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Asymptotic Independence ex machina - Extreme

Value Theory for the Diagonal SRE Model

Sebastian Mentemeier∗, Olivier Wintenberger†

January 4, 2022

Abstract

We consider multivariate stationary processes (Xt) satisfying a
stochastic recurrence equation of the form

Xt = MtXt−1 +Qt,

where (Qt) are iid random vectors and

Mt = Diag(b1 + c1Mt, . . . , bd + cdMt)

are iid diagonal matrices and (Mt) are iid random variables. We ob-
tain a full characterization of the Vector Scaling Regular Variation
properties of (Xt), proving that some coordinates Xt,i and Xt,j are
asymptotically independent even though all coordinates rely on the
same random input (Mt). We prove the asynchrony of extreme clus-
ters among marginals with different tail indices. Our results are ap-
plied to some multivariate autoregressive conditional heteroskedastic
(BEKK-ARCH and CCC-GARCH) processes and to log-returns. An-
gular measure inference shows evidences of asymptotic independence
among marginals of diagonal SRE with different tail indices.

AMS 2010 subject classifications: 60G70, 60G10

Keywords: Stochastic recurrence equations, multivariate ARCH,
multivariate regular variation, non-standard regular variation

1 Introduction

We consider multivariate stationary processes (Xt), satisfying a diagonal
stochastic recurrence equation (SRE) of the form

Xt = MtXt−1 +Qt, t ∈ Z, (1.1)
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where (Mt) is an iid sequence of matrices such that for non-negative coeffi-
cients bi, ci, 1 ≤ i ≤ d,

Mt = Diag(b1 + c1Mt, . . . , bd + cdMt) , t ∈ Z , (1.2)

and (Qt) is an iid sequence of Rd random vectors with marginalsQt,i, 1 ≤ i ≤
d, independent of the iid real random variables (Mt). Stationary solutions
of SRE have attracted a lot of research in the past few years, see [5] and
references therein. However, in the present setting of diagonal matrices, only
marginal tail behavior has been investigated so far using the result of the
seminal paper of [15]. Under Assumptions (A1) – (A6) that are introduced
in Section 2.3, applying the Kesten-Goldie-Theorem [15, 19] we get that

P(X0,i > x) ∼ aix−αi , x→∞, (1.3)

where ai is a positive constant and αi > 0 is the unique solution of the
equation E[|bi + ciM0|αi ] = 1. Here and below, f(x) ∼ g(x) means that

limx→∞
f(x)
g(x) = 1.

Heavy-tails as in (1.3) favor the appearance of extreme values. On the
contrary with the iid case, these values tend to appear consecutively in time
due to the dependency in the diagonal SRE model (1.1). As discussed in [8],
this extremal clustering is an important phenomenon to take into account
in risk analysis. It is usually described via the notion of regular variation
for stationary time series defined in [1].

Definition 1.1. The stationary time series (Xt) is regularly varying if and
only if ‖X0‖ is regularly varying and for all t ≥ 0 there exist weak limits

lim
x→∞

P
(
‖X0‖−1(X0, . . . ,Xt) ∈ ·|‖X0‖ > x

)
= P

(
(Θ0, . . . ,Θt) ∈ ·

)
.

By stationarity and using Kolmogorov consistency theorem one can ex-
tend the trajectories (Θ0, . . . ,Θt) into a process (Θt) called the spectral tail
process. Consecutive big values of the spectral tail process around Θ0 char-
acterize the extreme clustering due to an extremal event {‖X0‖ > x} for
x sufficiently large. Note that serial extremal dependence of the marginal
sequences (Xt,i)t∈Z for any 1 ≤ i ≤ d is well known since the pioneer work
of [12].

For diagonal SRE (1.1) we will show that αi 6= αj in many situations,
so that the marginals of X0 are not tail equivalent. If αi < maxj αj , then

P(|X0,i| > x) = o
(
P(‖X0‖ > x)

)
, x→∞ .

In this case, the notion of regular variation of [1] is not suitable. By an
application of the results in [18], the corresponding marginal of the spec-
tral tail process is degenerated, i.e., Θt,i = 0 a.s. for all t ∈ Z. Hence,
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information about extreme clustering in this coordinate is lost. The notion
of non-standard regular variation was introduced to circumvent this issue
in full generality (see [26] and references therein). For Pareto equivalent
marginal tails satisfying (1.3), such as coordinates of stationary solutions
to the diagonal SRE (1.1), Vector Scaling Regular Variation (VSRV) in the
sense of [24] is a simple alternative of the non-standard regular variation
of [26], see preliminary Section 2 for a formal definition. The extremal
behaviour of stationary VSRV time series is described by the spectral tail
VSRV process (Θ̃t), extending the notion of spectral tail process to SRE
with different marginal tail indices.

As an illustration of our approach, consider the bivariate case (X0,1, X0,2)
such that c2/c1 > b2/b1 ≥ 1(with the convention 0/0 = 1) and c1 > 0 and
both M = M0 as well as the components Q1 = Q0,1 and Q2 = Q0,2 are
positive. Then α1 > α2 and we prove in Section 3 that X0,1 and X0,2 are
asymptotically independent in the sense that

lim
x→∞

P(X0,1 > x
1
α1 |X0,2 > x

1
α2 ) = lim

x→∞
P(X0,2 > x

1
α2 |X0,1 > x

1
α1 ) = 0.

(1.4)
This result remains true also when Q1 = Q2. Thus, even though X0,1 and
X0,2 are perfectly dependent in the sense that all their randomness comes
from the same random variables, extremes never occur simultaneously. This
asynchrony is due to different typical time scales until the appearance of
an extremal event in coordinates with different tail indices. Note that the
different vector scaling (x1/α1 , x1/α2) in (1.4) depends on the power-law in-
dex in (1.3). This asymptotical independence result (1.4) is responsible for
the VSRV properties of the stationary time series (Xt,1, Xt,2). We refer to
Section 3 for the general result in Rd. We prove asymptotic independence
between blocks with different tail indices, and asymptotic dependence within
blocks. Clusters of extremes of coordinates with different tail indices in the
diagonal SRE are necessarily asynchronous. We describe this phenomenon
as asynchronous extreme clustering.

The diagonal SRE (1.1) is a very simple model that may coincide with
some classical multivariate GARCH ones. For the specific case (Mt) are iid
N (0, 1), bi = 0 for all 1 ≤ i ≤ d and (Qt) are iid N (0,Σ) the diagonal
SRE coincides with the diagonal BEKK-ARCH(1) model as in [24]. For
(Qt) degenerated to a constant the diagonal SRE model coincides with the
volatility process of some CCC-GARCH model. Such diagonal SRE mod-
els are very interesting as they generate potentially different marginal tail
indices αi > 0. This freedom is not offered by the general CCC-GARCH
model whom marginals have the same tail index, as discussed in [5] and
[27]. This feature is important for modeling: Heavy tailed data, such as in
finance, may exhibit different tail indices indicating different magnitude in
the responses during financial crisis.

3



We illustrate in Section 4 via simulations of the CCC-GARCH model
the consequence of different marginal tail indices on extreme clustering. We
show the asynchrony of the clusters of extreme values generated by multivari-
ate GARCH models with different tail indices and asymptotic independence
of bivariate processes. Even if the conditional covariance dependence is to-
tal, i.e. the multiplicative random term is common to all GARCH models,
the clustering of extremes does not propagate between blocks of different tail
indices. We believe that this asynchronous extreme clustering phenomenon
is shared by general models that do not fit into the setting of our work.
We apply our approach on real dat. We fit the more general and realistic
DCC-GARCH model of [9] on log-returns of IBM and GOOGLE. Despite
strong correlation clustering1 and close tail indices among the marginals
of the model, the fitted DCC-GARCH model exhibits some evidences of
asymptotic independence on simulations despite the model does not satisfy
our assumptions. These evidences are not shared by the real data. Asyn-
chrony of extreme clusters constitute, in our opinion, a strong and intrinsic
limitation of multivariate GARCH models with different marginal tail in-
dices. The model captures extreme clustering with different magnitude only
when they are due to different financial crisis. The existence of a multivari-
ate GARCH model exhibiting extremal clustering among marginals with
different tail indices is left as an open question.

Structure of the paper

Section 2 contains preliminaries such as notation, VSRV notion and as-
sumptions required to formulate the results contained in Section 3. Illus-
trations of our results are provided in Section 4 both on simulated and
real data. The proofs are collected in Section 5 using a crucial lemma
on the different typical time scales until the first appearance of an extreme
value in different coordinates. The proof of this lemma is contained in the
Appendix together with a result on the non-standard regular variation
properties of VSRV random vectors with positive coordinates.

2 Preliminaries

2.1 Notation

The max-norm on Rd is denoted ‖ · ‖ and the euclidean norm ‖ · ‖2. For
vectors, we use bold notation x = (x1, . . . , xd). Operations between vec-
tors or scalar and vector are interpreted coordinate wise, e.g., x−1/α =
(x−1/α1 , . . . , x−1/αd) for positive x and ab = (aibi)1≤i≤d. A notation that

1Correlation clustering is a stylized fact captured by the DCC-GARCH model, see the
V-Lab documentation https://vlab.stern.nyu.edu/docs/correlation/GARCH-DCC.
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will be used frequently is vector scaling of a sequence of Rd-valued random
variables, e.g.

x−1/α(X0, . . . ,Xt) =
(
x−1/αX0, . . . , x

−1/αXt

)
=
((
x−1/αiX0,i

)
1≤i≤d, . . . ,

(
x−1/αiXt,i

)
1≤i≤d

)
.

For some potentially distinct α1, . . . , αd we define the following notion of
vector scaling distance:

‖x‖α = max
1≤i≤d

|xi|αi = ‖xα‖, x = (xi)1≤i≤d ∈ Rd.

Here xα denotes the vector (sign(xi)|xi|αi)1≤i≤d in Rd. We want to stress
that ‖x‖α is neither homogeneous nor does it satisfy the triangle inequality
for general values of α1, . . . , αd. Thus, it is not a (pseudo-)norm but it will
provide a meaningful scaling function. Note that x 7→ ‖x‖α is a continuous
function and is 1/α-homogeneous in the following sense:

‖λ1/αX0‖α = max
1≤i≤d

∣∣∣λ1/αiX0,i

∣∣∣αi = λ‖X0‖α

The components of the vector

‖X0‖−1/α
α Xt =

(
‖X0‖−1/αi

α Xt,i

)
1≤i≤d

have ‖ · ‖α and max-norm equal to one when t = 0 thus it belongs to
Sd−1
∞ = {x ∈ Rd; ‖x‖α = 1} the max-norm-unit sphere.

2.2 Vector Scaling Regular Variation

In order to treat the temporal dependence of the stationary solution (Xt), we
will use the notion of Vector Scaling Regular Variation (VSRV) introduced
in [24] as follows:

Definition 2.1 (VSRV). A stationary time series (Xt) is VSRV of order
α = (α1, . . . , αd) if for all 1 ≤ i ≤ d,

P(|X0,i| > x) ∼ aixαi with ai > 0, (2.1)

‖X0‖α is regularly varying and there exists weak limits

lim
x→∞

P
(
‖X0‖−1/α

α (X0, . . . ,Xt) ∈ ·
∣∣∣ ‖X0‖α > x

)
= P

(
(Θ̃0, . . . , Θ̃t) ∈ ·

)
,

(2.2)
for any t ≥ 0.

One can extend the trajectories (Θ̃0, . . . , Θ̃t) into a process (Θ̃t) called
the spectral tail VSRV process. Note that a VSRV time series (Xt) with
indices α1, . . . , αd is such that (Xα

t ) is regularly varying as in Definition 1.1
with tail index 1. When α1 = · · · = αd then (Xt) is regularly varying and
(Θ̃t) coincides with the spectral tail process (Θt). It is one advantage of
considering VSRV as it extends the regular variation of time series in [1] to
SRE solutions with different marginal tail indices.
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2.3 The univariate marginal SRE and the assumptions

Due to the diagonal multiplicative term in (1.1), the marginals of Xt =
(Xt,1, . . . , Xt,d)

> are satisfying the univariate marginal SREs

Xt,i = (bi + ciMt)Xt−1,i +Qt,i, t ∈ Z, for 1 ≤ i ≤ d.

We work under the following set of assumptions that implies the ones of
[15] on the marginal SREs. Note that this includes the assumption that the
compoments of Q are (relatively) light tailed, in order to avoid that the tails
of the stationary solution are dominated by Q; see assumption A3 below.
We impose this assumption because we are interested in the effect of the
multiplicative part M on the tail properties of the solution. See [17] for a
discussion of the case when Q dominates. Denoting by (M,Q) a generic
copy of (Mt,Qt), we assume that for all 1 ≤ i ≤ d,

E
[

log
∣∣bi + ciM |

]
< 0. (A1)

This implies that the top Lyapunov coefficient of the product M1 · · ·Mk is
negative, hence the Markov chain (Xt) has a unique stationary distribution
(see [19]). It is given by the law of the random vector

X =

 X1
...
Xd

 :=
∞∑
k=1

M1 · · ·Mk−1Qk. (2.3)

We further assume that there exist positive constants α1, . . . , αd such
that for 1 ≤ i ≤ d

E
[
|bi + ciM |αi

]
= 1. (A2)

Given these α1, . . . , αd, we assume for 1 ≤ i ≤ d

E
[
|M |αi+ε

]
<∞, E

[
‖Q‖αi+ε

]
<∞ for some ε > 0. (A3)

Of course, it suffices to check this condition for the maximal αi. We also
need the technical assumption that

the distributions of log |bi + ciM | are non-arithmetic for all 1 ≤ i ≤ d.
(A4)

Finally, to avoid degeneracy, we require for 1 ≤ i ≤ d that

P((bi + ciM)x+Qi = x) < 1 for all x ∈ R, and P(Qi > 0) > 0. (A5)

Given (A1)–(A5), an application of the Kesten-Goldie-Theorem of [15,
19] yields the existence of a Pareto tail equivalent stationary distribution,
i.e. the equivalence in (1.3) is met, namely P(X0,i > x) ∼ aix−αi as x→∞.

The positivity of ai can be deduced by non trivial classical arguments,
as follows.
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If P (bi + ciM < 0) > 0, then positivity of ai is proved in [15, Theorem 4.1].
If bi + ciM > 0 a.s., then additional arguments are needed: Assumptions
(A1) and (A2) together imply that there are m,m′ in the support of M ,
such that bi + cim < 1, bi + cim

′ > 1. By (A5), there is qi > 0 in the
support of Qi. Since Qi and M are assumed to be independent, we have
that (bi + cim, qi) and (bi + cim

′, qi) are in the support of (bi + ciM,Qi).
Then [5, Proposition 2.5.4] yields that the support of Xi is unbounded at
+∞, which together with [5, Theorem 2.4.6] implies that ai is positive.

We note in addition that the stationarity condition (A1) can be deduced
from (A2) as soon as M is not constant a.s. (which is implied by (A4)), see
the comments after Theorem 2.4.4 in [5].

2.4 Assumptions specific to the multivariate SRE

We finish with assumptions concerning the interplay of different marginals;
these are specific to our multivariate diagonal setting and not required for
the study of marginal SREs.

For all pairs 1 ≤ i, j ≤ d such that αi > αj , we will require that

lim
u→∞

log(u)P
( |Qj |
|Qi|

> uε
)

= 0 for all ε > 0. (A6)

Considering (2.3), we see that the ratio Xi/Xj may be affected not only by
the ratios (bi+ ciMk)/(bj + cjMk) of the multiplicative part, but also by the
ratios Qi,k/Qj,k. Assumption (A6) ensures that the effect of the latter ratio
does not dominate. It is easy to check in examples (see [7] for a discussion);
it holds e.g. if Q ∼ N (0,Σ), or whenever the ratio Qj/Qi is bounded or has
finite expectation.

We suppose that coordinates are chosen in such a way that αi decreases
with i. We partition {1, . . . , d} = I1 ∪ I2 ∪ · · · ∪ Ir such that bi = bj and
ci = cj (hence αi = αj) if and only if i, j ∈ I` for some 1 ≤ ` ≤ r.

To be able to compare the effects of the multiplicative part bi + ciM in
different marginals, we assume that one of the two following cases holds for
all i, j with i ∈ I`, j ∈ I`′ , ` < `′ (hence i < j):

bi = bj = 0, cj > ci > 0, Mt is R-valued (Case I)

bj ≥ bi > 0, cj > ci > 0,
cj
ci
≥ bj
bi
, Mt > 0 a.s. (Case II)

That is, we allow the diagonal entries to be linear or affine transformations of
Mt. These cases cover a variety of multivariate diagonal GARCH models, see
the examples in Section 4. In the affine case Case II, we require positivity to
ensure that one entry dominates the other in modulus almost surely; i.e., we
always know, which multiplicative component is the largest one. Recalling
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the definition of αi by the property

E
[
|bi + ciM |αi

]
= 1,

we note that in both cases |bj+cjM | > |bi+ciM | a.s., which implies αi > αj .
We further denote by

R|I`| = {x ∈ Rd; xi = 0 for i /∈ I`}

the (embedded) subspace corresponding with coordinates indexed by I` and
by

S|I`|−1
∞ = {x ∈ Rd; max

i∈I`
|xi| = 1 and xi = 0 for i /∈ I`}

its max-norm-unit sphere. Note that if I` = {i} is a singleton, then S|I`|−1
∞ =

{ei,−ei} where ei denotes the corresponding standard basis vectors.

3 Main Result

In this section we provide the vector scaling regular variation properties of
the diagonal SRE in full generality.

Theorem 3.1. Let (Xt) a stationary process satisfying the diagonal SRE
(1.1) and assume that (A1)–(A6) hold. Assume that (Case I) or (Case II)
holds, then (Xt) is a VSRV process satisfying

Θ̃t = MtΘ̃t−1 , t ≥ 1 . (3.1)

and there exist probability measures ξ` with support contained in S|I`|−1
∞ ,

1 ≤ ` ≤ r, such that

P
(
Θ̃0 ∈ ·

)
= lim

x→∞
P
(
‖X0‖−1/α

α X0 ∈ ·
∣∣∣ ‖X0‖α > x

)
=

1

c

∑
1≤`≤r

c` ξ`(·),

for positive constants c, c1, . . . , cr with c1 + · · ·+ cr = c. In particular,

Supp(Θ̃0) ⊂ ∪1≤`≤rS|I`|−1
∞ . (3.2)

Proof. The proof of the main and auxiliary results is the content of Section
5, the actual proof of Theorem 3.1 is in Subsection 5.4.

With probability 1, the components of Θ̃0 are equal to zero except for the
entries within exactly one block I`. Thus, we have asymptotic independence
between blocks I`: If i ∈ I`, j ∈ I`′ with ` 6= `′, then

lim
x→∞

P
(
‖X0‖−1/α(`)

α X0,i > 0, ‖X0‖−1/α(`′)
α X0,j > 0

∣∣∣ ‖X0‖α > x
)

= P
(
Θ̃0,i > 0, Θ̃0,j > 0

)
= 0.
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A natural question to ask is in which cases equality holds in (3.2), or,

more precisely, in which cases is the support of ξ` equal to S|I`|−1
∞ ? The

following result gives sufficient conditions for equality. For a vector x in Rd
we write x` = (xi)i∈I` and denote by span(M) the linear space generated
by the set of vectors M .

Lemma 3.2. Fix 1 ≤ ` ≤ r and let m = |I`|. Under the assumptions of
Theorem 3.1,

supp(Θ̃0,`) ⊂ span
(
supp(Q`)

)
∩ Sm−1
∞ . (3.3)

In addition, the following implications hold:

(a) In (Case I), if supp(M) is dense in R, then

supp(Θ̃0,`) = span
(
supp(Q`)

)
∩ Sm−1
∞ .

(b) In (Case II), if supp(M) is dense in R+, then

supp(Θ̃0,`) = {a1q1+· · ·+anqn : n ∈ N, ai > 0, qi ∈ supp(Q`)}∩Sm−1
∞ ,

i.e. it equals the convex cone generated by supp(Q`) intersected by the
unit sphere.

(c) If supp(Q`) is dense in Rm, then supp(Θ̃0,`) = Sm−1
∞ .

Proof. This result is proved in Lemma 5.5 below.

We can summarize the previous result as follows. If M has full support
and Q` is not confined to a linear subspace, then Θ̃0,` charges the whole

unit sphere S
|I`|−1
∞ , see Remark 5.6 for a precise statement.

4 Application to multivariate GARCH models and
real data

In this section, we show how our result applies to different multivariate
GARCH models.

4.1 Diagonal BEKK-ARCH(1) model

We consider (Xt) the solution of the diagonal BEKK-ARCH(1) model de-
fined as in [24] by the system{

Xt = H
1/2
t Zt, t ∈ Z,

Ht = Σ + Diag(c1, . . . , cd)Xt−1X
>
t−1Diag(c1, . . . , cd) ,
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where (Zt) is an iid sequence of gaussian random vectors Nd(0, I) and Σ is a
variance matrix. Due to the assumption that Zt is gaussian, we can identify
the gaussian transition kernel of the diagonal BEKK-ARCH(1) model. It
coincides with the one of the diagonal SRE model (1.1) with

(Qt) are iid N (0,Σ),

Mt = Diag
(
c1Mt, . . . , cdMt

)
and (Mt) iid N (0, 1), see [24]. Thus a version of (Xt) satisfies the recursion
(1.1). Under the top-Lyapunov condition

c2
i < 2eγ , 1 ≤ i ≤ d, (4.1)

where γ ≈ 0.5772 is the Euler constant, it exists a stationary solution (Xt);
see e.g. [23]. Its multivariate extremal behaviour is given by the following
corollary which follows from an application of Theorem 3.1 in (Case I):

Corollary 4.1. If the stationarity assumption (4.1) is satisfied, then the
stationary solution (Xt) of the diagonal BEKK-ARCH(1) model is a VSRV
process satisfying

Supp(Θ̃0) = ∪1≤`≤rS|I`|−1
∞

and
Θ̃t = Mt Diag(c1, . . . , cd)Θ̃t−1 , t ≥ 1 . (4.2)

Proof. We have to check the assumptions of Theorem 3.1. This is readily
done for (A1)-(A5), see [24] for details. Considering (A6), let σ2

i = Var(Qi)
and ρij be the correlation coefficient ofQi andQj ; EQi = EQj = 0. Then the
ratio Qi/Qj has a Cauchy distribution with location parameter a = ρij

σi
σj

and scale parameter b = σi
σj

√
1− ρ2

ij ; see e.g. [7, (3.3)]. The Cauchy

distributions are 1-stable, hence

P
( |Qi|
|Qj |

> u
)

= O(u)

and (A6) follows if I, J are singletons. To compare Q∗I = maxi∈I |Qi| with
Q∗J = maxj∈J |Qj | we use the simple bound (fix any j ∈ J){Q∗I

Q∗J
> u

}
⊂

⋃
i∈I

{ |Qi|
|Qj |

> u
}

to conclude that the probability of this event still decays as O(u). Thus
(A6) also holds in this case.

It remains to show that supp
(
Θ̃0

)
is equal to ∪1≤`≤rS|I`|−1. Therefore,

we can focus on a particular block I and show that the spectral measure of

the restriction (X0,i)i∈I has full support S
|I|−1
∞ .
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If I is a singleton, then this means nothing but that left and right tails
are regularly varying with the same index; which already follows from the
Goldie-Kesten theorem applied to M with P(M < 0) > 0. If |I| > 1 then
the result follows from Lemma 3.2 (a), since M and (Qi)i∈I are independent
Gaussians, and span

(
supp((Qi)i∈I)

)
= R|I| since C, the variance of Q, has

full rank.

The multivariate regular variation properties of the diagonal BEKK-
ARCH(1) process is quite simple as the support is preserved by the multi-
plicative form of the spectral tail VSRV process: The spectral tail VSRV
process is a mixture of multiplicative random walks with distinct supports.
Each support corresponds to the span of the diagonal coefficients of the
multiplicative matrix that are equal. From a risk analysis point of view, it
means that the extremal risks are dependent only in the directions of equal
diagonal coefficients. Thus the model is relevant only if the each group of
dependent extremal risks are due to different financial crisis.

Under more restrictive assumptions, it is also possible to provide second-
order results, see the arXiv version of the present paper [22]. See also [21]
for a recent analysis of the general BEKK-ARCH model.

4.2 CCC-GARCH(1, 1) model

The Constant Conditional Correlation CCC-GARCH(1,1) model has been
introduced by [2] such as the stationary solution of the system

Rt = ΣtNt , t ∈ Z ,
Σt = Diag(σt,1, . . . , σt,d) ,

σ2
t,i = ai + biσ

2
t−1,i + ciR

2
t−1,i ,

(4.3)

where Nt iid is distributed asNd(0,C) forC a correlation matrix and the co-
efficients ais, bis and cis are positive. The general CCC-GARCH(1,1) model
of [27] is defined by the same system with extra cross terms

∑
j 6=i bi,jσ

2
t−1,j

and
∑

j 6=i ci,jR
2
t−1,j in the second equation. By a direct application of The-

orem of [19], the volatility Xt = (σ2
t,1, . . . , σ

2
t,d)
> ∈ Rd+ of a general CCC-

GARCH(1,1) is regularly varying when bi,j + ci,j > 0 for all i, j, see [27] for
more details.

Back to the original CCC-GARCH model (4.3) we consider the degen-
erate case Nt = (1, . . . , 1)>Zt with Zt ∼ N (0, 1). Then the original CCC-
GARCH(1,1) volatility Xt = (σ2

t,i)1≤i≤d satisfies the diagonal SRE (1.1)

with Qt ≡ q = (a1, . . . , ad)
> and

Mt = Diag(b1 + c1Z
2
t , . . . , bd + cdZ

2
t ) .
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The existence of a stationary solution is then ensured under the top-Lyapunov
conditions

E[log(bi + ciZ
2
0 )] < 0 , 1 ≤ i ≤ d . (4.4)

which is equivalent to (A1) in this case.
We get from another application of Theorem 3.1 in (Case II):

Corollary 4.2. If the stationarity assumption (4.4) is satisfied and cj/ci ≥
bj/bi whenever αi > αj, then the volatility (Xt) of the stationary solution
of the CCC-GARCH model (4.3) with Nt = (1, . . . , 1)>Zt is a VSRV process
satisfying

Supp(Θ̃0) = ∪1≤`≤r{q̄`}

where q̄` is given by

(q̄`)i =

{
0 i /∈ I`,
qi/q

∗
` i ∈ I`

with q∗` := maxj∈I` qj. Moreover

Θ̃t = Diag(b1 + c1Z
2
t , . . . , bd + cdZ

2
t )Θ̃t−1 , t ≥ 1 .

Proof. To apply Theorem 3.1 in (Case II), we have to check conditions (A1)–
(A6) for 1 ≤ i ≤ d. The stationarity assumption (4.4) is (A1) and implies
moreover, together with the fact that M = Z2

0 has a χ2-distribution, that
all moments of bi+ ciM exist and lims→∞ E

[
|bi+ ciM |s

]
=∞, while E

[
|bi+

ciM |ε
]
< 1 for sufficiently small ε > 0. Hence, for any 1 ≤ i ≤ d there exists

αi > 0 satisfying
E[(bi + ciZ

2
0 )αi ] = 1 . (4.5)

The further assumptions are readily checked using that bi+ciM has a density
on [b,∞) and that Qt ≡ q is deterministic. We conclude that

supp(Θ̃0) ⊂ ∪1≤`≤rS|I`|−1
∞

Finally, by Lemma 3.2 (b), for each I`-block,

supp(Θ̃0) ∩ S|I`|−1
∞ = {q̄`}.

Thus, despite the constant correlation matrix Σ being totally correlated,
the volatility process exhibits asymptotic independence among marginals.
On the other hand, if the components of the CCC-GARCH(1,1) model are
independent, which is the case when C = Diag(1, . . . , 1), they are asymp-
totically independent as well.

We conjecture asymptotic independence to be true for all choices of Nt

in the original CCC-GARCH(1,1) model, since the one we considered is the
most dependent one. A recent preprint [10] gives a partial positive answer
to this open question.
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4.3 A simulation study

We provide some empirical evidences on the results of Theorem 3.1 and
Lemma 3.2. We simulate a trajectory of length 108 of the bidimensional
diagonal SRE

Xt =

(
Xt,1

Xt,2

)
=

(
b1 + c1Mt 0

0 b2 + c2Mt

)(
Xt−1,1

Xt−1,2

)
+Qt.

Following (2.2), we consider the ratios
(
‖Xt‖−1/α

α Xt

)
of the exceedances

satisfying ‖Xt‖α > x as an approximation of the spectral component Θ̃0.
We fix the threshold x as the empirical (1−10−5)-percentile of the simulated
values

(
‖Xt‖α

)
. We estimate empirically the angular measure arctan(Θ̃0,1/Θ̃0,2)

by an histogram.
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Figure 1: α1 = 2 and α2 = 4
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Figure 2: α1 = α2 = 2

We first consider Case I with Mt ∼ N (0, 1) and Qt a bivariate stan-
dard gaussian vector with correlation 0.9. This corresponds to the diagonal
BEKK-ARCH model. To simplify the graphical presentation, we consider
the spectral measure for the absolute values of Xt. Figure 1 corresponds to
different coefficients c1 = 1 and c2 = (1/3)1/4 whereas Figure 2 corresponds
to equal coefficients c1 = c2 = 1. In accordance with Theorem 3.1, the
angular measure in Figure 1 is concentrated around 0 and π/2. Following
Lemma 3.2 (c) the support of the angular measure should be [0, π/2) which
is not in contradiction with Figure 2.

Next we consider Case II with Mt = Z2
t , Zt ∼ N (0, 1), b1 = b2 = 0.1

and constant Qt = (0.2, 0.1)>. This corresponds to the totally correlated
CCC-GARCH model. Again the angular measure is concentrated around 0
and π/2 in Figure 3 for different coefficients c1 = 0.9 and c2 the positive
root of 3c2

2 + 0.2c2 + 0.01 = 1. For equal coefficients c1 = c2 = 0.9 in

Figure 4, the support of the angular measure of Θ̃0 is concentrated around
arctan(Qt,1/Qt,2) = arctan(2) as expected from Lemma 3.2 (b).
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Figure 3: α1 = 1 and α2 = 2
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Figure 4: α1 = α2 = 1
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Figure 5: α1 = 1 and α2 = 2
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Figure 6: α1 = α2 = 1

Figures 3 and 4 correspond to the totally correlated CCC-GARCH. In
order to investigate our conjecture we consider the case where the covari-
ance matrix Σ is standardized with correlation 0.5. In Figures 5 and 6 the
parameters are the same as in Figures 3 and 4. Both angular measures are
concentrated around 0 and π/2, supporting our conjecture and encourag-
ing us to extend it: The asymptotic independence might be the rule for
any CCC-GARCH model except when the CCC-GARCH model is totally
correlated with equal marginal tail index.

4.4 Real data application

We illustrate our approach by fitting a DCC-GARCH model on real data.
The DCC-GARCH model was introduced in [9] as a more realistic gen-
eralization of the CCC-GARCH model satisfying the system of recursive
equations

14




Rt = ΣtNt , t ∈ Z ,
Σt = Diag(σt,1, . . . , σt,d) ,

σ2
t,i = ai + biσ

2
t−1,i + ciR

2
t−1,i ,

(4.6)

where the correlation matrices (Ct) of Nt are no longer constant but
satisfies the dynamic model

Ct = (1− a− b)C + aRtΣ
−2
t R

>
t + bCt−1 , t ∈ Z ,

for some a, b > 0 such that a+ b < 1 and C being an unconditional corre-
lation matrix. Fitted2 on IBM and GOOGLE log returns Rt = (Rt,1,Rt,2)
from 2007-01-03 to 2021-08-30 (3690 observations), we found a large un-
conditional correlation of C1,2 = 0.37 together with some dynamical ef-
fect (a, b) = (0.03, 0.85). The DCC-GARCH model captures the finan-
cial stylized fact called correlation clustering: The conditional correlation
between log-returns is more likely to be high at time t if it was high at
time t − 1. The marginal parameters of the GARCH(1,1) models are close
(b1, c1) = (0.11, 0.82) and (b2, c2) = (0.08, 0.89) and solving the correspond-
ing unit-root equations (4.5), we found very close tail indices (α1, α2) =
(1.46, 1.41) for the squared log-ratios Xt = R2

t . We consider again the

ratios
(
‖Xt‖−1/α

α Xt

)
of the exceedances satisfying ‖Xt‖α > x, for x the

empirical (1− 10−2)-percentile, as an approximation of the spectral compo-
nent Θ̃0. We estimate empirically the angular measure arctan(Θ̃0,1/Θ̃0,2)
by an histogram in Figure 7. We do not find clear evidence of asymptotic
independence. Next, simulating a trajectory of length 3690 following the
fitted DCC-GARCH model (4.6), we estimate similarly the angular measure
using exceedances above the empirical (1 − 10−2)-percentile. We find in
Figure 8 evidences of asymptotic independence despite the DCC-GARCH
model does not satisfy the conditions of our paper.

This illustration may lead to several discussions; first, it seems, as conjec-
tured at the end of Section 4.2, that the asynchrony in multivariate GARCH
models with different tail indices is found beyond the conditions of our study
and applies to DCC-GARCH models. Second, correlation clustering is not
extremal clustering. When the values are extreme, the DCC-GARCH model
does not capture any clustering among marginals with different tail indices.
Third, it seems realistic to use GARCH models with different marginal
tail indices capturing extreme clustering among them. However, up to our
knowledge, such a model does not exist yet.

2We used the package rmgarch of the R-CRAN software [14].
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Figure 8: Fitted DCC-GARCH model

5 Proofs

To prove our main result, we proceed as follows. As the first step, in Sub-
section 5.1, we consider a bivariate diagonal SRE with distinct coefficients
b1, b2 and c1, c2; for we can always reduce the study of asymptotic indepen-
dence between blocks I` to the comparison of two components with distinct
coefficients.

As the second step, in Subsection 5.2, we consider a multivariate diagonal
SRE where all coefficients are equal. There, we study properties of the
spectral vector within one block I`. This part also contains the proof of
Lemma 3.2.

As the third step, in Subsection 5.3, we provide further properties of
Vector Scaling Regular Variation (VSRV), in order to study the serial de-
pendence structure provided by

(
Θ̃0, . . . , Θ̃t

)
.

We conclude with the proof of Theorem 3.1 in Subsection 5.4, using the
findings of the previous steps.

5.1 The diagonal SRE with distinct coefficients

In this section we will show that the marginals of the diagonal SRE with
distinct coefficients are asymptotically independent. A standard argument
reduces the discussion to the bivariate case. We consider the bivariate ran-
dom recursive process Xt = MtXt−1 +Qt, defined by X0 = 0 and

(
Xt,1

Xt,2

)
=

(
b1 + c1Mt 0

0 b2 + c2Mt

)(
Xt−1,1

Xt−1,2

)
+Qt. (5.1)

We assume that (Mt)t∈N are iid random variables, (Qt)t∈N are iid R2-valued
random vectors independent of (Mt) and that (A1)-(A6) are satisfied. We
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assume as well that either (Case I) or (Case II) holds, which read in the
bivariate setting as follows.

b2 = b1 = 0, c2 > c1 > 0, Mt is R-valued (Case I)

b2 ≥ b1 > 0, c2 > c1 > 0,
c2

c1
≥ b2
b1
, Mt > 0 a.s. (Case II)

As before, by the definition of αi (see (A2)) it holds α1 > α2.
Under our assumptions, by the Kesten-Goldie-Theorem of [15, 19] ap-

plied to multiplicative factors with bi+ciM , i = 1, 2, we have for the random
variables Xi, defined by (2.3)

lim
u→∞

uα1P(X1 > u) = a1, lim
u→∞

uα2P(X2 > u) = a2 (5.2)

for constants a1, a2 which are positive, see Section 2.3 for details. We are
going to prove that

lim
u→∞

uP
(
X2 > u1/α2 , X1 > u1/α1

)
= 0. (5.3)

which by (5.2) is equivalent to the asymptotic independence

lim
u→∞

P
(
X2 > u1/α2

∣∣X1 > u1/α1

)
= 0.

of the extremes.

5.1.1 Reduction to the case of nonnegative M and Qi

From Definition (2.3), it is obvious that we can bound Xi by the following
sums over nonnegative random variables:

Xi ≤
∞∑
k=1

k−1∏
`=1

|bi + ciM`||Qk,i| =: X∗i

We notice that X∗i satisfies the fixed point equation, in distribution,

X∗i
law
= |bi + ciM |X∗i + |Qi| , i = 1, 2 ,

(where
law
= denotes equality in law between random variables on both sides).

In particular, thanks to (A1)–(A4), the Kesten-Goldie theorem, now used
in the case of positive coefficients, applies and yields

lim
u→∞

uP
(
X∗2 > u1/α2

)
= a∗2 > 0 lim

u→∞
uP
(
X∗1 > u1/α1

)
= a∗1 > 0.

(5.4)
Note that the tail indices α1, α2 remain unchanged thanks to their definition
in (A2). Since |Xi| ≤ X∗i , i = 1, 2, the result (5.3) will follow from the
relation

lim
u→∞

uP
(
X∗2 > u1/α2 , X∗1 > u1/α1

)
= 0.
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5.1.2 Asymptotic independent diagonal SRE

By the previous discussion, it is enough to consider the following cases

b2 = b1 = 0, c2 > c1 > 0, Mt, Qi > 0 a.s, (Case I’)

b2 ≥ b1 > 0, c2 > c1 > 0,
c2

c1
>
b2
b1
, Mt, Qi > 0 a.s.

(Case II’)

We summarize these two cases under the condition c2/c1 > b2/b1 ≥ 1 and
c1 > 0 (with the convention 0/0 = 1). We are going to prove the following
result.

Theorem 5.1. Assume (A1)–(A6) for i = 1, 2 with c2/c1 > b2/b1 ≥ 1 and
c1 > 0. Then we have

lim
u→∞

uP
(
X2 > u1/α2 , X1 > u1/α1

)
= 0,

i.e., X1 and X2 are asymptotically independent.

The basic tool in the proof is to analyze the behavior of X2 under an
exponential change of measure that favors large values for X1. Namely,
we consider the probability measure Pα1 , under which (Mn) is still an iid
sequence, but with the new law

Pα1(M ∈ ·) := E
[
(b1 + c1M)α11(M ∈ ·)

]
.

The law of the sequences (Qn,i) remains unchanged and independent of (Mn)
under Pα1 .

Considering the random variables

W1 := log(b1 + c1M) and W2 := log(b2 + c2M),

with associated iid sequences Wn,i := log(bi+ciMn), we denote their respec-
tive Pα1-drift by

µj|1 := E[log(bj + cjM)(b1 + c1M)α1 ] = Eα1
[
Wj

]
, j = 1, 2.

We have the following result.

Lemma 5.2. In both (Case I’) and (Case II’), it holds that

α2µ2|1 < α1µ1|1. (5.5)
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Proof. Using Jensen’s inequality under the change of measure, we obtain

α2µ2|1 − α1µ1|1 = E
[

log

(
(b2 + c2M)α2

(b1 + c1M)α1

)
(b1 + c1M)α1

]
= Eα1

[
log

(
(b2 + c2M)α2

(b1 + c1M)α1

)]
< logEα1

[((b2 + c2M)α2

(b1 + c1M)α1

)]
= logE

[(b2 + c2M)α2

(b1 + c1M)α1
(b1 + c1M)α1

]
= 0

The strict inequality holds since log is strictly convex and the random vari-
able (b2 + c2M)α2/(b1 + c1M)α1 is not constant a.s., due to the different
exponents and condition (A4) which implies that M is not degenerate.

Proof of Theorem 5.1. We are going to study partial sums converging to the
random variables X1, X2 given by (2.3), namely

Xj:m,i :=
m∑

k=j+1

k−1∏
l=1

(bi + ciMl)Qk,i, i = 1, 2. (5.6)

We write Xn,i := X0:n,i and observe that Xi = limn→∞Xn,i = supn≥0Xn,i

a.s. Note the distinction between the Markov chain (Xt,i) (the forward
process) and the almost surely convergent series (Xn,i) defined above (the
backward process); see [20].

Step 1. We gain additional control by introducing the first exit time for
(Xn,1),

Tu := inf
{
n ∈ N : Xn,1 > u1/α1

}
.

As Xi = supn≥0Xn,i for i = 1, 2 we have {X1 > u1/α1} = {Tu < ∞}. By
(5.4) we have

lim
u→∞

u · P(Tu <∞) > 0. (5.7)

Thus, the desired result will follow from the relation

lim
u→∞

P
(
X2 > u1/α2

∣∣Tu <∞) = 0. (5.8)

On the set {Tu <∞}, it holds

X2 = XTu,2 +

Tu∏
l=1

(b2 + c2Ml)XTu:∞,2. (5.9)
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The simple inclusion

{X2 > s} ⊂
{
XTu,2 > u1/α2/2

}︸ ︷︷ ︸
=: Au

∪
{ Tu∏
l=1

(b2 + c2Ml)XTu:∞,2 > u1/α2/2
}

︸ ︷︷ ︸
=: Bu

allows us to consider the contributions in (5.9) separately. The following
lemma, to be proved subsequently, provides stronger control and is the cru-
cial ingredient for evaluating the contributions of Au and Bu. The proof of
this lemma is deferred to the appendix.

Lemma 5.3. For any ε > 0, define the set Cu(ε) as the intersection

{
Tu ≤ Lu

}
∩
{
XTu,1 ≤ u

1+ε
α1

}
∩
{

max
1≤k≤Lu

Qk,2
Qk,1

≤ uε/α1

}
∩
{ Tu∑
l=1

(Wl,2 −Wl,1)− Tu(µ2|1 − µ1|1) ≤ εTu
}
∩
{ Lu∑
l=1

Wl,1 ≤
1 + ε

α1
log u

}
where Lu := log(u)/(µ1|1α1) + Cf(u), f(u) :=

√
log(u) · log(log(u)) and C

is a (suitably large) constant that can be chosen indepently of ε.
Then it holds that

lim
u→∞

P
({
X2 > u1/α2

}
∩ Cu(ε)

∣∣Tu <∞) = lim
u→∞

P
(
X2 > u1/α2

∣∣Tu <∞)
if either of the limits exists.

Step 2. Considering the event Au, we have, using b1 ≤ b2 and c1 < c2

and the controls provided by Cu(ε), that

XTu,2 =

Tu∑
k=1

k−1∏
l=1

(b2 + c2Ml)Qk,2

≤
(

max
1≤k≤Tu

Qk,2
Qk,1

) Tu∑
k=1

k−1∏
l=1

b2 + c2Ml

b1 + c1Ml
(b1 + c1Ml)Qk,1

≤
(

max
1≤k≤Lu

Qk,2
Qk,1

)( Tu−1∏
l=1

b2 + c2Ml

b1 + c1Ml

) Tu∑
k=1

k−1∏
l=1

(b1 + c1Ml)Qk,1

≤
( Tu−1∏

l=1

b2 + c2Ml

b1 + c1Ml

)(
max

1≤k≤Lu

Qk,2
Qk,1

)
XTu,1

≤
( Tu∏
l=1

b2 + c2Ml

b1 + c1Ml

)
uε/α1u(1+ε)/α1

≤ e
∑Tu
l=1Wl,2−Wl,1 u(1+2ε)/α1 . (5.10)
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Now we use that on Cu(ε) we have the relation

Tu∑
l=1

(Wl,2 −Wl,1) ≤ Tu(µ2|1 − µ1|1) + εTu ≤ Lu(µ2|1 − µ1|1 + ε)

so that (5.10) yields

logXTu,2

log u
≤
µ2|1 − µ1|1 + ε

µ1|1α1
+ +

1 + 3ε

α1

=
µ2|1 + ε(1 + 3µ1|1)

µ1|1α1
=

1

α2

α2µ2|1 + εα2(1 + 3µ1|1)

α1µ1|1
. (5.11)

Here we have used that

exp
(√

log u
)

log u = exp
(

log u/
√

log u
)

log u = u1/
√

log u log u ≤ uε/α1

for any fixed ε > 0, as soon as u is large enough.
Under the condition (5.5) it is always possible to find ε so small that

η :=
1

α2

α2µ2|1 + εα2(1 + 3µ1|1)

α1µ1|1
≤ 1

α2
− ε

and hence by (5.11),

{XTu,2 > u1/α2/2} ∩ Cu(ε) ⊂
{
uη ≥ XTu,2 > u1/α2/2

}
= ∅

for u sufficiently large. It follows that the first term Au in (5.9) does not
contribute on Cu(ε).

Step 3. Turning to Bu, we start by bounding the multiplicative factor
on Cu(ε). By Lemma 5.3,

Tu∏
l=1

(b2 + c2Ml) = exp

( Tu∑
l=1

(Wl,2 −Wl,1)

)
exp

( Tu∑
l=1

Wl,1

)
≤ eLu(µ2|1−µ1|1+ε) u(1+ε)/α1 ≤ uη

where we used the same calculations as the ones leading to (5.11). Hence

P
({ Tu∏

l=1

(b2 + c2Ml)XTu:∞,2 >
1

2
u1/α2

}
∩ Cu(ε)

∣∣∣Tu <∞)
≤ P

(
XTu:∞,2 > u1/α2−η/2

∣∣Tu <∞) = P
(
X2 > u1/α2−η/2

)
.

since XTu:∞,2 is independent of {Tu <∞}. Since 1/α2 > η, the last proba-
bility tends to zero.

Combining the two previous steps, we have proved that

lim
u→∞

P
({

X2 > u1/α2

}
∩ Cu(ε)

∣∣∣∣Tu <∞) = 0

which by Lemma 5.3 is enough to conclude (5.8) and thus the desired result.
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5.2 The diagonal SRE with equal coefficients

In this section we focus on the case where bi = b ≥ 0 and ci = c > 0 for any
1 ≤ i ≤ d so that

Xt = (b+ cMt)Xt−1 +Qt, t ∈ Z.

We can interpret the multiplicative factor (b + cMt) as multiplication with
the random similarity matrix (b+ cMt)Id, thus we are in the framework of
[4]. From there, we obtain the following result:

Theorem 5.4. Assume (A1)–(A5) for all 1 ≤ i ≤ d. Let X0 have the
stationary distribution. Then X0 is VSRV and (Xt)t≥0 is a VSRV process
of order α = (α, . . . , α), and its spectral tail process satisfies the relation

Θ̃t = (b+ cMt)Θ̃t−1, t ≥ 1.

Proof. By [4, Theorem 1.6], there is a non-null Radon measure µ on [−∞,∞]d\
{0} such that

xαP(x−1X0 ∈ ·)
v→ µ, x→∞.

[See [5, Theorem 4.4.21] for a reformulation of the quoted result which is
more consistent with our notation.] Hence, X0 is (standard) regularly vary-
ing and also VSRV of order α = (α, . . . , α) since Θ0 and Θ̃0 coincide then.

The remaining assertions follow from a direct application of Proposition
5.8.

In order to determine whether the components of X0 are asymptotically
independent or dependent, we are interested in information about the sup-
port of P(Θ̃0 ∈ ·). By (2.2), two or more components of X0 can be large
simultaneously if and only if two or more components of Θ̃0 can be nonzero
simultaneously; i.e., Θ̃0 is not concentrated on the standard basis vectors
ei.

We write supp(Q) for the support of the law of Q and span(E) for the
linear space spanned by set E ⊂ Rd. Let Sd−1

∞ denote the unit sphere in Rd
with respect to ‖·‖α which coincides with the unit sphere for the max-norm
whatever is α.

Lemma 5.5. Under the assumptions of Theorem 5.4,

supp(Θ̃0) ⊂ span
(
supp(Q)

)
∩ Sd−1
∞ . (5.12)

In addition, the following implications hold:

(a) If b = 0, c > 0 and supp(M) is dense in R, then

supp(Θ̃0) = span
(
supp(Q)

)
∩ Sd−1
∞ .
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(b) If b > 0, c > 0 and supp(M) is dense in R+, then

supp(Θ̃0) = {a1q1 + · · ·+ anqn : n ∈ N, ai > 0, qi ∈ supp(Q)}∩Sd−1
∞ ,

i.e. it equals the convex cone generated by supp(Q) intersected by the
unit sphere.

(c) If supp(Q) is dense in Rd, then supp(Θ̃0) = Sd−1
∞ .

Proof of Lemma 5.5. The proof is based on [4, Remark 1.9], which gives
that the support of the spectral measure σ∞ with respect to the Euclidean
norm is given by the directions (subsets of the unit sphere Sd−1) in which
the support of X0 is unbounded. More precisely, consider the measures

σt(A) := P
(
‖X0‖2 > t,

X0

‖X0‖2
∈ A

)
Then supp(σ∞) =

⋂
t>0 supp(σt). The surprising part of this result is that

all directions, in which the support of X0 is unbounded, do matter. One
does not need a lower bound on the decay of mass at infinity. But if we
know that the support of the spectral measure w.r.t. the Euclidean norm
is the intersection of a particular subspace with the unit sphere, we imme-
diately deduce the same for the spectral measure w.r.t the max-norm, i.e.,
for P(Θ0 ∈ ·), as well as for P(Θ̃ ∈ ·).

Thus, to proceed, we have to study the support of X0. For simplicity
we write, for the remainder of the proof, (m, q) for a realization of the
random variables (b + cM,Q). We identify a pair (m, q) with the affine
mapping h(x) = mx + q, we say that h ∈ supp

(
(b + cM,Q)

)
if (m, q) ∈

supp
(
(b + cM,Q)

)
. We consider the semigroup generated by mappings in

supp
(
(b+ cM,Q)

)
,

G :=
{
h1 · · ·hn : hi ∈ supp

(
(M,Q)

)
, 1 ≤ i ≤ n, n ≥ 1

}
.

Then, by [4, Lemma 2.7]

supp
(
X0

)
= closure of

{
1

1−mq : (m, q) ∈ G, |m| < 1
}
.

This is obviously a subset of span(Q), hence (5.12) holds. [Again, see [5,
Proposition 4.3.1] for a reformulation of the quoted result which is more
consistent with our notation.]

Since M and Q are independent, supp
(
(b+ cM,Q)

)
= supp(b+ cM)×

supp(Q) and a general element in G is of the form

h(x) = m1 · · ·mnx+
(
q1 +

n∑
k=2

m1 · · ·mk−1qk

)
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with mi ∈ supp(b+ cM), qi ∈ supp(Q). Thus, a generic point in supp(X0)
is of the form

1

1−m1 · · ·mn

(
q1 +

n∑
k=2

m1 · · ·mk−1qk

)
, (5.13)

with
mi ∈ supp(b+ cM), qi ∈ supp(Q), |m1 · · ·mn| < 1.

The prefactor in (5.13) is scalar, while the bracket term represents a linear
combination of qk ∈ supp(Q). Now we can prove the two implications.

Concerning (a), if supp(M) is dense in R, then the bracket term in
(5.13) can be chosen such that its direction approximates any direction of
y ∈ span

(
supp(Q)

)
. Then, given t > 0, mn can be chosen arbitrarily small,

such that |m1 . . .mn| < 1 and moreover, the norm of (5.13) exceeds t. It
follows that supp(σt) = span

(
supp(Q)

)
∩ Sd−1 for all t, which yields the

assertion since supp(σ∞) =
⋂
t>0 supp(σt).

Concerning (b), note that m ∈ supp(b+ cM) is bounded from below by
b > 0, with b < 1 due to assumption (A1). If supp(M) is dense in R+, then
the bracket term in (5.13) can be chosen such that its direction approximates
any direction of y ∈ span

(
supp(Q)

)
+

given that its norm is suitably large.
Similarly as for (a) above, the desired assertion follows.

Concerning (c), if supp(Q) is dense in Rd, then the bracket term can be
chosen such that it approximates an arbitrary element of Rd and its modulus
is larger than t, while (A1) entails that there are mi ∈ supp(M) such that
|m1 . . .mn| < 1.

Remark 5.6. We conclude for the diagonal SRE with equal coefficients,
under the assumptions of Lemma 5.5: As soon as Q is not confined to a
linear subspace of Rd, we have that X0 is multivariate regularly varying
and its components are asymptotically dependent. In fact, the spectral
measure charges the whole unit sphere.

5.3 Stationary VSRV Markov chains

We adapt the work of [18] to our framework. We consider a Markov chain
(Xt)t≥0 with values in Rd satisfying the recursive equation

Xt = Φ(Xt−1, Zt), t ≥ 0 , (5.14)

where Φ : Rd × E 7→ Rd is measurable and (Zt) is an iid sequence taking
values in a Polish space E . We work under the following assumption, which
is the vector scaling adaptation of [18, Condition 2.2]. As above, we fix in
advance the positive indices α1, . . . , αd.
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VS Condition for Markov chains: There exists a measurable function
φ : Sd−1

∞ × E 7→ Rd such that, for all e ∈ E,

lim
x→∞

x−1/αΦ(x1/αs(x), e)→ φ(s, e) ,

whenever s(x) → s in Sd−1
∞ . Moreover, if P(φ(s, Z0) = 0) > 0 for some

s ∈ Sd−1
∞ then Z0 ∈ W a.s. for a subset W ⊂ E such that, for all e ∈ W,

sup
‖y‖α≤x

‖Φ(y, e)‖α = O(x) x→∞ .

We extend φ over Rd × E thanks to the relation

φ(v, e) =

{
‖v‖1/αα φ

(
‖v‖−1/α

α v, e
)

if v 6= 0,

0 if v = 0 .

We have the following result which extends Theorem 2.1 of [18]

Theorem 5.7. If the Markov chain (Xt) satisfies the recursion (5.14) with
Φ satisfying the VS condition and if the vector X0 is VSRV with positive in-
dices α1, . . . , αd then (Xt)t≥0 is a VSRV process and its spectral tail process
satisfies the relation

Θ̃t = φ(Θ̃t−1, Zt) , t ≥ 0 .

started from Θ̃0, the spectral component of X0.

Proof. The result follows by an application of Theorem 2.1 in [18] to the
Markov chain (Y t)t≥0 = (Xα

t )t≥0. We have Y 0 regularly varying since Xα
0

is VSRV. Moreover

Y t = Φ̃(Y t−1, Zt) , t ≥ 0 ,

with Φ̃(x, z) = (Φ(x1/α, z))α. As the VS condition for Markov chain is the
vector scaling version of the condition 2.2. of [18] on Φ̃ associated to the
limit φ̃((x, z)) = φ((x1/α, z))α, i.e.

lim
x→∞

x−1Φ̃(xs(x), e)→ φ̃(s, e)

whenever s(x) → s in Sd−1
∞ . We obtain that the spectral tail process of

(Y t)t≥0 satisfies the recursion

ΘY
t = φ̃(ΘY

t−1, Zt) , t ≥ 1 .

The desired result follows as φ̃((x, z)) = φ̃((x1/α, z))α and Θ̃
α

t = ΘY
t ,

t ≥ 0.
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We are specially interested in Stochastic Recurrence Equations (SRE)
corresponding to the Markov chains

Xt = Φ(Xt−1, (M ,Q)t) = M tXt−1 +Qt , t ≥ 0 .

In this setting (M t) are iid random d × d matrices and (Qt) iid random
vectors in Rd. We have

Proposition 5.8. The SRE Markov chain (Xt)t≥0 satisfies Condition VS
for positive indices α1, . . . , αd if and only if Mij = 0 a.s. for any (i, j) so
that αi > αj. Then

φ
(
s, (M ,Q)

)
=
( d∑
j=1

Mij1αi=αjsj

)
1≤i≤d

.

Proof. As x→∞ and s(x)→ s, we have

lim
x→∞

x−1/αΦ
(
(x1/α)s(x), (M ,Q)

)
= lim

x→∞
x−1/α

(
M(x1/αs(x)) +Q

)
= lim

x→∞

( d∑
j=1

Mijs(x)jx
1/αj−1/αi

)
1≤i≤d

.

Each coordinate converges to
∑d

j=1Mij1αi=αjsj for any s ∈ Sd−1
∞ if and

only if Mij = 0 a.s. for any (i, j) so that αi > αj .

Remark 5.9. In case of distinct αi’s, it means that the dynamic tail process
depends only on the diagonal elements of M . In general, specifying M t to
be diagonal, we ensure that if X0 is VSRV then the SRE process is VSRV
with

Θ̃t = M tΘ̃t−1, t ≥ 1 ,

whatever are the positive indices α1, . . . , αd.

5.4 Proof of the Main Result

Proof of Theorem 3.1. We start by proving that (Xt) is a VSRV process.
According to Proposition 5.8 and Remark 5.9, it suffices to prove that X0

is VSRV, then (3.1) and the VSRV of (Xt) follow.
We use the following short-hand notation: For x ∈ Rd, let x` = (xi)i∈I` ,

‖x‖` := maxi∈I` |xi| and α(`) is the common tail index of all coordinates in
I`.

Let ε > 0, ` 6= k. By (5.3) of Theorem 5.1, it holds that

lim
x→∞

x · P
(
‖X0‖` > ε ‖X0‖1/α(`)

α , ‖X0‖k > ε ‖X0‖1/α(k)
α , ‖X0‖α > x

)
≤ lim

x→∞
x · P

(
‖X0‖` > εx1/α(`), ‖X0‖k > εx1/α(k)

)
≤

∑
i∈I`, j∈Ik

lim
x→∞

x · P
(
|X0,i| > εx1/αi , |X0,j | > εx1/αj

)
= 0 (5.15)
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We note from the results of Section 5.2 that there are positive constants c`
and probability measures ξ̃` on the |I`|-dimensional unit sphere (w.r.t. the
max-norm), such that for all 1 ≤ ` ≤ r

lim
x→∞

x · P
(
‖X0‖` > x1/α(`), ‖X0‖−1

` X0,` ∈ ·
)

= c` ξ̃`(·).

Applying the inclusion-exclusion principle, we have

lim
x→∞

x · P
(
‖X0‖α > x

)
= lim

x→∞
x · P

( ∨
1≤`≤r

‖X0‖` > x1/α(`)
)

=
∑

1≤`≤r
lim
x→∞

x · P
(
‖X0‖` > x1/α(`)

)
−

∑
1≤`<k≤r

lim
x→∞

x · P
(
‖X0‖` > x1/α(`), ‖X0‖k > x1/α(k)

)
+ . . .

= c1 + · · ·+ cr =: c, (5.16)

since all intersection terms vanish asymptotically due to 5.15 (with ε = 1).
Thus we have shown that ‖X0‖α is regularly varying. We claim that

lim
x→∞

P
(
‖X0‖−1/α

α X0 ∈ ·
∣∣∣ ‖X0‖α > x

)
=

1

c

∑
1≤`≤r

c` ξ`(·),

where ξ` is the extension of ξ̃` to a measure on the unit sphere Sd−1
∞ in Rd

by putting unit mass in the origin of the additional coordinates. Hence, its

support is contained in S|I`|−1
∞ . In particular, (3.2) follows once this claim is

proved.
By the Portmanteau lemma, it suffices to study closed sets. Note that

for any closed set B ⊂ Sd−1
∞ , it holds that

B`,ε := {x` : x ∈ B, |xj | < ε for j /∈ I`} → {x` : x ∈ B∩S|I`|−1} =: B`
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as ε→ 0. Using (5.15) and the inclusion-exclusion principle, we obtain

lim sup
x→∞

x · P
(
‖X0‖−1/α

α X0 ∈ B, ‖X0‖α > x
)

= lim sup
x→∞

x · P
(
‖X0‖−1/α

α X0 ∈ B,
∨

1≤k≤r
‖X0‖k > x1/α(k)

)
=

∑
1≤`≤r

lim sup
x→∞

x · P
(
‖X0‖−1/α

α X0 ∈ B, ‖X0‖` > x1/α(`),

∧
k 6=`
‖X0‖k ≤ ε ‖X0‖1/α(k)

α

)
≤

∑
1≤`≤r

lim
x→∞

x · P
(
‖X0‖−1

` X0,` ∈ B`,ε, ‖X0‖` > x1/α(`),

∧
k 6=`
‖X0‖k ≤ εx1/α(k)

)
=

∑
1≤`≤r

lim
x→∞

x · P
(
‖X0‖−1

` X0,` ∈ B`,ε, ‖X0‖` > x1/α(`)
)

=
∑

1≤`≤r
cl ξ̃`(B`,ε)

This holds for all ε > 0. Since the sequence B`,ε is decreasing, we conclude

by the continuity of ξ̃` that

lim sup
x→∞

x · P
(
‖X0‖−1/α

α X0 ∈ B, ‖X0‖α > x
)
≤

∑
1≤`≤r

c` ξ̃`(B`)

=
∑

1≤`≤r
c`ξ`(B).

Combined with (5.16), this proves the weak convergence by an application
of the Portmanteau lemma.

Appendix

A VSRV and non-standard regular variation

In this section we show that indeed any VSRV random vector with positive
coordinates X0 ∈ (0,∞)d is also non-standard regularly varying; which is
defined in [26] as follows.

Assume that marginals are positive and (one-dimensional) regularly vary-
ing with possibly different tail indices αi and cdf Fi, 1 ≤ i ≤ d. Then
non-standard regular variation holds if and only if

lim
x→∞

x · P
(
x−1X̃0 ∈ ·

)
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exists in the vague sense, where the standardized vector X̃0 is defined as

X̃0 = (1/(1− Fi(X0,i)))1≤i≤d .

Following [11, Theorem 4], we note that X̃0 is regularly varying in the

classical sense, i.e. ‖X̃0‖ is regularly varying with tail index 1 and there
exists an angular measure which is the weak limit of

lim
x→∞

P
(
‖X̃0‖−1X̃0 ∈ ·

∣∣∣ ‖X̃0‖ > x
)
.

Note that the standardization is made so that all coordinates of X̃0 are tail
equivalent

P
(
X̃0,i > x

)
∼ x−1 , x→∞ , 1 ≤ i ≤ d .

Proposition A.1. Let X0 be a VSRV random vector with positive coordi-
nates of order α = (α1, . . . , αd). Then X0 is non-standard regularly varying
and the angular measure is given by

E
[∥∥a−1Θ̃

α

0

∥∥ 1
(∥∥a−1Θ̃

α

0

∥∥−1
a−1Θ̃

α

0 ∈ ·
)]

E
[∥∥a−1Θ̃

α

0

∥∥] ,

where a = (a1, . . . , ad) is the vector of standardization coefficients given by
2.1.

We remark that the angular measure of X0 is completely determined by
the spectral tail process (Θ̃t). However its expression is intricate because
of the different marginal standardizations a whereas we will derive explicit
expressions of (Θ̃t) for many Markov chains in Section 5.3. We emphasize
that this simplicity is the main motivation for introducing the notion of
VSRV rather than using the more general notion of non-standard regular
variation.

Proof. The standardized vector

X̃
′
0 = a−1Xα

0

has marginal tails equivalent to the standard Pareto marginally distributed

vector X̃0 =
(
1/(1−Fi(X0,i))

)
1≤i≤d. Moreover ‖X̃

′
0‖α tail is Pareto equiv-

alent with tail index 1 since an union bound yields

P(|X0,1|α1 > x) ≤ P(‖X0‖α > x) ≤
d∑
i=1

P(|X0,i|αi > x)
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and a sandwich argument concludes. Thus ‖X̃
′
0‖ is also regularly varying

because, denoting a∗ = min1≤i≤d ai and a0 = limx−1P(‖X̃
′
0‖α > x), we

have

P(‖X̃
′
0‖ > x

)
= P

(
‖a−1Xα

0 ‖ > x, a−1
∗ ‖Xα

0 ‖ > x
)

= P
(
‖a−1Xα

0 ‖ > x| ‖Xα
0 ‖ > xa∗

)
P(‖Xα

0 ‖ > xa∗)

∼ P
(‖a−1Xα

0 ‖
‖Xα

0 ‖
>

x

‖Xα
0 ‖
| ‖Xα

0 ‖ > xa∗

)
a0a
−1
∗ x−1

∼ P
(∥∥∥a−1

( X0

‖Xα
0 ‖1/α

)α∥∥∥ > x

‖Xα
0 ‖
| ‖Xα

0 ‖ > xa∗
)
a0a
−1
∗ x−1

∼ P
(∥∥a−1Θ̃

α

0

∥∥ > a∗Y
−1
)
a0a∗x

−1

∼ E
[∥∥a−1Θ̃

α

0

∥∥]a0x
−1.

We conclude that X0 is non-standard regularly varying and the angular
measure is the limit, as x→∞, of the ratio

P
(
‖X̃0‖−1X̃0 ∈ ·| ‖X̃0‖ > x

)
=

P
(
‖X̃0‖−1X̃0 ∈ ·, ‖X̃0‖ > x

)
P(‖X̃0‖ > x

)
=

P
(
‖X̃
′
0‖−1X̃

′
0 ∈ ·, ‖X̃

′
0‖ > x

)
P(‖X̃

′
0‖ > x

)
=

P
(
‖X̃
′
0‖−1X̃

′
0 ∈ ·, ‖X̃

′
0‖ > x| ‖Xα

0 ‖ > xa∗
)

P(‖X̃
′
0‖ > x| ‖Xα

0 ‖ > xa∗
)

and the desired result follows by definition of Θ̃0.

B Proof of Lemma 5.3

The fundamental ingredient in the proof is a large deviation result for Tu
by [3] (see also [6]). It gives a very precise bound on the typical range of
Tu, which allows us to deduce properties of the relevant random variables
at time Tu, by replacing the random time by a deterministic bound.

Step 1. Fix ε > 0 and write Cu = Cu(ε). It is enough to show that
limu→∞ P(Ccu |Tu < ∞) = 0. Indeed, we can sandwich the conditional
probabilities as follows

P
(
X2 > u1/α2

∣∣Tu <∞)
≥ P

({
X2 > u1/α2

}
∩ Cu

∣∣Tu <∞)
= P

(
X2 > u1/α2

∣∣Tu <∞)− P
({
X2 > u1/α2

}
∩ Ccu

∣∣Tu <∞)
≥ P

(
X2 > u1/α2

∣∣Tu <∞)− P
(
Ccu
∣∣Tu <∞) .
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Then the desired result follows by letting u→∞. We will consider each of
the contributions to Ccu separately:

Ccu =
{
Tu > Lu

}
∪
{
XTu,1 > u(1+ε)/α1

}
∪
{

max
1≤k≤Lu

Qk,2
Qk,1

> uε/α1

}
∪
{ Tu∑
l=1

(W2,l −W1,l)− Tu(µ2|1 − µ1|1) > εTu

}
∪
{ Lu∑
l=1

Wl,1 >
1 + ε

α1
log u

}
= A ∪B ∪D ∪ E ∪ F.

By (5.7), the required assertion limu→∞ P (B|Tu <∞) = 0 will as well follow
from

lim
u→∞

u · P (B ∩ {Tu <∞}) ≤ lim
u→∞

u · P (B) = 0.

Step 2. The negligibility of A is a direct consequence of [3, Lemma 4.3])
which provides that for a sufficiently large constant C,

lim
u→∞

P
(∣∣∣Tu − log u

µ1α1

∣∣∣ ≥ Cf(u),

∣∣∣∣Tu <∞) = 0 ,

where f(u) =
√

log(u) · log(log(u)).

Step 3. Negligibility of B and F : Considering B, we have by (5.4) that
limu→∞ uP(X1 > u(1+ε)/α1) = 0 implying that

lim
u→∞

uP(XTu,1 > u(1+ε)/α1) = 0,

since X1 = supnXn,1.
By the classical Cramér estimate for the random walk Wn,1 (see [13,

XII.(5.13)] it holds

lim
u→∞

u1/α1P
(

sup
n∈N

( n∑
l=1

Wl,1

)
> log u

)
= c∗ ∈ (0,∞)

and hence in particular

lim
u→∞

uP
( Lu∑
l=1

Wl,1 >
1 + ε

α1
log u

)
= 0.

Step 4. Now we turn to D. A union bound yields

P
(

max
1≤k≤Lu

Qk,2
Qk,1

> uε/α1 , Tu <∞
)
≤

Lu∑
k=1

P
(
uε/α1Qk,1 < Qk,2, Tu <∞

)
.
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We decompose for any k ≥ 0

P(uε/α1Qk,1 < Qk,2, Tu <∞)

= P(uε/α1Qk,1 < Qk,2, X1 > u1/α1)

≤ P
(
uε/α1Qk,1 < Qk,2,∑

j 6=k

j−1∏
`=1

(b1 + c1M`)Qj,1 +
k−1∏
`=1

(b1 + c1M`)Qk,1 > u1/α1

)
.

We bound this probability by the sum of two terms

P
(
uε/α1Qk,1 < Qk,2,

∑
j 6=k

j−1∏
`=1

(b1 + c1M`)Qj,1 >
1

2
u1/α1

)

+P
(
uε/α1Qk,1 < Qk,2,

k−1∏
`=1

(b1 + c1M`)Qk,1 >
1

2
u1/α1

)
(B.1)

and have to show that both contributions, when summed over k = 0, . . . , Lu,
are of order o(u−1).

We estimate the second term in (B.1) thanks to Markov’s inequality of
order α1/(1 + ε) < κ < α1:

P
(
uε/α1Qk,1 < Qk,2,

k−1∏
`=1

(b1 + c1M`)Qk,1 >
1

2
u1/α1

)
≤ P

( k−1∏
`=1

(b1 + c1M`)Qk,2 >
1

2
u(1+ε)/α1

)
≤

2κ
(
E[(b1 + c1M)κ]

)k E[‖Q‖κ]

uκ((1+ε)/α1)
.

As α1/(1 + εα1) < κ < α1 we have that q := E[(b1 + c1M)κ] < 1 and
conclude

∞∑
k=0

P
(
uε/α1Qk,1 < Qk,2,

k−1∏
`=1

(b1 + c1M`)Qk,1 >
1

2
u1/α1

)
≤ 2κE[‖Q‖κ]

1− q
1

uκ((1+ε)/α1)
= o(u−1) .

Step 5. Finally we turn to E. Note that E = ∅ in Case I’, since then

Wl,2 −Wl,1 = log

(
c2Ml

c1Ml

)
= log c2 − log c1 = µ2|1 − µ1|1 a.s.

32



Hence, we consider only Case II’. We have to prove the conditional large
deviation result

lim
u→∞

P
( Tu∑
k=1

(Wk,2 −Wk,1)− Tu(µ2|1 − µ1|1) > εTu︸ ︷︷ ︸
=:Du

∣∣∣ Tu <∞) = 0

Under Pα1 we have that Sn =
∑n

k=1Wk,1 constitutes a random walk
with positive drift µ1|1 = Eα1 [log(b1 + c1M)] > 0. Thus under the change
of measure Sn →∞, Tu <∞ a.s. Note here that Tu is not a stopping time
for the random walk, but for the sequence X1,n. However, divergence of Sn
implies divergence of X1,n, see e.g. [16, Theorem 2.1]. Hence we have the
identity

P
(
Du

∣∣Tu <∞) =
Eα1

[
e−α1STu 1Du

]
P(Tu <∞)

.

Since uP(Tu <∞)→ c > 0 as u→∞, it is enough to show that

lim
u→∞

uEα1
[
e−α1STu 1Du

]
= 0 .

We have

uEα1
[
e−α1STu 1Du

]
= Eα1

[(u1/α1

XTu,1

)α1
(XTu,1

eSTu

)α1

1Du

]
≤ Eα1

[(XTu,1

eSTu

)α1

1Du

]
by definition of Tu implying that XTu,1 > u1/α1 . Then, using Chernoff’s
device, we achieve for any λ > 0 the following upper-bound

Eα1

[(XTu,1

eSTu

)α1

1Du

]
≤ Eα1

[(XTu,1

eSTu

)α1

eλ(
∑Tu
k=1(Wk,2−Wk,1)−Tu(µ2|1−µ1|1)−εTu)

]
.

We will show that

Zn(ε, λ) :=
(Xn,1

eSn

)α1 eλ
∑n
k=1(Wk,2−Wk,1)(

eλ((µ2−µ1)+ε)
)n

is an integrable stochastic process with supn≥1 Eα1 [Zn(ε, λ)] < ∞ a.s. for
any ε > 0 small by choosing λ > 0 accordingly. Then Eα1 [Zn(ε′, λ)]→ 0 for
any ε′ > ε which is the desired result.

In order to show the uniform bound for Eα1 [Zn] one has to introduce the
sequence

Vn =
Xn,1

eSn
=

∑n
k=1

∏k−1
l=1 AlQk,1∏n
l=1Al

=
1

An
Vn−1 +

Qn,1
An
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with An = b1 + c1Mn. We abbreviate ∆Wk := Wk,2 − Wk,1 and ∆µ :=
µ2|1−µ1|1 and note that Eα1(∆W1) = ∆µ and that, due to the assumptions
of (Case II’)

d∗ := log(b2)− log(b1) ≤ ∆W1 = log
(b2 + c2M1

b1 + c1M1

)
≤ log(c2)− log(c1) =: d∗.

We will use the recursive formula

Zn(ε, λ) = V α1
n

eλ
∑n
k=1 ∆Wk(

e(λ∆µ+ε)
)n

=
( 1

An
Vn−1 +

Qn,1
An

)α1 eλ
∑n−1
k=1 ∆Wk(

eλ∆µ+ε
)n−1 ·

eλ∆Wn

eλ(∆µ+ε)
.

Then

Eα1
[
Zn(ε, λ)

∣∣∣Fn−1

]
(B.2)

≤ Eα1

[ 1

Aα1
n

eλ(∆Wn)

eλ(∆µ+ε)

]
Zn−1 + Eα1

[(Qn,1
An

)α1 eλ∆Wn

eλ(∆µ+ε)

] eλ∑n−1
k=1 ∆Wk

(eλ∆µ+ε)n−1

and we are going to prove that both the factors

m(λ) := Eα1

[ 1

Aα1
n

eλ∆Wn

eλ(∆µ+ε)

]
= E

[ eλ∆W1

eλ(∆µ+ε)

]
c(λ) := Eα1

[ eλ∆W1

eλ(∆µ+ε)

]
are less than one for suitably small λ. Upon taking Pα1-expectations in
(B.2), we infer

Eα1
[
Zn(ε, λ)

]
≤ m(λ)Eα1

[
Zn−1(ε, λ)

]
+ c(λ)n−1CQ

with

CQ = Eα1

[(Qn,1
An

)α1 eλ∆Wn

eλ(∆µ+ε)

]
= E

[
Qα1
n,1

eλ∆Wn

eλ(∆µ+ε)

]
≤ E

[
Qα1
n,1

] eλd
∗

eλ(∆µ+ε)
<∞.

Using again the boundedness of ∆W1, an application of Hoeffding’s
lemma yields that

Eα1
[
eλ∆W1

]
≤ exp

(
λ(∆µ) +

λ2

8
(d∗ − d∗)

)
and hence

c(λ) ≤ exp
(λ2

8
(d∗ − d∗)− λε

)
.
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Thus c(λ) < 1 for suitably small λ > 0.

Turning to m(λ), we again use Hoeffding’s lemma to get that

c(λ) ≤ exp
(
λE[∆W1] +

λ2

8
(d∗ − d∗)− λEα1 [∆W1]− λε

)
Hence, it suffices to show that difference of the expectations is nonpositive.
We write

∆W1 = log
(b2 + c2M1

b1 + c1M1

)
= log f(A1)

for A1 = b1 + c1M1 and

f(a) =
b2 + c2

(
a−b1
c1

)
a

= − b1
a

(c2

c1
− b2
b1

)
+
c2

c1
, a ≥ b1.

The function f is increasing and log f(a) ≥ 0 for a ≥ b1. Then

E[∆W1]− Eα1 [∆W1] = E
[

log f(A1)
(
1−Aα1

1

)]
= E

[
log f(A1)

(
1−Aα1

1

)
1{A≤1}

]
+ E

[
log f(A1)

(
1−Aα1

1

)
1{A>1}

]
Recall that E[Aα1

1 ] = 1, thus

−E
[
(1−Aα1

1 )1{A>1}
]

= E
[
(1−Aα1

1 )1{A≤1}
]

−E
[

log f(A1)(1−Aα1
1 )1{A>1}

]
≥ E

[
log f(A1)(1−Aα1

1 )1{A≤1}
]

where we have used that the function f is increasing and nonnegative.
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