier and Kurtz [6] is a classic book on the subject, and Anderson and Kurtz [1] and Bansaye
and Méléard [2] provide pedagogical expositions well suited to the present field of application.

We illustrate these convergence results in Figure 3, by the simulations of a hundred trajec-
tories of the total biomass for the stochastic and the limiting model, for three increasing values
of the scale parameter K.
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Figure 3: Ten independent stochastic trajectories, the empirical mean over a hundred indepen-
dent trajectories, and the deterministic limit simulated for each of the total populations in the
cases K = 10, K = 100, and K = 1000.
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4 Heterogeneity and lag-phase sensitivity
As shown in Figure 4, the model is able to capture the heterogeneity of the population observed
by biologists as well as the diauxic growth at the level of the total population size highlighted
by Monod.
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Figure 4: Metabolic Heterogeneity. Diauxic growth of the total population (left) and growths
of the subpopulations (right) for a simulation of the stochastic model with K = 100 (top) and
of the deterministic limit (bottom). The evolutions of the two resources are plotted for each.

We present several simulations, each with either one varying metabolic parameter or a
varying initial condition. These varying factors have been carefully chosen after a numeri-
cal exploration showing that they have a strong influence on the lag-phase duration, and in
particular that they allow to reproduce dynamics similar to the ones obtained by Monod, see
Figure 1.

4.1 Influence of the metabolic parameters on the diauxie length

We here consider two major parameters:

• The maximal switching rate η̄1 from Sugar1 consumption to Sugar2 consumption, which
describes individual switches on high Sugar2 medium after Sugar1 exhaustion. As this
parameter increases, the transitions become more frequent and the lag phase shorter.
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• The inhibition coefficient ki of the Sugar1 to Sugar2 transition, which describes the
catabolic repression due to the abundance of the preferential sugar. Due to its role in the
inhibition functions, as this parameter decreases the transitions become more frequent
and the lag phase shorter.

Our simulations are represented in Figure 5.
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Figure 5: Effects of changes in the switch parameter η̄1 (left) and in the inhibition coefficient
ki (right) on the diauxic growth.

4.2 Influence of the initial conditions on the diauxie length

The initial condition n(0) = (n1(0), n2(0)) of the population also has a strong influence on the
duration of the lag-phase. Indeed, if the population density of Sugar2 consumers is significant
with respect to the density of Sugar1 consumers in the initial condition, then the lag-phase will
be short. Our simulations are represented in Figure 6.
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Figure 6: Effects of changes in the initial condition on the diauxic growth.
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5 Conclusion
In this paper, we proposed a stochastic model of diauxic growth of a microorganism on two
different sugars. The model assumes that the individuals preferentially consume one of the
sugars while the metabolic pathway allowing the consumption of the second one is repressed
until the first sugar is exhausted. To account for the fact that all individual do not behave
homogeneously with respect to the consumption of sugars - which is called metabolic hetero-
geneity - it is supposed that some individuals can switch their metabolism in such a way they
can consume the second sugar while the first one is not totally exhausted. Thus the model in-
volves two different subpopulations: the first one which grows on the first sugar, and the second
one, which emerges from the first subpopulation and consumes the second sugar. In addition,
three resource variables with continuous dynamics are added: the two sugars, and the interme-
diate metabolite which is produced when the sugars are consumed and then re-consumed by
both subpopulations. Then, the deterministic model that approximates the stochastic model
dynamics is derived using a large population approximation. Using parameter values that are
supposed to be close to those we can find in real experiments, for instance when E. coli grows
on both glucose (the preferential sugar) and xylose, we performed a number of simulations in
order to investigate the influence of the most important parameters on the model dynamics.
Further, we show the importance of the weighting factor K, which allows us to understand
what is the population size starting from which the deterministic model can be used to approx-
imate the stochastic model dynamics. Finally, it is shown that several parameters, such as the
maximal switching rate η̄1 from Sugar1 to Sugar2 consumption and the inhibition coefficient ki
of the Sugar1 to Sugar2 transition, as well as the initial conditions of the system significantly
influence the lag-phase, allowing us to pave the way and to suggest strategies to minimize the
lag-phase in practical experiments.
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A Appendix

A.1 Proof of main results

Let us comment the proof of Theorem 3.1 which can easily adapted from the results in [6, 1, 2].
Let us firstly note that we can express the stochastic process (nK(t), RK(t))t≥0 as

nK
1 (t) = nK

1 (0) +MK
1 (t)

+

∫ t

0

({
b1(R

K
1 (s), AK(s))− η1(RK(s))

}
nK
1 (s) + η2(R

K
1 (s))nK

2 (s)

)
ds ,

nK
2 (t) = nK

2 (0) +MK
2 (t)

+

∫ t

0

({
b2(R

K
2 (s), AK(s))− η2(RK

1 (s))
}
nK
2 (s) + η1(R

K(s))nK
1 (s)

)
ds ,

where the processes MK
1 and MK

2 are square integrable martingales such that

E((MK
1 (t))2) =

1

K

∫ t

0

({
b1(R

K
1 (s), AK(s)) + η1(R

K(s))
}
nK
1 (s) + η2(R

K
1 (s))nK

2 (s)

)
ds ,

E((MK
2 (t))2) =

1

K

∫ t

0

({
b2(R

K
2 (s), AK(s)) + η2(R

K
1 (s))

}
nK
2 (s) + η1(R

K(s))nK
1 (s)

)
ds ,

E(MK
1 (t)MK

2 (t)) = − 1

K

∫ t

0

(
η1(R

K(s))nK
1 (s) + η2(R

K
1 (s))nK

2 (s)

)
ds . (6)

The proof firstly consists in showing that the sequence of laws of the stochastic processes
(nK(t), RK(t), AK(t), t ≥ 0)K is relatively compact. It is based on 2-moments estimates, uni-
form on finite time intervals and onK and on a well known criterion of uniform tightness (cf. for
example [2]). Then there exists at least one limiting probability measure (on the path space).
Using the fact that the jump amplitudes are going to 0 when K tends to infinity, uniformly
on finite time intervals, we deduce that these probability measures only charge continuous tra-
jectories. Moreover, the moment estimates and (6) allow to prove that the martingale part
converges in probability to 0 when K tends to infinity. Therefore, it is easy to deduce that the
limiting probability measures only charge the solutions of the dynamical system (5). The last
step consists in proving the uniqueness of such a solution, which is due to a Cauchy-Lipschitz
Theorem.

A.2 Numerical simulations

In order to simulate the Markov process (XK(t))t≥0 = (nK(t), RK(t), AK(t))t≥0 defined in (1)
for various sets of parameters, we propose an algorithm simulating numerically the differential
system satisfied by the resources in between the jump instants, while the jump instants and
the jump amplitudes are simulated directly in terms of the past. The ideas are based on first
principles according to the Markov property.

The jump structure of (XK(t))t≥0 can be described locally at each state x by the value
α(x) ≥ 0 of a jump rate function α and if α(x) > 0 by a probability measure π(x, dh) for
drawing the amplitudes of the jumps. More precisely, there are overall p ≥ 1 possible non-
null jump amplitudes h1, · · · , hp, taken at each state x = (n, r, a) at respective rates α1(x) ≥
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0, · · · , αp(x) ≥ 0, and

α(x) =

p∑
i=1

αi(x) , π(x, hi) =
αi(x)

α(x)
, i = 1, · · · , p .

The strong Markov property yields interesting consequences for the construction of the
process. The future of the process after each jump is independent from its past given the new
state. Thus, in order to construct the process it is sufficient to be able to do so from time 0
until the first jump instant, and then iterate the procedure by considering each jump instant
as a new time origin. Moreover, starting at time 0 the probability that the process (XK(t))t≥0
has not jumped yet at time t > 0 is given in terms of the rate function α by

exp

(
−
∫ t

0

α(XK(s)) ds

)
.

This allows to construct the first jump instant as follows. If the non-decreasing continuous
process (Λ(t))t≥0 and its left-continuous inverse (Λ−1(t))t≥0 are defined by

Λ(t) =

∫ t

0

α(XK(s)) ds , Λ−1(t) = inf{u ≥ 0 : Λ(u) ≥ t} , (7)

and D is an exponential random variable of parameter 1, then

P
(
Λ−1(D) > t

)
= P

(
D >

∫ t

0

α(XK(s)) ds

)
= exp

(
−
∫ t

0

α(XK(s)) ds

)
.

Hence, we can simulate the first jump instant T1 of the process by taking T1 = Λ−1(D) while
simultaneously constructing the process on [0, T1). If XK(T1−) = x then XK(T1) = x + h for
a jump amplitude h drawn according to π(x, dh).

Using this construction directly for an actual simulation raises several issues.
The first problem is that we must be able to simulate the process (XK(t))t≥0 up to the first

jump instant. In the present situation this consists in simulating the components (RK(t), AK(t))t≥0
of the Markov process (1) by solving the differential system (2) in which the other components
of (1) remain constant between jumps. This cannot be done exactly but can be approximated
numerically quickly and with precision.

The second problem is that simultaneously to (RK(t), AK(t))t≥0 we must be able to compute
the integral Λ(t) and its inverse Λ−1(t) defined in (7). This can be done numerically but is
often costly in computer time and inefficient. This has a practical solution which we proceed
to describe. We introduce a function α̃ such that α ≤ α̃ and that the corresponding Λ̃ and that
Λ̃−1 defined similarly to (7) are simpler to compute than Λ and Λ−1. We simulate the process
(XK(t))t≥0 by an acceptance-rejection method which proposes a jump from state x at rate α̃(x)
and accepts it with probability α(x)/α̃(x) and else rejects it. There are various ways to justify
that this construction is correct. One of these is to consider the rejection as the introduction
of a jump of amplitude 0 taken at the excessive rate α̃(x)−α(x) (the process does not actually
jump, and this is called a “fictitious jump”) and reason as above. The simplest situation is when
the dominating function α̃ is a constant. Then the true jump instants of (XK(t))t≥0 constitute
a thinning of a Poisson process of constant intensity α̃, which can be easily simulated, in which
a jump instant of this Poisson process taken when XK(T1−) = x is accepted with probability
α(x)/α̃(x).
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Let us come back to our model and denote by L(XK(0)) the distribution of the initial
random vector XK(0), by E (λ) the exponential law with parameter λ > 0 and by U([0, 1])
the uniform law on [0, 1]. If we moreover denote by (φ(x, t − t0))t≥t0 the flow of the process
(XK(t))t≥0 from an initial conditionXK(t0) = x until the next jump time, the above description
can be summarized in the following algorithm.

Algorithm

Simulate x0 ∼ L(XK(0))
T0 ←− 0 ;
k ←− 0 ;
Repeat

Simulate εk+1 ∼ E (α̃ (xk)) ;
Tk+1 ←− Tk + εk+1 ;
Follow the flow (φ(xk, t− Tk))t≥Tk

for resources, until the moment Tk+1 ∧ T ;
xk+1 ←− φ(xk, Tk+1 ∧ T − Tk) ;
If Tk+1 < T , then

Simulate U2k ∼ U([0, 1]) ;
If U2kα̃(xk+1) ≤ α(xk+1), then

i←− 1 ;
Simulate U2k+1 ∼ U([0, 1]) ;
s←− α1(xk+1) ;
While i < p and U2k+1α(xk+1) > s, do

i←− i+ 1 ;
s←− s+ αi(xk+1) ;

End_While.
xk+1 ←− xk+1 + hi ;

End_If.
End_If.
k ←− k + 1 ;

Until Tk ≥ T .
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