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Abstract 

This randomized and controlled trial investigated whether the increase in elite training at 

different altitudes altered the oxidative stress biomarkers of the nervous system. This is the 

first study to investigate four F4-neuroprostanes and four F2-dihomo-isoprostanes quantified 

in 24-hour urine. The quantification was carried out by Ultra High Pressure Liquid 

Chromatography-triple Quadrupole-Tandem Mass Spectrometry (UHPLC-QqQ-MS/MS). 

Sixteen elite triathletes agreed to participate in the project. They were randomized in two 

groups, a group submitted to Altitude Training (n=8) and a group submitted to Sea Level 

Training (n=8), with a Control group of non-athletes (n=8). After experimental period, the 

Altitude Training group triathletes gave significant data: 17-epi-17-F2t-dihomo-IsoP (from 

5.2 ± 1.4 µg/mL 24 h
-1

 to 6.6 ± 0.6 µg/mL 24 h
-1

) , ent-7(RS)-7-F2t-dihomo-IsoP (from 6.6 ± 

1.7 µg/mL 24 h
-1

 to 8.6 ± 0.9 µg /mL 24 h
-1

), and ent-7-epi-7-F2t-dihomo-IsoP (from 8.4 ± 

2.2 µg/mL 24 h
-1

 to 11.3 ± 1.8 µg/mL 24 h
-1

)  increased, while, of the neuronal degeneration-

related compounds, only 10-epi-10-F4t-NeuroP (8.4 ± 1.7 µg/mL 24 h
-1

)  and 10-F4t-NeuroP  

(5.2 ± 2.9 µg/mL 24 h
-1

)  were detected in this group. For the control group and sea level 

training groups, no significant changes had occurred at the end of the 2-weeks experimental 

period. Therefore, and as the main conclusion, the training at moderate altitude increased the 

F4-NeuroPs- and F2-dihomo-isoPs-related oxidative damage of the central nervous system 

(CNS) compared to similar training at sea level. 
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INTRODUCTION 

 The practice of training at an altitude is well-known among coaches and athletes, 

particularly elite athletes. At altitude, exposure to hypoxia is known to influence all 

functional systems of the body, including the central nervous system (CNS), the endocrine, 

respiratory, and cardiovascular systems, the blood oxygen-carrying capacity, and 

morphological and functional adaptations in skeletal muscle [1]. The nervous system is 

especially vulnerable to reactive oxygen species (ROS)-mediated injury some reasons are that 

the high oxygen consumption of the brain for high energy needs, that is, high O2 

consumption, results in excessive ROS produced. In addition, the neuronal membranes are 

rich in polyunsaturated fatty acids (PUFA), which are particularly vulnerable to free radical 

attack [2]. When exercising at altitude the body responds to the fall in the barometric pressure 

as well as physical exercise, other factor that contribute to increased oxidative stress  (OS) 

according to literature [3,4]. The OS seems to be linearly related to the altitude: higher 

altitude leads to greater oxidative challenge to the body [5]. The effects of hypoxia in the 

brain may influence the training intensity and/or the physiological responses during training 

at altitude [1]. In addition, previous research indicated that the exercise‑induced OS may 

alter the capacity of oxidation and anti‑oxidation of brain tissue [6,7]. Nevertheless the OS 

related consequence of high altitude training is poorly known [8]. But there are evidence 

relatively consistent in human and animal studies that reporting that high altitude-associated 

hypoxia causes oxidative damage to lipids, proteins, and DNA. This damage can be due to 

the increased level of ROS production and/or decreased level of antioxidant capacity [9]. 

Lipid peroxidation generates a variety of end products, which can then be measured in 

biological fluid as an indirect index of OS [10-13]. The most representative end-products of 

fatty acids oxidation of the system nervous are the F4-neuroprostanes (F4-NeuroPs), from 

DHA (Docosahexaenoic Acid), and the F2-dihomo-isoprostanes (F2-dihomo-IsoPs), from 

AdA (Adrenic Acid) [10]. The PUFAs, DHA and AdA are highly localized in the nervous 

tissue and represent the main PUFAs in grey and white matter, respectively [10,14], although 

AdA also has a high presence in the adrenal gland and kidneys [15] and DHA likewise in 

adipose tissue, rectal epithelium, muscle, liver and spleen, heart and cheek, red blood cells, 

and sperm [16]. The quantification of F4-NeuroPs and F2-dihomo-IsoPs provides a highly 

sensitive index of oxidative neuronal injury, which likely represents a global measure of 

oxidant status in the CNS [17]. In the literature it is mentioned that some metabolites of F4-

NeuroPs could have biological activities (anti-arrhythmic activities) [10].  

Currently, the detection of F4-NeuroPs and F2-dihomo-IsoPs is mainly performed in 

brain tissue and/or body fluids. They are used mainly in clinical trials to elucidate the role of 

OS in the diseases [18,19]. Nowadays, no attention has been paid yet concerning to the 

investigation of these CNS degradation markers and physical exercise and the influence of 

training at altitude or to sea level to analyze their OS generation. As noted earlier, the 

exposure to high altitude increased the level of ROS production or decreased level of 

antioxidant capacity, and then, can lead to oxidative damage to macromolecules [9]. 

Therefore, this randomized controlled-trial investigated whether training at different altitudes 
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(~2300 m and 400 m) can alter the OS linked to the nervous system in elite triathletes by 

analyzing the variations in the values of F4-neuroPs/ F2-dihomo-IsoPs excreted before and 

after of the experimental period at different altitudes. To the best of our knowledge, it is the 

first study concerning the assessment of these non-invasive biomarkers-NeuroPs and dihomo-

IsoPs- in elite triathletes subjected to AT (altitude training) or SLT (sea level training).  

MATERIALS AND METHODS 

Physical characteristics of participants and dietary intake 

Sixteen elite triathletes (12 male and 4 female) from the University of Alicante 

(Spain) agreed to participate in the project. They were randomized in two groups, a group 

subjected to Altitude Training (AT, n=8) and a group subjected to Sea Level Training (SLT, 

n=8). The Control group (Cg, n=8) were non-athletes, with similar anthropometric 

characteristics and the same age range and healthy lifestyle as the triathletes, they have 

remained at sea level in all study. In the three groups were included 6 men y 2 women for to 

avoid variations in the analysis. All the volunteers were sea level residents, non-smokers, had 

stable food habits, and did not receive any medication during the experimental procedure 

(prescription or over-the counter medication). None had made a trip to high altitude in the 

three months before the intervention program. The study was approved by the Bioethics 

Committee of the University Hospital of Murcia and all participants provided written, 

informed consent to a protocol approved by the institution. 

The physical parameters (Table 1) and dietary habits (Table 2) of the triathletes were 

controlled before the onset of the assay and after the experimental period- AT or SLT- 

according to their biological and physiological characteristics. Regarding to Cg, their 

physical parameters and dietary habits also were evaluated at the same time that the 

triathletes. The anthropometric measurements were made according to the International 

Society for the Advancement of Kinanthropometry (ISAK) and were performed by the same, 

internationally certified anthropometrist (level 2 ISAK) in order to decrease technical errors. 

The body composition was determined by GREC Kinanthropometry consensus [20], using a 

model consisting of: total fat by Withers´s formula [21]; lean weight by the procedure 

described by Leet et al. [22]; and residual mass by the difference in the weight (Table 1). 

. The triathletes consumed a constant, equal diet (Table 2) from two weeks before the 

onset of the study until its conclusion, to avoid any interference with urinary analyses. The 

calculation of the dietary parameters and calorific intake was accurately designed and 

overviewed during the experimental intervention by nutritionists, using specific software for 

the calculation (data calculated by the software available on the 

website:http://www.easydiet.es),with the additional assistance of the Spanish and USDA 

databases (http://www.bedca.net/) and http://www.nal.usda.gov/fnic/foodcomp/search/). All 

the food for the study was prepared and weighed to achieve the desired and constant calorific 

and nutrient intake for each triathlete.  

Training load 
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The training load quantification was performed using the Objective Load Scale 

(ECOs) developed by Cejuela Anta and Esteve-Lanao[23]. Variations in ECOs were recorded 

as training loads, which were measured and slightly modified daily and weekly to ensure the 

homogeneity of the training program, taking into account the variable physical characteristics 

of each athlete during the study (Table 1). The method used allowed the quantification of the 

training loads in triathlon (swim, bike, run, and transitions). The training loads developed by 

elite triathletes in the present work were similar to those found in other studies [24-26]. 

Experimental design 

The study was a randomized controlled trial (Fig. 1) where the athletes were randomly 

divided into two groups, a group subjected to AT (n=8) and a group undergoing SLT (n=8), 

during an experimental period of 2-weeks, supervised their training. The hypoxia exposure 

was carried out in the “Centro de Alto Rendimiento de Sierra Nevada (CAR)” (2320 m 

altitude; Sierra Nevada, Alpujarra and Valle de Lecrín, Spain). Before the onset of the 

experimental period, the training load and diet of the two groups were kept similar for two 

weeks. The experimental training period for the athletes started with an increase of the effort 

loads, keeping the ECOs during the two weeks. The Cg maintained their lifestyle at sea level 

(400 m) throughout the assay. The first urine sample was collected 24-hour at the beginning 

the experimental period y the second urine sample was collected 24-hour at the end of the 

experimental period. The samples of the Cg were collected at the same time than of the 

triathletes. Urine samples were aliquoted immediately of its collection and were  stored at -80 

ºC until further analysis.  

Chemicals and Standards 

Six F4-neuroprostanes (F4-NeuroPs) were studied, 4(RS)-4-F4t-NeuroP, 4-F4t-NeuroP, 

4-epi-4F3t-NeuroP, 4-F3t-NeuroP, 10-epi-10-F4t-NeuroP, and 10-F4t-NeuroP as well as four 

F2-dihomo-isoprostanes (F2-dihomo-IsoPs): 17-epi-17-F2t-dihomo-IsoP, 17-F2t-dihomo-IsoP, 

ent-7(RS)-7-F2t-dihomo-IsoP, and ent-7-epi-7-F2t-dihomo-IsoP. Three deuterated internal 

standards (d4-4(RS)-F4t-NeuroP, d4-10-epi-10-F4t-NeuroP, and d4-10-F4t-NeuroP) were used 

too (Fig. 2). All standards were synthesized by Durand’s team at the Institut des 

Biomolecules Max Mosseron (IBMM) (Montpellier, France). The β-glucuronidase, type H2 

from Helix pomatia, and bis-(2-hydroxyethyl)-amino-tris(hydroxymethyl)-methane were 

purchased from Sigma-Aldrich (St. Louis, Missouri, USA). All LC-MS grade solvents were 

obtained from J.T. Baker (Phillipsburg, New Jersey, USA). Strata SPE cartridges (Strata X-

AW, 100 mg 3 mL
-1

) were purchased from Phenomenex (Torrance, California, USA). 

Sample collection and preparation  

A complete clinical analysis - consisting of hematology, chemistry, and urine 

chemistry analysis - was performed at the onset of and after the experimental period. All 

samples (blood and urine) were collected by a nurse from the subjects early in the morning, 

under fasting conditions. Blood samples at rest were obtained by venipuncture, at the 

beginning and at the end experimental period and were placed in different tubes according to 

the analytical procedures. Samples were processed within 1 h of collection and stored at -
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80ºC for the analytical determinations. The hematological parameters were recorded using an 

automated hematological analyzer (CellDyn 3700 and 4000, Abbott, IL, USA) at the Clinical 

Analysis Service of the Hospital Virgen de la Arrixaca (Murcia, Spain). 

Twenty-four-hour urine samples were collected before and after the 2-weeks training 

period. They were collected in sterile, dark polystyrene tubes with screw caps.  The urine 

analyses were also performed in a modular analyzer (Roche Diagnostic, Mannheim, 

Germany). The 24-h
-1

 urine was used for the absolute calculation of the amounts of F4-

NeuroPs and F2-dihomo-IsoPs excreted. The urinary F4-NeuroPs and F2-dihomo-IsoPs were 

analyzed using our previously-described method [27] . 

UHPLC-QqQ-MS/MS analyses 

The separation of the F4-NeuroPs and F2-dihomo-IsoPs in the urine was performed 

using a UHPLC coupled with a 6460 QqQ-MS/MS (Agilent Technologies, Waldbronn, 

Germany), using the set-up described previously Medina, et al. [27]. Data acquisition and 

processing was performed using MassHunter software version B.04.00 (Agilent 

Technologies, Walbronn, Germany). The qualitative and quantitative analysis of F4-NeuroPs 

and F2-dihomo-IsoPs was performed using the authentic markers synthesized by Durand’s 

team. Three deuterated anal ytes were used as internal standards (Fig. 2). 

Statistical analyses 

All the statistical analyses were performed using the SPSS 17.0 software package 

(LEAD Technologies Inc., Chicago, USA). Quantitative data are presented as mean ± SD 

(standard deviation). The amounts excreted of F4-NeuroPs and F2-dihomo-IsoPs were 

calculated as µg/mL per 24-h
-1

 urine. The normality was analyzed by the Shapiro–Wilk test 

and the test of equal variances by Levene's test. Specific differences between the 

hematological, serum, and urinary parameters of SLT and AT triathletes before and after 

training period were determined by t-test. The different amounts excreted of F4-NeuroPs and 

F2-dihomo-IsoPs within the same group, AT or SLT, as a result of the training at different 

altitudes were examined by paired t-test (before /after). Results were considered to be 

statistically significant when P< 0.05.   
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RESULTS 

Anthropometric variables and training performance 

The kinanthropometric measurements, performed following the ISAK, did not yield 

representative differences between the experimental groups. The training loads of the 

triathletes (SLT and AT) were at the onset of the training period ranged from 458 to 727 

ECOs and after the experimental period from 766 to 1021 ECOs (Table 1). 

Hematology, chemistry, and urine chemistry modifications 

Regarding the results of the tests and profiles, significant variation in the hematology, 

chemistry, and urine chemistry was detected between the AT and SLT triathletes, after the 

training program. In this study, we only mentioned the parameters that showed significant 

changes according to the different tests and profiles of the clinical analyses and that could be 

relevant - in biochemical terms - to the F4-NeuroPs and F2-dihomo-IsoPs, according to 

previous investigations [28-32] (Table 3). Regarding the clinical urinary parameters (urinary 

density (g mL
-1

), pH, proteins (mg dL
-1

), calcium (mg dL
-1

), phosphorus (mg dL
-1

), uric acid 

(mg dL
-1

), urea (mg dL
-1

), creatinine (mg dL
-1

), and potassium (mEq L
-1

)), no significant 

differences between the AT and SLT groups of triathletes before and after the experimental 

period were observed.  

Qualitative analysis of F4-neuroprostanes and F2-dihomo-isoprostanes 

  Ten biomarkers were screened in the urine of volunteers. Their identification was 

confirmed according to their molecular masses, the characteristic MS/MS fragmentation 

product ions, and the retention time relative to the corresponding standard. The mass spectral 

information on the F4-NeuroPs and F2-dihomo-IsoPs is summarized in our previously 

reported [27]. 

The NeuroPs deriving from DHA were not detected in the samples of the triathletes in 

the SLT and Cg groups, under any condition- perhaps because they were present at very low 

levels, below the limit of detection and/or quantification (LOD / LOQ). Only two NeuroPs 

were detected in the urine of the AT group after training (10-epi-10-F4t-NeuroP, 10-F4t-

NeuroP) (Table 4). The analytes deriving from AdA were detected in triathletes and non-

triathletes at the beginning and end of the experimental period. In the present study, F3-

NeuroPs (4-epi-4-F3t-NeuroP and 4-F3t-NeuroP) formed by the oxidation of 

docosapentaenoic acid were analyzed, but were below the LOD/ LOQ. Therefore, these data 

are not shown. 

Quantification of F4-neuroprostanes and F2-dihomo-isoprostanes 

A total of six biomarkers were quantified in the triathlete’s urine, as described in 

Table 4. All of the urinary biomarkers were normalized to the total 24-h excretion volume. 

The values are presented as the mean (± SD) total urinary excretion at the onset of and after 

the experimental period for all groups (µg/mL 24 h
-1)

. In the AT group, only the analytes 10 
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epi-10F4t-NeuroP and 10-F4t-NeuroP (8.4 ± 2.1 and 5.2 ± 1.2 µg/mL 24 h
-1

, respectively) 

were detected, after physical training during exposure to altitude

On the other hand, the markers of lipid peroxidation derived from AdA were 

quantified in all groups, and showed statistically-significant variation in the AT group. The 2-

weeks exposure to moderate altitude produced significant increases in the urinary levels of 

17-epi-17-F2t-dihomo-IsoP, ent-7(RS)-7-F2t-dihomo-IsoP, and ent-7-epi-7-F2t-dihomo-IsoP, 

compared to their corresponding concentrations at the start of the training period – according 

to the paired t-test (Table 4). The urinary excretion of F2-dihomo-IsoPs in the Cg and SLT 

group had not changed significantly after two weeks of the experimental period at sea level.  
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DISCUSSION 

When comparing the urinary excretion of F4-NeuroPs and F2-dihomo-IsoPs at the onset of 

and after the experimental period in all three groups, four points emerged primarily: 

        1) The markers of lipid peroxidation derived from DHA were analyzed but were 

detected under the LOD and LOQ in the urine samples of Cg and SLT triathletes. The LOD 

are as follows: 4(RS)-4F4-NeuroP: 5.90 ng/mL, 4-F4-NeuroP: 5.90 ng/mL, 10-epi-10-F4-

NeuroP: 0.15 ng/mL, and 10-F4-NeuroP: 0.10 ng/mL). The LOQ are as follows: 4(RS)-4F4-

NeuroP: 11.81 ng/mL, 4-F4-NeuroP: 11.81 ng/mL, 10-epi-10-F4-NeuroP: 0.34 ng/mL, and 

10-F4-NeuroP: 0.15 ng /mL. Both the LOD and LOQ were based on the method by [27]. This 

fact suggested that our healthy people, as well as athletes in physical training at sea level, did 

not show changes in their F4-NeuroPs values. 

2) In our study, after two weeks of AT, the analytes 10-epi-10-F4t-NeuroP (8.4 ± 2.1 

µg/mL 24 h
-1

 urine) and 10-F4t-NeuroP (5.2 ± 1.2 µg/mL 24 h
-1

 urine) - derived from DHA - 

were detected only in this group. This suggests that 10-epi-10-F4t-NeuroP and 10-F4t-NeuroP 

may be potential biomarkers of lipid peroxidation physical exercise under hypoxia (low 

levels of oxygen) at moderate altitude (2320 m altitude). The effects of hypoxia in the brain 

may influence the training intensity and/or the physiological responses during training at 

altitude [1]. In cerebral cortex of newborn pigs, an increase in the levels of F4-NeuroP and 

other OS markers, after hypoxia and resuscitation with supplementary oxygen 

(reoxygenation), was detected [33]. Other study in cerebral tissue, observed that DHA seems 

to be more damaged by ischemia (restriction in blood supply to tissues) compared with 

hypoxia, suggesting that the increase of F4-NeuroPs could represent a specific marker for 

ischemia damage mainly [32]. In human research  was indicated that acute hypoxia on Rett 

syndrome patients, increases plasma levels of F4-NeuroPs by two orders of magnitude, as 

compared to those of healthy controls [34]. These results supported to previous studies in 

vivo, about possible hypoxic state links and an increased NeuroPs values. 

According to the literature, F4-NeuroPs not only might be biomarkers of lipid 

peroxidation, but also could have anti-arrhythmic effects [10]. Therefore, the detection of 10-

epi-10F4t-NeuroP and 10-F4t-NeuroP, besides indicating an increase in lipid peroxidation in 

athletes submitted to altitude, also suggests a role for lipid metabolism against arrhythmias 

induced by altitude. Since arrhythmia starts at an altitude of about 2000 m, an immediate 

increase in ventilation, mediated by peripheral chemoreceptors, is observed according to the 

literature [35]. In addition, arrhythmia is one of the physiological responses to hypoxia 

exposure, caused by ventilator and circulatory responses that are accompanied by an increase 

in the sympathetic activity and local vasoregulatory effects. Therefore, these are undoubtedly 

key mechanisms improving oxygen delivery to tissues [1,35]. The increase in the amount of 

NeuroPs in urine is also evidence that the hard work involved in elite training results in OS in 

tissues where DHA is present - like muscle, as well as adipose tissue, rectal epithelium, liver 

and spleen, heart and cheek, red blood cells, and sperm. Further research is required to 

elucidate the biological role of the NeuroPs in triathletes.  
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In ours AT athletes, 17-epi-17-F2t-dihomo-IsoP, ent-7(RS)-7-F2t-dihomo-IsoP, and 

ent-7-epi-7-F2t-dihomo-IsoP increased compared with the amount before the short-term 

training at moderate altitude (Table 4). F2-dihomo-IsoPs reflect the oxidative status of brain 

white matter, but also could reflect the OS of the other organs where they are present [18]. 

Altitude training stimulates the adrenergic nervous system responsible for the acute 

cardiovascular response to hypoxia, playing a crucial role in the adaptation to acute hypoxia 

during exercise [36]. Dosek, et al. [5], they mentioned that physical exercise at high altitude 

could further increase the altitude-induced oxidative stress- as can be seen in this study- and 

the associated oxidative damage although the OS seems to be linearly related to the altitude: 

higher altitude leads to greater oxidative challenge to the body. On the other hand, the 

excretion of F2-dihomo-IsoPs by Cg and SLT triathletes had not changed significantly after 

two weeks. This result indicates that an acute increase in training at sea level for elite athletes 

using ECOs did not influence the urinary excretion of F2-dihomo-IsoPs. An increase of the 

OS biomarkers followed to aerobic and anaerobic acute physical  exercise has been shown in 

numerous investigations, but also is mentioned that in well-training athletes, this is not 

always fulfilled [37]. In studies developed, in vivo , it was found that chronic exercise could 

increase the resistance against OS, providing enhanced protection [38-40] for this reasons  is 

mentioned that some athletes do not show changes in its levels of biomarkers of OS, since is 

associated with an adaptive process[5,40].  

4) The last point concerns anthropometric, biochemical, and hematological parameters 

and their connection with F4-NeuroPs and F2-dihomo-IsoPs, since some of them have been 

associated with an increase or decrease in lipid peroxidation. As regards the anthropometric 

parameters and their relation to an increase in lipid peroxidation, a study carried out by 

Ohmori and co-workers reported that body mass index (BMI) in humans is related to an 

increase of lipid peroxidation [31], but in this sense, in our volunteers (triathletes and Cg) no 

changes in BMI were found during the study and there were no statistical differences between 

the two groups. On the other hand, the activities of the pancreatic enzymes (amylase and 

lipase) were increased after two weeks at altitude. The pancreatic lipases are involved in the 

mobilization of fatty acids from fat deposits - for example, during stress - and play a role in 

lipolysis, which, together with the biogenic monoamines, could influence in the process 

peroxide oxidation of natural lipid [29]. Another biochemical parameter in plasma that 

showed significant changes was ferritin, the concentration of which decreased. In our study 

the plasma iron remained constant whilst ferritin levels declined.  Previous study 

demonstrated, in cerebral cortex from rats with hypoxia-ischemia, an increase in 

desferoxamine-chelatable free iron that could have induced cerebral OS [32]. These authors 

reported increases in F2-IsoPs and F4-NeuroPs concomitant with that of iron, suggesting a 

dual interaction in relation to this oxidative damage. 

Normal physiological increases in the red blood cells count occur at high altitudes or 

after strenuous physical training [41]. According to literature 2-weeks at moderate altitude 

exposition the hemoglobin concentrations and hematocrit increased their values in elite 

athlete [42,43]. Although the AT group showed higher hemoglobin concentration values after 

training, these have not been significant in the statistical tests due to the variability of the 
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results (Table 3). But AT group showed significant increases in ACV (averaged corpuscular 

volume) and ACH (averaged corpuscular hemoglobin), compared to the baseline 

determinations. Hence, these data reflect a general activation of erythropoiesis in response to 

presumed renal tissue hypoxia for the AT athletes. Red blood cell morphology is an 

important biosensor for OS imbalance and chronic hypoxemia (low oxygen in the blood), in 

neurodegenerative diseases [14,28]. Moreover, the leukocyte concentrations in peripheral 

blood after the AT effort also exhibited significant modifications. An earlier study mentioned 

that leukocyte antioxidants, in patients with type 2 diabetes, are related to lipid peroxidation 

[30]. Whether due to physical exercise in altitude and/or exposure altitude, influenced 

significantly in to alter metabolic process and lipid peroxidation of the AT group, however it 

still not clear whether they are causative or associative, is necessary further investigation to 

clarify these results in elite athletes. 

In conclusion, our study F2-dihomo-IsoPs and F4-NeuroPs have been detected for the 

first time in the urine of elite triathletes subjected to two weeks of training at altitude or sea 

level. The F4-NeuroPs were only detected in the group training at moderate altitude, 

suggesting that the altitude factor could be related to their production from DHA, through 

lipid peroxidation. The F2-dihomo-IsoPs also showed increases in their urinary excretion in 

athletes subjected to AT, versus their baseline amounts. Therefore, and as the main 

conclusion, the training at moderate altitude increased the F4-NeuroPs- and F2-dihomo-isoPs-

related oxidative damage of the CNS compared to similar training at sea level. 
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FIGURE CAPTIONS 

Figure 1 Study design. The triathletes were randomized in two groups, a group subjected to 

Altitude Training (AT, n=8) and a group subjected to Sea Level Training (SLT, n=8). The 

Control group (Cg, n=8) were non-athletes. For two weeks, the training loads and diet were 

kept similar. Urine samples were collected before and after the training period (SLT or AT) 

and at the same times for the Cg. 
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Figure 2 Chemical structures of F4t-neuroprostanes, F2t-dihomo-isoprostanes, and deuterated 

internal standards. A: F4t-Neuroprostanes, B: F2t-dihomo-isoprostanes. 
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Figure 3 F4-neuroprostanes and F2-dihomo-isoprostanes (µg/mL 24 h
-1

) determined in the 

urine of the three groups before and after the experimental period. The values shown are 

mean ± standard deviation. A) Cg: Control group (n=8), B) SLT: Elite triathletes training at 

sea level (n=8), and C) AT: Elite triathletes training at altitude (n=8).The average volume of 

urine excreted by volunteers was 1560.62 ± 627.32 mL per 24 h in the two periods. The level 

of statistical significance was set at P <0.05 (*) and P <0.001 (†), by the paired t-test. DHA: 

docosahexaenoic acid and AdA: adrenic acid. 
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TABLE 1 Physical parameters and metabolic characteristics at the beginning and at the end 

of the experimental period both of control group (n=8) and of the triathletes according to their 

altitude level training (n=16, divided in two, at sea level n=8 and at altitude level n=8) y with 

their objective load scale (ECOs) 

Variable 

   
Triathletes 

Control Group 

(<400 m) 

 

Sea level 

(<400 m) 

Altitude 

(~2320 m) 

 
1 2 

 

1 2 1 2 

Age Year (yr) 21.9 (6.2) 21.9 (6.2) 

 

20.8 (2.0) 20.8 (2.0) 20.3 (1.8) 
20.3 

(1.8) 

Weight (kg) 64.4 (8.2) 64.7 (8.1) 

 

68.4 

(13.1) 

65.4 

(11.5) 
68.1 (7.1) 

67.2 

(7.1) 

Height (m) 1.7 (0.1) 1.7 (0.07) 

 

1.7 (0.1) 1.7 (0.1) 1.8 (0.1) 1.8 (0.1) 

BMI (kg m
-2

) 22.0 (0.9) 22.2 (0.5) 

 

21.4 (2.5) 21.8 (0.1) 21.3 (0.6) 
21.2 

(0.7) 

Total fat (kg) 9.3 (1.6) 9.5 (1.7) 

 

8.4 (1.3) 8.7 (0.8) 6.2 (1.2) 6.0 (1.2) 

Lean weight (kg) 26.7 (6.3) 26.3 (5.9) 

 

29.1 (7.2) 27.3 (6.7) 32.2 (7.3) 
30.1 

(4.2) 

Subscapular skinfold (mm) 11.5 (1.5) 11.8 (1.1) 

 

10.6 (2.0) 11.0 (1.0) 7.8 (1.6) 7.7 (1.7) 

Tricipital skinfold (mm) 12.9 (5.2) 12.7 (5.0) 

 

12.3 (6.8) 12.8 (5.2) 7.4 (3.4) 8.2 (3.7) 

Bicippital skinfold (mm) 4.6 (1.3) 5.3 (0.6) 

 

4.7 (1.4) 5.0 (1.1) 4.6 (1.7) 3.7 (1.0) 

Ileocrestal skinfold (mm) 14.1 (0.8) 14.4 (0.09) 

 

13.9 (4.7) 15.9 (3.4) 10.4 (3.4) 8.9 (2.3) 

Supraespinal skinfold (mm) 10.8 (0.6) 10.8 (0.7) 

 

10.5 (3.6) 11.2 (2.8) 7.3 (1.9) 6.7 (1.9) 

Abdominal skinfold (mm) 18.1 (3.7) 18.3 (3.7) 

 

17.7 (7.1) 19.3 (4.9) 10.5 (4.6) 9.5 (3.8) 

Thigh skinfold (mm) 17.8 (5.8) 17.7 (3.3) 

 

16.1 (9.3) 17.9 (9.2) 10.4 (4.3) 
10.5 

(4.3) 

Calf skinfold (mm) 12.3 (3.5) 12.6 (5.3) 

 

10.2 (3.8) 10.6 (2.6) 7.1 (2.9) 7.4 (3.2) 

Fat mass (%) 14.0 (10.2) 14.2 (10.5) 
 

13.7 (3.4) 13.6 (5.7) 
10.25 ( 

2.2) 

10.4 

(1.8) 

Training loads  (ECOs) 
   

553(95) 870(104) 933(88) 651(76) 

Values are Mean (Standard Deviation).1= data corresponding to before experimental period; 2= data 

corresponding to after experimental period. BMI: Body Mass Index                                                                                                                                                                       
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TABLE 2. Dietary parameters and calorific intake 

    Control group Triathletes 

 

Male Female  Male Female 

(n=6) (n=2) (n=12) (n=4) 

Energy intake (kcal d 
-1

) 2913.1 (601.6) 2289.7 (270.7) 3483.5 (673.6) 2585.0 (376.4) 

Carbohydrate (g d 
-1

) 309.4 (62.4) 257.0 (7.6) 409.1 (79.1) 324.3 (31.8) 

Dietary fiber  (g  d
-1

) 29.5 (9.3) 25.2 (11.9) 26.6 (4.9) 26.4 (8.6) 

Sugar (g d 
-1

) 125.7 (37.7) 147.8 (16.0) 169.8 (68.0) 147.6 (11.97) 

Proteins (g d 
-1

) 130.8 (32.0) 97.6 (28.4) 145.7 (33.3) 109.9 (34.7) 

Total lipids (g d
-1

) 127.9 (27.3) 96.8 (14.0) 140.4 (25.69) 94.1 (12.2) 

SFA
a
 (g d

-1
) 38.1 (11.0) 29.36 (5.8) 36.5 (10.5) 28.5 (6.7) 

MUFA
b
 (g d

-1
) 64.5 (15.4) 47.3 (4.0) 73.8 (14.0) 46.6 (2.4) 

PUFA
c 
(g d

-1
) 17.2 (3.9) 10.8 (0.4) 19.2 (1.7) 10.4 (1.0) 

Vitamin C (mg d
-1

) 160.9 (101.2) 42.8 (12.5) 254.4 (69.6) 153.6 (63.1) 

Vitamin E (mg d
-1

) 24.0 (10.8) 9.65 (0.3) 29.5 (8.42) 14.9 (1.0) 

Vitamin D (mg d
-1

) 6.3 (4.1) 2.5 (3.4) 5.7 (3.2) 3.6 (2.6) 

Iron (mg d
-1

) 24.7 (9.6) 17.0 (7.14) 26.9 (5.1) 24.6 (1.3) 

Selenium (mg d
-1

) 100.5 (68.5) 133.3 (8.2) 235.1 (91.2) 168.4 (73.6) 
a
 Saturated fatty acids      

 b 
Monounsaturated fatty acids 

  
c
 Polyunsaturated fatty acids 

  
Values are Mean (SD) 
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TABLE 3. Hematology, chemistry, and urine chemistry parameters of the elite triathletes 

before and after training at different altitude (n = 8 each group) 

 

 
Before training  After training 

Variable 
SLT  

(<400 m) 

AT 

 (~2320 m) 
Sign  

SLT 

(<400 m) 

AT 

(~2320 m) 
Sign 

Pancreatic amilase (U L
-1

) 
a
 22.33 (5.01) 25.25 (7.65)   22.50 (4.46) 30.13 (7.83) †  

Lactate dehydrogenase (U L
-1

) 
a
 

179.5 

(38.87) 

213.63 

(36.25) 
  157.83 (32.98)† 203.50 (25.00) * 

Lipase (U L
-1

)
a
 25.33 (6.22) 26.88 (8.34)   22.67 (4.97) 32.63 (10.17) † * 

C-Reactive Protein mg/dL
 a
 0.10 (0.09) 0.11 (0.21)   0.12 (0.10) 0.03 (0.0)  

Ferritin (µg L
-1

) 
a
 

48.33 

(10.44) 
55.88 (17.16)   58.00 (17.44) 

38.50 (14.76) 

†† 
* 

Iron (µg L
-1

) 
a
 

79.50 

(28.65) 

100.75 

(20.81) 
  112.00 (62.03) 109.63 (72.99)  

Hemoglobin (g dL
-1

) 15.00 (1.31) 14.83 (1.13)   15.08 (0.86) 19.01 (10.78)  

Hematocrit (%) 45.60 (4.50) 44.81 (3.82)   44.83 (2.4) 45.79 (4.24)  

PDW (%) 16.57 (1.05) 17.29 (1.65)   16.38 (0.44) 15.85 (0.37)† * 

ACV (fL) 82.22 (2.86) 91.64 (2.22)   89.12 (2.81) 93.84 (2.21)†  

ACH (pg cell
-1

) 29.40 (1.51) 30.39 (0.94)   30.23 (1.16) 31.30 (1.04)†  

Values are means (SD). Abbreviation: ACV, averaged corpuscular volume; ACH, averaged corpuscular 

hemoglobin; PDW: Platelet distribution width (it analyzed in blood) 
a 
These parameters were analyzed in serum. 

*Significant differences at p<0.05 measured at different altitudes at matched time points. 

†Significant differences at p<0.05 between measurements before and after training periods at the same altitude. 
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