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Ultrasound scattered by a dense shoal of fish undergoes mesoscopic interference, as is typical of
low-temperature electrical transport in metals or light scattering in colloidal suspensions. Through
large-scale measurements in open sea, we show a set of striking deviations from classical wave
diffusion making fish shoals good candidates to study mesoscopic wave phenomena. The very good
agreement with theories enlightens the role of fish structure on such a strong scattering regime
that features slow energy transport and brings acoustic waves close to the Anderson localization

transition.

Since the late 1980’s, physicists have achieved great
progress in the fabrication of strongly disordered mate-
rials that would allow for Anderson localization of ‘clas-
sical’ waves (e.g., light, microwaves, sound) in three di-
mensions [IH3]. Anderson localization is a halt of prop-
agation due to disorder [4, [5]. Although very few ex-
periments have succeeded [6H8], these studies have re-
vealed the ‘mesoscopic’ interference phenomena that are
analogous to that of low-temperature electrical transport
[9, 10): weak localization [T}, 12], universal conductance
fluctuations [13| [14], strong fluctuations and long-range
correlations of scattered intensity [15] [I6]. These studies
also led to the discovery of new phenomena, such as the
slowing down of transport due to scattering resonances
[17], random lasing [18], mean path length invariance
[19], and transverse localization of transmission eigen-
channels [20].Such a set of mesoscopic phenomena have
never been observed apart from laboratory experiments,
and even less with living matter, as they require care-
fully designed disordered samples. In acoustics, three-
dimensional mesoscopic phenomena have been observed
exclusively in so-called ‘mesoglasses’ [6]. Many studies
have considered coated particles suspended in a host ma-
trix in both optics and acoustics [21}, [22] because of their
interesting scattering properties. However arduous syn-
thesis and weak stability make those particles rarely em-
ployed. Can natural complex media be inspiring for the
design of such model systems? Do they scatter waves
strongly enough to observe non diffusive wave transport?

Here, we show that shoals of fish trapped in large
cages—an example of live, active matter—allow the ex-
amination of various mesoscopic interference phenomena
in ultrasound scattering for fish densities that are com-
parable to those encountered in natural fish schools at

sea. Fish swim bladder (an organ which allows fish to
control their buoyancy) is analogous to an air bubble
and thus strongly scatters ultrasonic waves. This strong
scattering has been useful for several decades for fish
counting with ultrasounds in the single scattering regime
[23]. The present study focuses on dense shoals in which
single scattering assumption is irrelevant. Comparison
with multiple scattering theories reveals the impact of
the complex fish structure that can be seen as a coated
air bubble. For different fish densities, the scattering
strength of fish shoals is demonstrated via measurements
of long-range correlations or non-Rayleigh distribution of
the intensity speckle, as well as via the dynamic coherent
backscattering effect, revealing the lowest energy velocity
ever observed in underwater acoustics. Because of their
quasi-random movement, fish are also interesting for con-
figurational averaging where spatial ergodicity is usually
assumed for laboratory experiments.

To ensure fish shoal control and to prevent avoidance
reactions of the fish at sea [24], we perform acoustic mea-
surements in large (~ 5 m X5 m x5 m) open-sea fish
cages that are typical of fish farms (Fig. , b). A cage
typically contains several tens of thousands of fish at a
mean density of 10-100 fish per m®. The individual fish
mass ranges from 10 g for fish larvae up to 1 kg for mature
fish. The corresponding fish volume fraction ¢ ranges
from 1% to 10%. Much higher ¢, up to 30%, can be
reached with fish farms that practice intensive fish farm-
ing.

We measure the reflection of short acoustic pulses
(~ 0.1 ms) that are emitted by a cross-shaped array of
2 X 64 acoustic transducers, as shown in Figure [Th, at a
central frequency of f = 150 kHz. This is far from the
swim-bladder resonance [25]. Successive measurements
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(a, b) Photographs taken underwater (a) and at the surface (b) of an open-sea cage used in these experiments (courtesy

of S. Pasta). (c) Intensity (dashed line) and mean intensity (symbols) of the backscattered acoustic signal after emission of a

short pulse. Solid line, diffusion theory fit.

are repeated several thousands of times at a rate of ~ 30
shots per second. The natural fish motion at a speed
of the order of 5 cm/s is sufficiently slow to ensure that
the fish can be considered as immobile during each single
shot. At the same time, the fish motion produces in-
dependent fish configurations over time, effectively pro-
viding us with a huge number of statistically independent
measurements that correspond to different configurations
of the fish in the cage.

For a single incident pulse, the backscattered acoustic
pressure field ¥(r,t) and the intensity I(r,t) = [ (r,t)|?
measured by a transducer at a position r fluctuate widely
(see Fig. , dashed line, for typical experimental data),
whereas the mean over many shots (and hence many dif-
ferent fish configurations) and over all of the transducers
yields a smooth coda, as shown by the symbols in Figure
[Ie. This is a direct signature of the multiple scattering,
and it can be understood by viewing wave transport as
a random walk with a velocity v, a step length between
scattering events ¢ (the scattering length, or mean free
path), and an isotropization distance £* > ¢ (the trans-
port mean free path). For propagation distances greater
than £*, the ensemble mean intensity (|2 (r,t)|?) obeys a
diffusion equation with diffusivity D = v¢*/3 [10]. This
equation provides an excellent description of (| (r,t)|?)
in Figure[Lk (solid line). This diffuse behavior of (I(r, t))
is accompanied by circular Gaussian statistics of i (r, t).

Mesoscopic effects manifest as deviations from the

diffusion picture of propagation, due to interference of
waves scattered along different paths inside the disor-
dered fish aggregation [9, [10]. We first analyze the
statistics of the time-integrated (stationary) wave field
(r) and intensity I(r) = |1 (r)|?. Correlation functions
Cu(Br) = (BE)b(r + Ar)) /([ (r)[2) and Cor(Ar) =
(I(r)8I(r + Ar))/(I(r))? [where 6I(r) = I(r) — (I(r))]
of the field and intensity fluctuations, respectively, are
shown in Figure [2| for two representative shoals that fea-
ture weak (gray asterisks) and strong (red circles) scat-
tering. Weak scattering occurs for the fish fry (i.e., sea
bream with mean weight W = 10 g and shoal density
n ~ 6 kg/m?3), whereas strong scattering occurs for the
dense shoal of adult sea bream (W = 284 g; n ~ 23
kg/m?). Cy(Ar) is short-range for both shoals and can
be reasonably well fitted according to theory that takes
into account the finite size of our acoustic transducers
[25] and yields the scattering lengths £ ~ A ~ 1 c¢m as
the best-fit parameters. These small £ suggest that the
Anderson localization of sound expected for 27¢/\ < 1
(the Toffe-Regel criterion) [I, [4, 5] would be reachable
in denser fish shoals. In contrast to Cy(Ar), the inten-
sity correlation function Csy(Ar) features a long-range
component Cy that does not vanish even for Ar > A,
£. In our notation, Cy incorporates contributions from
wave interference in the bulk [denoted as Cy and Cj
in the literature [0, [I0]] as well as the near transduc-
ers (the genuine Cj [20]) because our experiments do not
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FIG. 2. Spatial correlation of field ¢ (a) and intensity fluctuations 61 (b) for weakly (gray asterisks) and strongly (red circles)
scattering fish shoals. The lines show the theoretical fits to the data. While Cy(Ar) rapidly decays to zero for both shoals,
Cs1(Ar) is long-lasting and remains appreciable even for Ar = 5, especially for the stronger-scattering shoal. The colored area
in (b) represents the noise level. (a) inset: the probability density of the normalized intensity I/(I) (symbols) that deviates
from the Rayleigh law P(I) = exp(—I/(I))/(I) expected for weak scattering (dashed line). Solid lines are theoretical fits [9]

with the dimensionless conductance g as a free-fit parameter.

allow these to be distinguished. Cy ~ 0.4 for the dense
fish shoal indicates a breakdown of wave diffusion where
Csr(Ar) = |Cy(Ar)|> would be expected. This break-
down is also confirmed by an analysis of the intensity
probability density function, as shown in Figure [2h, in-
set. Fitting of the data to theory [9] allow an effective
dimensional conductance g to be attributed to each fish
shoal [25]. The variance of the intensity fluctuations is
given by (01(r)?)/(I(r))> = 1+4/3g [9]. Thus, g is a
measure of deviations of the scattered field ¢ (r) from the
Gaussian statistics, which implies (61(r)?)/(I(r))? = 1.
The large Cy ~ 0.4 and small g ~ 2 for the high-density
fish shoal signal substantial deviations from the diffusion
picture of wave propagation and confirm the proximity
of the Anderson localization regime, for which ¢ < 1 is
expected [27].

Coherent backscattering (CBS) represents a meso-
scopic effect par excellence that has been measured for
light [11L 2], ultrasound [28], matter [29] and seismic
[30] waves. This is due to constructive interference of
waves following time-reversed pairs of paths, and man-
ifests in the static regime as the doubling of the mean
scattered intensity in a narrow angular range A ~ \/¢*
around the back-scattering direction [3I]. Examples of
our CBS measurements are shown in Figure Bh, for two
cages that contain either adult sea bream at a low density
(W =320 g; n ~ 15 kg/m?) or a dense shoal of croaker
fish (W = 886 g; n ~ 24 kg/m3). The theoretical fits
to the data (see Supplementary text) provide the best-
fit values of £* = 1.7 cm and ¢* = 0.7 cm for the lower
and higher fish densities, respectively. These small val-

ues of £* support our conclusion on the strong multiple
scattering of ultrasound in the fish shoals considered.

The diffusivity D can be estimated from the dynamic
CBS profile, as shown in Figure[3p. The CBS cone width
Ad(t) follows the theoretical behavior A§=2 o« Dt ex-
pected for wave diffusion [10, 28] up to ¢t ~ 5 ms (Fig.
). The linear growth of Af~2 with time slows at longer
times, again indicating strong mesoscopic interference ef-
fects and the closeness to the Anderson localization tran-
sition [7].

Combining D estimated above with £* from the static
CBS, we obtain a surprisingly low energy transport ve-
locity v = 3D/¢* ~ 35 m/s. This value is much lower
than the speed of sound in either water (vg ~ 1500 m/s)
or air (340 m/s)—the two values that might serve as
a reference for scattering by an air-filled swim bladder
in (possibly) bubbly water. While it has been demon-
strated that resonant scattering can slow down diffusive
wave transport [17, B2, [33], narrow-band resonance ef-
fects are not clear here since low v values are obtained
for any fish size. The only possibility to explain this is to
consider the solid multi-layer structure of a fish (see sup-
plementary text) and, in particular, to invoke the slow
speed v, ~ 10 m/s of the shear waves in the fish flesh.
By assuming equipartition of the scattered intensity be-
tween longitudinal waves in water and shear waves in
fish [34], we consider that the wave speed is vs in the
fish body and vy in between two fish. Then, averag-
ing this along a path that traverses the fish shoal yields
v = [1+61/3 /(1= §)1/3]/[1/v9+ 61/ /(1— 6)V/3 ] = 30
m/s for the fish volume fraction ¢ ~ 10%, which is
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(a) Stationary coherent backscattering (CBS) profiles for weakly (gray asterisks) and strongly (red circles) scattering

fish shoals. The lines are the theoretical fits. (b) Dynamic CBS profile for the strongly scattering shoal. (c¢) Time evolution of
the cone width Af(t) of the dynamic CBS peaks. The linear increase in Af~2 that is expected from diffusion theory is shown

by the dashed lines.

in agreement with independent measurements provided
by the sea-farm manager. We emphasize that this dra-
matic slowing down of the ultrasound is not related to
the scattering resonances of the fish, and thus cannot be
explained by known, resonant mechanisms [I7, 35].

From an applied standpoint for aquaculture, determi-
nation of v via dynamic CBS measurements allows the
estimation of the shoal density through the fish volume
fraction ¢. Similarly, measurements of Cy(Ar) and the
stationary CBS yield ¢ and ¢*, which are related to the
scattering and transport cross-sections ¢ and ¢* of an
individual fish, from which a mean fish length can be es-
timated. The knowledge of both the mean fish length and
the fish shoal density opens new perspectives for nonin-
vasive biomass estimation of dense fish shoals.

In conclusion, ultrasound scattering in fish shoals un-
der conditions close to those encountered in nature show
such mesoscopic wave phenomena as long-range correla-
tions of scattered wave intensity, CBS, and the slowing
down of the diffusion. These phenomena indicate that
transition to the Anderson localization might be within
reach in experiments with denser fish shoals. The ex-
tremely slow energy transport velocity emphasizes the
importance of the fish solid structure in the multiple scat-
tering of ultrasound—a phenomenon that has been over-

looked up to now. Furthermore, the alliance of meso-
scopic wave physics and fisheries acoustics has the po-
tential of being used for monitoring fish biomass, which
at present is restricted to the single scattering regime.
When transposed to the open sea, CBS measurements
might also be applied to study strong fish density varia-
tions during day-night schooling transitions [24].

The authors thank Prof. J. H. Page for valuable dis-
cussions about transport intensity velocity.
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N W (g)|n (kg/m*)|V (m?)
C1 (sea bream, adults, Fig. 1c)| 9,000 | 500 7 343
C2 (sea bream, fry, Fig. 2) 75,000| 10 6 125
C3 (sea bream, adults, Fig. 2) [10,080| 284 23 125
C4 (sea bream, adults, Fig. 3) | 6,000 | 320 15 125
C5 (croakers, adults, Fig. 3) |13,900| 886 24 512

TABLE I: Number of fish N and mean fish weight W and shoal density 7 for the five open

sea cages considered in this study. V', cage volume.

EXPERIMENTAL SET-UP

Open-sea cages

The sea cages are in the Mediterranean Sea (Cannes, France). The distance to the sea
bottom is z = 6.5 m for the smallest cage and z = 15 m for the biggest cage, from their
lowest points. The parameters relating to the shoals and cages (as provided by the farm
manager) are detailed in Table [I To maintain the organic label of the farm and to avoid
the need for drug treatments, the fish densities in these cages are lower than in intensive

farming facilities (where mass densities 7 can reach 100 kg/m?).

The fish fry are raised in in-shore tanks and transferred to the open-sea cages when their
weight is about 5 g. The feeding procedures are controlled to obtain a calibrated fish size.
Hormones are not used in this farm, so 18 months to 3 years are required to grow the fish
to their adult size (which corresponds to the standard commercial weight for a fish fillet).
Species choice is also an organic label constraint as sea bream, croakers and sea bass (not

studied here) are native species of the Cannes region.
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Ultrasonic antenna

The acoustic device used here is a Mills cross-shaped antenna that consists of two per-
pendicular linear arrays, each with 64 ultrasonic piezoelectric transducers. Each transducer
is narrow band (bandwidth, 10 kHz) with a central frequency of 150 kHz, which corresponds
to a wavelength A ~ of 1 cm in water. The transducers are square in shape and have sides
of 0.5 cm ~ A/2. The antenna (expressly designed by the iXblue company for aquaculture

monitoring) is placed just below the water surface, facing the sea bottom.

The Mills cross array allows us to obtain a rapid three-dimensional representation of the
ultrasound intensity back-scattered by the fish shoals, by emitting a series of tilted plane
waves through one array (with controlled direction «) and recording through the other
array. The measurements are projected into the angular S space in the post-processing.
This acquisition sequence lasts less than 1.5 s and provides the time-evolving back-scattered

acoustic intensity in the a—3 angular space (Fig. [SI).

Two types of measurement are used to characterize the shoal: (i) to measure spatial
correlations (Fig. 2), only the central element of the antenna emits the acoustic wave,
whereas all of the 128 elements are used to record the back-scattered signal; (ii) to measure
the intensity profile (Fig. 1c), the probability density (Fig. 2a, inset) and the coherent back-
scattering (Fig. 3), all of the 128 transducers of the antenna are used as both transmitters
and receivers, without applying any emission delay (o = 0). For all of the measurements,
the duration of the emitted pulse is about 0.1 ms and the back-scattered waves are recorded
over 25 ms immediately after emission. After each acquisition cycle, the system remains
inactive for 10 ms to ensure that no residual acoustic signal is detected at the beginning of

the next cycle.

Averaging is performed over 2,000 to 20,000 acquisitions (roughly 10-min-long acquisi-
tions), to ensure that many different independent spatial configurations of the fish in the
cages are probed. Using an acoustic set-up with phase sensitive detectors allows us to
directly access the wave field 1 (r,t) and not only the intensity I(r,t) = [¢(r,t)[?, as in
standard optical experiments. The mean amplitude (¢ (r,t)) of the detected ultrasound is
subtracted from each acquisition ¥ (r,t) to exclude any residual ballistic contribution (such

as ringing artifacts or echos from the cage net).
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FIG. S1: Three-dimensional acoustic scan of an open sea cage (C2). The cage net is just

visible for z = 5 m, as well as the sea bottom for z = 6.5 m.

DATA PROCESSING AND FITTING
Diffusion approximation for the average intensity

The mean back-scattered intensity (I(¢)) (Fig. lc, symbols) is obtained after averaging
I(r,t) over the acquisitions and positions r of the transducers of the antenna. The theory
used to fit the experimental data is derived from a diffusion equation for (I(r,¢)) [I] that
is solved for a disordered medium that occupies the half-space z > 0, with a delta-function

source at z = 2’ [2]:

Iy /+°° zoexp(—702) .
I(t)) = — ———————exp(—iQt)dS2, S1
1wy =52 | P ew(-io) (51)
where 12(Q) = _TéQ + DLTG, To 1s the characteristic absorption time, zy = %}%};E* is the

extrapolation length, with R = 0.99 as the reflection coefficient for the water/air interface,
D is the sound diffusion coefficient, and ¢* is the transport mean free path. ¢* and D
are deduced from the static and dynamic coherent back-scattering (CBS) measurements,
respectively, while the fitting parameters are 2z’ = 1.8 mm, 7, = 1.4 ms, and the overall

amplitude is Iy = 5 x 10°.



Spatial correlations and probability density

The field correlation function Cy(Ar) = ((r)Y(r + Ar)*)/(|1(r)|?) is calculated in the
frequency domain and averaged over the acquisitions and frequencies of the antenna band-

width. The theoretical expression used to fit the data in Fig. 2a is:

_ exp(—Ar/2f)

Cy(Ar) = {ko(a — Ar)Si[ko(a — Ar)] + ko(a + Ar)Si[ko(a + Ar)]

(koa)? (S2)
+2 [cos(koa) — 1] cos(koAr) — 2koArSi(koAr)},

where Si is the sine integral function, kg is the wave number in pure water, a is the transducer
size, and / is the scattering length (mean free path). This expression is obtained by averaging
the standard expression for field correlation in a disordered medium [IJ,

sin kg Ar Ar
Cy(Ar) = A gr exp (—2—5) , (S3)

over transducers of size a for kol > 1, and assuming that transducers are one-dimensional
(i.e., each transducer is a line of length a). We checked that relaxing this one-dimensional
approximation and considering square transducers of size a x a yields data that are very
close to those following from Equation for the ranges of our parameters, albeit with a
slightly different value of a. Using a and ¢ as free-fit parameters, we obtain the fits of Figure
2a with £ =1 cm and a = 3\ /4.

The fit to the intensity correlation function Cys;(Ar) in Figure 2b is obtained using

Cg](A’I") = |C¢(AT)|2 + C(), (S4>

where ¢ and a are deduced from the fit to Cy(Ar), so that Cj is the only free-fit parameter.

The probability density of normalized intensity (Fig. 2a, inset) is also calculated in the
frequency domain for the antenna bandwidth and averaged over the acquisitions. The data
were binned (over 40 values in the weak scattering case, and 50 values for strong scattering)
from I/(I) =0 to I/(I) = max{I/(I)}. The theoretical function used for the fit, which is
valid for an incident plane wave, is[3] 4]:

PUIJ(I)) = /OOO % /: Qd—:iexp (# +av— qf(g;))) | (35)

with ¥(z) = g1n <\/1 +x/g9+ \/x/g> and g as a free-fit parameter.
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Coherent back-scattering

The angular dependence of the back-scattered field is measured by applying the beam-
forming method [B] to each acquisition. A controlled phase shift is applied to each receiving
channel, which allows the projection of the received signals onto angles along the z or y
axes. To improve the statistics, we take the means over the two angular intensity profiles,
so that the results are shown only as a function of one angle 6.F

The dynamic CBS profiles (Fig. 3b, ¢) are measured for cages C4 and C5, and integrated
over time to estimate the static CBS peak (Fig. 3a). However, our scattering medium is not
semi-infinite and the maximum integration time is shorter than the minimum time imposed
by the echo from the cage net: t,,,, = 2d/vy (with d as the depth of the cage). Nevertheless,
our cages are sufficiently large to make the consequent error negligible: a 25% variation in
tmaz induces 10% and 5% variations in the £* estimations for C4 and C5, respectively.

The theoretical expression used to fit the CBS profile follows from the same diffusion
theory as the expression for the mean intensity :

(0, 4)) = 2o /“‘@{ e, e }exp(—iQt)dQ, (S6)

S 2n ) o D\ 1+v2 1+v2

where 72(0,Q) = 55 + kfsin®*(6) + 5= and vo = (6 = 0,Q). The fits are first performed
for the stationary CBS peak (1(0)):

(1(0)) = /0 oo<1(e,t)>dt=10%{ e e } (S7)

1+ Yo%o 1+ Y120
where 71 = (6,92 = 0). ¢* and D7, are determined from the fit as best-fit parameters.

These parameters are then fixed to fit the dynamic CBS profile (I(6,t)), with D as a free-fit
parameter. These two fits finally yield the energy transport velocity: v = 3D/¢*.

Energy velocity of diffusive waves

Here we suggest another approach for the calculation of energy velocity based on theories
first developed for multiple scattering of light [8]. In this problem, we consider the scattering
of a plane wave (with wavenumber k,, = w/v,,) by the object represented on Fig. Al. As
a first approximation, we consider spherical scatterers (the scattering of plane wave by

spheroids mainly affects the scattering anisotropy factor and resonant frequencies [6]). The
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region (0) corresponds to the surrounding sea water, (1) is a thin layer of hard bones and
scales, (2) is a thick layer of soft flesh and (3) is the swim bladder (considered as vacuum in

this case).

o

FIG. S2: Geometry employed to solve the Mie problem and calculate the energy velocity.

The scattering amplitude f(#) (with 6 the scattering angle) is calculated by solving the
Mie problem as detailed in [7]. Thus, the independent scattering approximation (ISA) gives

an expression of the effective wavenumber in the fish shoal:

1672
3

k= ky, + ——Riof(0) (S8)

The scattering amplitude and effective wavenumber are used for the calculation of energy

velocity [8]:
. U121)/Uph
1448 (59)
with:
8 g Ow (10Re[f(0)] [T . 5 0p(0)

von = w/k and f(0) = |f(0)| &#®. Fish size dispersion is taken into account by averaging the
v over different particle sizes with a Gaussian distribution [9]. A very low size polydispersity
(~ 1 %) is sufficient to wash out any residual resonant effects that cannot be experimentally
observed. The result of energy velocity calculation (with input parameters detailed on Table
1)) is presented on Fig. for a small frequency range around the working frequency of our
sonar probe. The resulting energy velocity (v ~ 30 m/s) is found to be very close to both

our observation and predictions given by Eq. (4) in the main text. For comparison, we also
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Longitudinal wave Shear wave
Region | Radius R (mm) Density (g/cm?)
speed (m/s) speed (m/s)
(1) 32 1600 900 1.4
(2) 30 1600 10 1.1

TABLE II: Input parameters used for the energy velocity calculation with the geometry
presented on Fig.

plotted on Fig. calculations for a simple cloud of air bubble in water and for coated
bubbles with materials (1) or (2). This results show the importance of the multi-layer
geometry: the thin layer of bones and scales (1) helps for the wave polarisation conversion
(longitudinal-shear waves) while the thick layer of flesh significantly slows down the wave
propagation. The energy equipartition approach employed in the main text assume this

polarization conversion and only focus on the flesh shear properties.

2000 . . - T - T ;
Q 1 ]
>
z -
O .
'8 1000 ar bubble (3) _ -
> air bubble (3) with layer (1)
? T air bubble (3) with layer (2)| T
s 500 multi-layer sphere (Fig. S2)
0 /\ -
T T T T T T T
149,0 149,5 150,0 150,5 151,0
Frequency f (kHz)

FIG. S3: Geometry employed to solve the Mie problem and calculate the energy velocity.

In conclusion, the very slow diffusive wave transport has been explained simultaneously
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both by macroscopic approach (by assuming wave energy equipartition) or microscopic de-
scription (by calculating scattering properties of an isolated scatterer). This comparison
emphasizes the role of shear wave propagation in the fish body that cannot be considered

as a simple air bubble.
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