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Abstract

Recently the so-called Prabhakar generalization of the fractional Poisson counting
process attracted much interest for his flexibility to adapt real world situations. In
this renewal process the waiting times between events are IID continuous random vari-
ables. In the present paper we analyze discrete-time counterparts: Renewal processes
with integer IID interarrival times which converge in well-scaled continuous-time limits
to the Prabhakar-generalized fractional Poisson process. These processes exhibit non-
Markovian features and long-time memory effects. We recover for special choices of
parameters the discrete-time versions of classical cases, such as the fractional Bernoulli
process and the standard Bernoulli process as discrete-time approximations of the frac-
tional Poisson and the standard Poisson process, respectively. We derive difference equa-
tions of generalized fractional type that govern these discrete time-processes where in
well-scaled continuous-time limits known evolution equations of generalized fractional
Prabhakar type are recovered. We also develop in Montroll-Weiss fashion the “Prab-
hakar Discrete-time random walk (DTRW)” as a random walk on a graph time-changed
with a discrete-time version of Prabhakar renewal process. We derive the generalized
fractional discrete-time Kolmogorov-Feller difference equations governing the resulting
stochastic motion. Prabhakar-discrete-time processes open a promising field capturing
several aspects in the dynamics of complex systems.

arXiv:2005.06925v1 [math.PR] 14 May 2020

1 INTRODUCTION

Classically, random occurrence of events in time is modeled as standard Poisson processes,
i.e. with exponentially distributed waiting-times and the memoryless Markovian property.
Applying this model to random motions in continuous spaces or graphs lead to continuous-
time Markov chains. However, one has recognized that many phenomena in anomalous
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transport and diffusion including the dynamics in certain complex systems exhibit power
law distributed waiting-times with non-Markovian long-time memory features that are not
compatible with classical exponential patterns [1, 2| 3] 14}, |5].

A powerful approach to tackle these phenomena is obtained by admitting fat-tailed power-
law waiting-time densities where Mittag-Leffler functions come into play as natural gen-
eralizations of the classical exponentials. A prototypical example is the fractional Poisson
process (FPP), a counting process with unit-size jumps and IID Mittag-Leffler distributed
waiting-times. Fractional diffusion equations governing the fractional Poisson process and
many other related properties are already present in the specialized literature — see e.g.
el 17, 18l (9, [10] 11}, (12} [13] [14], [15].

Broadly speaking, Markov chains permitting arbitrary waiting times define so called semi-
Markov processes [16]. This area was introduced independently by Lévy [17] Smith [18]
and Takécs [19] and fundamentals of this theory were derived by Pyke [20] and Feller
[21]] among others. In these classical models, semi-Markov processes have as special cases
continuous-time renewal processes, i.e. the waiting times are IID absolutely continuous ran-
dom variables. On the other hand, many applications require intrinsic discrete-time scales,
and thus semi-Markov processes where the waiting times are discrete integer random
variables open an interesting field which merits deeper analysis. Discrete-time renewal
processes are relatively little touched in the literature compared to their continuous-time
counterparts. A discrete variant of the above-mentioned Mittag-Leffler distribution was
derived by Pillai and Jayakumar [22]]. An application in terms of a discrete-time random
walk (DTRW) diffusive transport model is developed recently [23]. A general approach for
discrete-time semi-Markov process and time-fractional difference equations was developed
in a recent contribution by Pachon, Polito and Ricciuti [16]. The aim of the present paper
is to develop new pertinent discrete-time counting processes that contain for certain pa-
rameter choices classical counterparts such as fractional Bernoulli and standard Bernoulli,
as well is in well-scaled continuous-time limits their classical continuous-time counterparts
such as fractional Poisson and standard Poisson. A further goal of this paper is to analyze
the resulting stochastic dynamics on graphs.

The present paper is organized as follows. As a point of departure, we introduce a class
of discrete-time renewal processes which represent approximations of the continuous-time
Prabhakar process. The Prabhakar renewal process was first introduced by Cahoy and
Polito [24] and the continuous-time random walk (CTRW) model based on this process was
developed by Michelitsch and Riascos [25]. We describe the Prabhakar renewal process in
Section 2l For a thorough review of properties and definitions of Prabhakar-related frac-
tional calculus we refer to the recent review article of Giusti et al [26].

Section [3] is devoted to derive discrete-time versions of the Prabhakar renewal process
using a composition of two ‘simple’ processes. Then, in Section we show that under
suitable scaling conditions the continuous-time Prabhakar process is recovered.

In Section we develop a general procedure to generate discrete-time approximations
of the Prabhakar process. We construct these processes in such a way that the waiting
time distributions are vanishing at ¢ = 0. The choice of this condition turns out to be cru-
cial to obtain state-probabilities allowing to define proper Cauchy initial value problems in
stochastic motions.



As a prototypical example, we analyze in Section [4]the most simple version of discrete-time
Prabhakar process with above mentioned good initial conditions. We call this version of
Prabhakar discrete-time counting process the ‘Prabhakar Discrete-Time Process’ (PDTP).
We derive the state-probabilities (probabilities for n arrivals in a given time interval), i.e.
the discrete-time counterpart of the Prabhakar-generalized fractional Poisson distribution
which was deduced in the references [24] [25]. The PDTP is defined as a generalization of
the ‘fractional Bernoulli process’ introduced in [16] which is contained for a certain choice
of parameters as well as the standard Bernoulli counting process. We prove these con-
nections by means of explicit formulas. We show explicitly that the discrete-time waiting
time and state distributions of a PDTP converge in well-scaled continuous-time limits to
their known continuous-time Prabhakar function type counterparts. These results contain
for a certain choice of parameters the well-known classical cases of fractional Poisson and
standard Poisson distributions, respectively. We show that the well-scaled continuous-time
limits yield the state probabilities of Laskin’s fractional Poisson [8]] and standard Poisson
distributions, respectively.

In Section [4.2] we derive for the PDTP the discrete-time versions of the generalized frac-
tional Kolmogorov-Feller equations that are solved by the PDTP state-probabilities. These
equations constitute discrete-time convolutions of generalized fractional type reflecting
long-time memory effects and non-Markovian features (unless in the classical standard
Bernoulli with Poisson continuous-time limit case). We show that discrete-time fractional
Bernoulli and standard Bernoulli processes are contained for certain choice parameters
and that the same is true for their continuous-time limits: They recover the classical
Kolmogorov-Feller equations of fractional Poisson and standard Poisson, respectively.

Section is devoted to the analysis of the expected number of arrivals and their asymp-
totic features. This part is motivated by the important role of this quantity for a wide class
of diffusion problems and stochastic motions in networks and lattices.

As an application we develop in Section [5] in Montroll-Weiss fashion the ’Discrete-Time-
Random Walk’ (DTRW) on undirected networks and analyze a normal random walk subordi-
nated to the PDTP. We call this walk the ‘Prabhakar DTRW’. The developed DTRW approach
is a general model to subordinate random walks on graphs to discrete-time counting pro-
cesses. Although we focus on undirected graphs the DTRW approach can be extended to
general walks such as on directed graphs or strictly increasing walks on the integer line.
Such an example is briefly outlined in Appendix [A.5] namely a strictly increasing walk sub-
ordinated to the Sibuya counting process.

Further we derive for the Prabhakar DTRW discrete-time Kolmogorov-Feller generalized
fractional difference equations that govern the resulting stochastic motion on undirected
graphs and demonstrate by explicit formulas the contained classical cases of fractional
Bernoulli and standard Bernoulli and their fractional Poisson and Poisson continuous-time
limits, respectively. The applications of this section are motivated by the huge upswing of
network science which has become a rapidly growing interdisciplinary field [27, 28] [29} (30,
31}, 132, [33]] (and see the references therein).

Section [6] is devoted to analyze the influence of the initial condition in the discrete-time
waiting time density on DTRW features. We explore resulting effects introducing the fea-
ture of uncertainty and randomness in the DTRW initial conditions.



All proofs in the paper are accompanied by detailed derivations and supplementary materi-
als in the Appendices.

2 PRABHAKAR CONTINUOUS-TIME RENEWAL PROCESS

Among several generalizations of the fractional Poisson process which were proposed in the
literature, the so called Prabhakar type generalization which we refer to as ‘Generalized
Fractional Poisson Process (GFPP)’ or also ‘Prabhakar process’ seems to be one of the most
pertinent candidates. The GFPP was first introduced by Cahoy and Polito [24]] and applied
to stochastic motions in networks and lattices by Michelitsch and Riascos [25) (34} [35]].

The Prabhakar function which is a three-parameter generalization of the Mittag-Leffler
function was introduced in 1971 by Prabhakar [36]] and has attracted recently much atten-
tion due to its great flexibility to adapt real-world situations. Meanwhile, the Prabhakar
function has been identified as a matter of great interest worthy of thorough investigation.
For a comprehensive review of properties and physical applications with generalized frac-
tional calculus emerging from Prabhakar functions we refer to the recent review article by
Giusti et al. [[37]] and consult also [38].

The interesting feature of the Prabhakar process is that it contains the fractional Pois-
son process as well as the Erlang- and standard Poisson processes as special cases. The
related Prabhakar-generalized fractional derivative operators may be considered as among
the most sophisticated tools to cover certain aspects of complexity in physical systems
[39] 140]. The continuous-time Prabhakar renewal process is characterized by waiting time
density with Laplace transform [24]]
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Laplace inversion yields the waiting-time PDF of the GFPP [24], [25]
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which we refer to as Prabhakar-Mittag-Leffler density. The choice of this name is since
this expression appears as a generalization of the Mittag-Leffler density (and recovering
the Mittag-Leffler density for v = 1). Expression (2) contains the Prabhakar-Mittag-Leffler
function (also referred to as Prabhakar function) [36] defined by
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where (c),, indicates the Pochhammer-symbol
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Further aspects on generalizations of Mittag-Leffler functions such as the Prabhakar func-
tion are outlined in [26, 41]], and for an analysis of properties and applications we refer to
the references [37, 138 142} 43| [44]]. The GFPP recovers for v = 1 with 0 < « < 1 the Laskin
fractional Poisson process [8], for v > 0 with a = 1 the (generalized) Erlang process, and
for « = 1, v = 1 the standard Poisson process and their related distributions. For details
and derivations consult [24) 25| (34} [35]].



3 DISCRETE-TIME VARIANTS OF THE GFPP

This section is devoted to the construction of discrete-time variants of the Prabhakar re-
newal process by means of a composition of two ‘simple’ discrete-time processes. To this
end we evoke first of all the concept of ‘discrete-time renewal process’ where also term
‘discrete-time renewal chain’ is used in the literature [16/ [45]].

We introduce the strictly increasing random walk X = (X,,),>1, such that

=> 7, Z; €N, Xp=0, (5)
j=1
where the steps are non-zero IID integer random variables Z; = k € N a.s., following each
the same distribution P(Z; = k) = w(k). With the choice of w(0) = 0 the walk (5) becomes
strictly increasing. A random walk X defined in (§)) is the natural discrete-time counterpart
to a (strictly increasing) subordinator [[14] [16] (and see the references therein).

In a discrete-time renewal process the random integers X,, of indicate the times when
events occur; we refer them to as ‘arrival times’ or ‘renewal times’ where n € Ny counts
the events. We also use the terms ‘renewals’ and ‘arrivals’. The integer IID times Z; € N
between the events follow then the same waiting-time distribution P(Z; = k) = w(k). Let
us now introduce the generating function of the waiting-time distribution P(Z = k) = w(k)
as

Eu? = w(u Zuw w(1)u + w(2)u® + ..., lul < 1, (6)

where w(u)|,=1 = 1 reflects normalization of the w-distribution. Generally generating func-
tions are highly elegant and powerful tools which we will use extensively in the present
paper. For some definitions and properties we refer to Appendix [A.1]

Consider now two discrete-time renewal processes, I and II, having waiting-time distribu-
tions wy, wyy, defined in the above general way having both zero initial conditions w;(0) =
wrr(0) = 0. Then we generate a new discrete-time renewal process resulting from a compo-
sition of these two ‘elementary’ processes. Specifically, its waiting-time distribution W(k)
has generating function such that

(u) = > wi(n)(wr(u)™ = wr(wr(u)), (7)
n=1
with
(@7(w))" = Ey,uX Z Z Z wr(ks)wy (kz) . . . wy (k) u2oi=1 M, Xo=0, (8)
ki=1 ko=1 kn=

where X = (X,,),>1 is the partial sum in which the random jumps are w;-distributed
and is characterized by the generating function (8). The event counter n is then considered
random in (7) with distribution w;;. We observe that W(u = 1) = 1 reflects normalization of
the new W-distribution which furthermore fulfills the desired initial condition W(u = 0) =
W(t = 0) = 0. This new waiting-time distribution then is characterized by the probabilities
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where (wrx)"(t) stands for convolution powe. Now, let us assume that process I is a Sibuya
counting process with waiting-times following ‘Sibuya(a)’ (See Appendix [A.4] for definitions
and some properties). For the process II we choose the waiting time distribution

wg)(k)‘kzoz()?
v>0,p+q=1, (10)
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where for v = 1 yields the geometric waiting-time distribution P(Z = k) = p¢"*~! of
the Bernoulli process [16 with wg)(O) = 0. We further employed here the Pochhammer
symbol (v),, defined in (4). The waiting-time distribution (10) has generating function
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where we have put £ = % ( = gi—l, q= g—}rl) and u‘;g) (u)|,_, = 1 reflects normalization. For
v = 1, (1) recovers the generating function of the standard Bernoulli counting process.
Now we generate a new process in the above described fashion. The new discrete-time

process hence with (7)) has waiting-time generating function

Eovu? = 3 (0) = 0 (e () = &) ( (1—(1- u)a))

(2 o

(§+0-up)”

For v =1 and 0 < a < 1, formula (12) recovers the generating function of a ‘discrete-time
Mittag-Leffler distribution’ (of so-called ‘type A’) DML 4 where this process has been named
‘fractional Bernoulli process (type A)’ in [16]]. The waiting time distribution ¢%=!(¢) defines
a discrete-time approximation of the Mittag-Leffler waiting-time distribution [22]]. Indeed
(12) is generating function of a discrete-time waiting time distribution which is for v > 0
and 0 < a < 1 a generalization of discrete-time fractional Bernoulli process (of ‘type A’E
and recovers for v = 1, @ = 1 the generating function of the standard Bernoulli counting
process.

SN

=(1-01-weP(w), ¢V (u)= >0, 0O<a<l.

Our goal now is to show that the renewal process defined by generating function (12) is a
discrete-time version of the Prabhakar process. To this end we expand (12 as follows

o0
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m=0

U (u) = (1= (1= u)*) ¢ (u)

_ i (—1);:'(7/)m£m+u {(1 o u)f(eru)a o (1 _ u)f(erufl)a}
m=0 ’

(13)

!See Appendix[A.T]for details.
2See Definition 3.1 with Egs. (53), (54) in that paper.
3See [16] for details of classification scheme ‘type A and B discrete-time processes’.
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0.574, v

Figure 1: Discrete-time densities w&y) (t,€) and 1/1((;/) (t,€) versus ¢ for different values of t
indicated in the colorbart = 1,2,...,10 calculated using expression (14). For ¢ — 0 they
approach a power-law ~ £" indicated by dashed lines (See also in (14)).

converging@ for (1 — u)~%¢ §| < 1 where (v),, indicates above introduced Pochhammer
symbol (4). We notice that in (I3) the powers (1 — u)™* can be seen as the generating
functions of expected numbers of Sibuya hits (See Appendix [A.4)). Generating function (13)
yields the probabilities

oW (t, &) = 14w () |u=0 = Z (=)™ ()m §m+1/((m +v)a);

Cthdut T = m! t!
) Ld )
]POé,V(Z - t) = wa ( 75) = gwwa (u)’uzo te NO (14)
o0 _1 m v m §m+y
_ 3 )m'( ) A ((m+)a) = ((m +v = Da))
m=0 : '
where we used that %dd—;(l —u)Plumo = % = %

1 1
*For u = e~ "* and £(h) = &A™ we see that limp,o(1 — e *") 7 A&y = s71¢5 thus the Laplace variable has

1
to fulfill |s| > &5



The discrete-time densities of (14) are plotted in Figure (I) for different values of ¢ as func-
tions of the parameter & wh1ch deﬁnes a time scale in the process. The densities behave like
a power law similar to gpa (0 €) = ~ & for £ and t small; the power-law is depicted
with dashed lines in Figure [l

(1+£

Now we show that both of the distributions in (I4) are approximations of the Prabhakar-
Mittag-Leffler density (2), but only 1/)&”) (t) per construction fulfills the desired initial condi-
tion ¥ ®)],_, =0.

3.1 CONTINUOUS-TIME LIMIT

We recommend to consult Appendix [A.2] where we outline properties of the shift operator
T(__) which we are extensively using to define ‘well-scaled’ continuous-time limit procedures.
Further we mention that throughout the analysis to follow we utilize as synonymous nota-
tions limx — a + 0 and lim x — a4 for left- and right sided limits, respectively.

Let us introduce the (scaled) ‘discrete-time waiting time density’ (See (164)-({168))

Xaw (0 = B (E_)0u() = 3 6 €b®)on(t — k) = 70 (5.607) . e Ny

k=1

(15)
generalizing the notion of (continuous-time) waiting-time density to the discrete-time cases.
We employ in this paper the notation (..)(t), for scaled quantities deﬁned ont € hZy and
skip subscript ~ when h = 1 (Appendix[A.2). Note that Q,Ea") (T_ ) = >0 ¢ (k £)T_hk is the
operator function obtained by replacmg uw—T_p, in the generating function of (1 -I In (15)
occur the probabilities P(Z = k) = 5 (k,{ = &oh®) (k € Np) of (14) and the discrete-time 4-
distribution 6 (7) (7 € hZg) is defined in in Appendix[A.2] Note that the multiplier A~}
on the right-hand side of (I5) comes into play due to the definition (164) of the discrete-time
o-distribution d5,(¢) guaranteeing the discrete-time densities indeed have physical dimension
sec”!. We can then write for the distributional relations

wwfm%@=(L%bwhﬁ”ham+§?zw¢w%@7 §(h) = &oh”

(16)
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where in the limiting process only fractional integral operators D, A (8 > 0) occur. Indeed
the discrete-time density can be conceived as a ‘generalized fractional integral’ (See
Appendix with relations - and consult also [16] [46]). The scaling of the
constant £(h) is chosen such that the limit 4 — 0 of exists. Clearly the continuous-time
limit in exists if and only if limj,_,0&(h)(1 — e "P*)~ exists and hence £(h) = &h® is
the required scaling where £, > 0 is an arbitrary positive dimensional constant of physical
dimension sec™® and independent of h. We notice that indeed is a distributional repre-
sentation of Prabhakar-Mittag-Leffler density (2) which follows in view of Laplace transform
of (16), namely Xq,.(s) = (&)f%),, coinciding with Laplace transform (1) of the Prabhakar

SBear in mind properties of the shift operator such as (7,)%f(t) = T_anf(t) = f(t — ah) , a € R and

Tp=e Pt (D= ).



density. To obtain the limiting density explicitly we introduce the rescaled variable 7, = hk
kept finite for » — 0. Hence in (14) k = 7* € N becomes very large for »~ — 0 thus we can

use the asymptotic expression (i# = (zgff)“ﬁzﬂ) %)1 holding for k large. Then consider
first the scaling behavior of the coefficients in (14]), namely
v)— (m+v)—1
((m + V)Oé)k (f(h))erV ~ (é—oha)er,, kja(m-l- )—1 £m+u 7'0‘ m
k! F(a(m+y)) T(a(m+v))’
(17)
a(m+r—1)—1

((m—|—1/—1)oz)k mv aem+v T
Ll (g(h)) MY 5 * F(Oic(m—kl/—l))'

It follows from (and see also (167)-{169)) that multiplying (I7) by ~h~! yields densities
which remain finite in the continuous-time limit 4 — 0. Another important thing here is that
the second coefficient tends to zero by a factor h® faster than the first one. Generally we
observe that terms of the form &*(1 — u)~®*** — 0 (A > 0) giving rise to terms scaling as
~ h* = 0 (where 7, = hk and £(h) = & h®), namely (See Appendix [A.3)

Jou—A—1 ap—A—1 ap—A—1
=k NP L — R0 (18)
I'lap—N) I'(ap —N) I'lap—N)

vanishing in the continuous-time limit h — 0. Hence, for the continuous-time limit, only the

part gogf')(k:) is relevant as 1 — (1 — u)® — 1. Then consider (I5) in the limit ~ — 0 by using

(A7) to arrive at
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Throughout this paper we commonly use subscript notation (..).; for continuous-time limit
distributions. We can also obtain this result from with h = 7441 — 7 — d7 and 7, =
hk — 7 and by using the limiting property d,(t — kh) — (¢t — 7) (see again (167)-(174)).
Hence we can also write in the form

e [ S D)W (&G el D
X, (t) et _f}lgb/o dro(t —7) Z +h

m! I'((m+v)a) I'la(m+v—1))
(21)
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The second term tends to zero as h® thus we obtain for 1 — 0 the density
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(22)



(b) o = 0.574, v = 1.742
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Figure 2: The plots show discrete-time waiting-time density x...(t), versus h for different
timest. (a) a = 0.5 and v = 0.5, (b) @ = 0.574 and v = 1.742. The colorbar represents the
values of time t. The smaller h the more the GFPP Prabhakar waiting time density (2) is
approached (See Eq. (20)).

which indeed is the Prabhakar-Mittag-Leffler density (2). In this way we have shown
that the waiting-time probabilities (14]) are discrete-time approximations of the Prabhakar-
Mittag-Leffler density (2), and the underlying discrete-time counting process indeed is a
discrete-time version of the GFPP.

In Figure2lis depicted the behavior of the well-scaled discrete-time density versus h for
different values of time ¢. For h — 0 the values converge to the continuous-time Prabhakar
density ([2) (See (19), (20)). These plots show as well for fixed 4 monotonically decreasing
values of the well-scaled discrete-time density x..(t), for increasing ¢. This monotonic be-
havior for the values v and a used in these plots reflects the complete monotonicity of the
continuous-time limit: The Prabhakar density (2] is completely monotonic for ar < 1 with
0 < a <1 (See [37, 140] and references therein for a discussion of complete monotonicity of
Prabhakar functions).

Now we can define the class of Prabhakar discrete-time processes: We call a discrete-time
renewal process with waiting times following the distribution P(Z = t) = x(t)1 (t € Ny)
Prabhakar if exists a well-scaled continuous-time limit limp_.o X () = Xa,(t)c+ (in the sense
of (I67)-(170)) to the Prabhakar-Mittag-Leffler density (2). The remaining part of the pa-
per is devoted to the analysis of Prabhakar-discrete time processes and related stochastic
motions.

3.2 GENERALIZATION

From the above introduced limiting procedures we can infer that further discrete-time gen-
eralizations of the Prabhakar process can be obtained by the following class of generating
functions

v>0, aec(0,1] (23)
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In this expression

Fw) = Eul = > F(k)ut! 20)
k=1

which can be seen as generating function of any waiting time-distribution, (i.e. with f (u)|y=1 =
1) which fulfills the desired initial condition f(u)|,—o = f(t)|t:0 =0 (with f(¢) >0ont eN),
we call such a distribution with zero initial condition here simply ‘f-distribution’. It is im-
portant to notice that f (u) does not contain any scaling parameter ¢, thus in the continuous-
time limit f — 1. We will see a little later that the continuous-time limit is uniquely governed
by the ‘relevant part’ @(X") (u) in (23). We can generate (23) by the following composition
procedure@ leading to Eq. (7). Consider the strictly increasing integer time random variable

X%ZZ‘Xb n=1

n (25)
A;L::)(14'§£:2%' XH,ZZ'G N, n>1
j=2
and Xy = 0. The first step X, is a strictly positive random integer following an f-distribution
thus EuX! = f(u) whereas the increments Z; for j = 2,...n are IID Sibuya(a) with Eu? =
1—(1—wu)* (See Appendix[A.4]lfor details). The integer random variable (25) has generating

function
Eu® = (07(u)™ = Eu®1 (BEu?)" ! = f(u) (1 — (1 —w)*)" " . (26)

For the distribution of the events n in (25) we choose again (I0). The so defined process
has then generating function

W) = 3wl (n) (wr(w)™ = 3wl (n) f(u) (1 - (1 —u)*)"!
n=1 =
- 1—{1(71121)0‘ leg) (n) (1= (1 — u)®)" -
— flu ) ) (2yr

v Er(1- U)a)y'

In the last line we utilized generating functions (11) and (12)). Clearly (27) is a waiting-time
generating function of type (23). Now it is only a small step to prove that WY (u) converges
to the Prabhakar density for h — 0. Generating function f(u) (Ju| € [0,1]) can be written as
follows

o o o
Fu) =Y f0 (= u)' =1+ Y o — b, ge=(-1FY ( ’;; )f(t)- (28)
t=1 k=1 t=1
We confirm by f(u)|,—1 = 3.2, f(t) = 1 the normalization of the f _distribution/]. Clearly, in
view of the property it follows that terms (1 — u)* produce contributions that tend for
h — 0 to zero as h*, namely with u = e~"* we have with 28) f(e %) ~ 1 + 322 gph¥sk ~
1+0(h) — 1.

®See also [[16]. -
"Further, we have f(u)lu=0 = Y ,o gk = 2,0, f()(1 —1)" = 0.
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4 DISCRETE-TIME VERSIONS OF PRABHAKAR-GENERALIZED POISSON DISTRIBUTION

In this section our goal is to analyze a particular important case of Prabhakar discrete-time
counting process. We define this process by the strictly increasing random walk

Jn =Y 7, Z; €N, Jp =0, Z; €N (29)
n=1

where the Z; are the IID copies of Z (interpreted as waiting time in the related counting
process) following a Prabhakar type discrete-time distribution P(Z = k) = o) (t) with
generating function of type (23). As a proto-example we analyze here the most simple
generating function of this type@ namely with f(u) = u, thus

Eu? = 0V (u) Tu (30)
u? = u) = .

¢ €+ (1 —u)*)”
Forv =1 (0 < a < 1) (30D recovers generating function of the fractional Bernoulli counting
process (of ‘type B’) introduced in [16] (Eq. (78) therein). We call the discrete-time counting
process with waiting-time generating function the ‘Prabhakar discrete time process’
(PDTP). The PDTP stands out by generalizing fractional Bernoulli (type B), and for v = 1,

a=1 recovers the generating function §§1)(u) = % & = g and p + ¢ = 1) of the

standard Bernou]]j-processg.

The goal is now to derive explicitly the state probabilities of the PDTP and to show that the
PDTP converges to the continuous-time Prabhakar renewal process (GFPP) under suitable
scaling assumptions. Note also that the PDTP waiting time distribution has the convenient
property that it is the distribution {gp&”) (t)} just shifted by one time unit into positive time-
direction. This shows the (shift)-operator representation
0% (t) = 0% (T-1)00 = To1 b0 = T 0 (1)
(E+A=T-1)>)¥

1 dt—1 ¢v (3D
—oMt_-1)= —— = W _ )= S
Po ( ) (t — 1)' dut—1 Pa (U)‘ufov Po (u) (g n (1 _ u)a)[/
where we always utilize causality, i.e. all distributions vanish for negative times. The
discrete-time density gp((f) (t) (t € Np) is evaluated explicitly in Eq. (I4). On the other hand

relation (31)) is simply reconfirmed by the Leibniz-rule

v 1 dt =V
0(t) = 5= (upl) (w)

u=0

- t € Nyp. (32)
1 _

d a 1 odat
=7 (Uws@(l)(u) +tdut_1<ﬂg¢)(u) +0> N

T Dl W

8The analysis to follow can be extended to any f-distribution of the previous section.
%For o = 1 and v > 0, (B0 coincides with generating function (IT).
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Let us first derive further related distributions such as survival and state probabilities. To
this end consider the probability for at least one arrival within [0, {], namely

t t -(v)
1 d' [upy’ (u)
@)( = ) (k) = W~ 1) = =& [ Wpa W)
o :9 :(Pa (k=1) t!dut<(1—u)>

k=1 u=0
(33)
1 dtfl —g”)
_ Po(u) ’ e N
G- Dld T\ (T —w) ) huo
with ¥ (t)],_, = 0 since o) (t)],_, = 0 where the generating function of v (1) is
W) (u) = i uwt w (1) = M (34)
“ - t=0 “ - (1 —u) .
Then the survival probability <1>(0) (t) is
P(J; > 1) = o)) =1 - ()= > 0k = > o (k—1) (35)
h=t+1 k=t+1
with the generating function
Z(0) — ¢ v 1 —ugl (w)
Do p(u) = ;U (1 —v5(t) = T lul < 1 (36)
fulfilling the desired initial condition é&? L(u)| = ((J,,, (t)],_, = 1 saying that the waiting

time J; for the first arrival is strictly positive. Then by simple cond1t1on1ng arguments we

obtain the generating function @&Z( ) of the state probabilities o7 (¢t v(t) (n,t € Np), i.e. the

probabilities for n arrivals within [0,¢] a

~(v)

) (u) = B0, (u) (upl) (u)) " = Wuww (), ne{0,1,2,...}

|lu| < 1. (37)
n,=(nv) (u) un+1¢g(n+1)u) (u)

1—u l1—wu

We also mention the normalization of the state probabilities which can be seen by means of
the general relation

1d 1 _,
T AT —wlu=o

t € Nyp. (38)

Note that relation includes n = 0 where ¢2(u) = 1 which has a distribution of the form
of a discrete-time d-distribution (See (164) with h = 1)

P () = 61(t) = b0 (39)
Where (5 (u))" = teraiagmy = @0 ().
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thus 9(0)( t) = T 16, (t) = 041 (See also Eq. (31I)). The ‘state-probabilities’ are then obtained
from

1 dt
B(Jy <1)= =g @00(w)| . tneNg. (40)

The representation (37) is especially convenient for an explicit evaluation of <I>(({f,),(t). Be
reminded that the state probabilities are shifted distributions where we account for (39) to

arrive at

( )(T ) ,(nu)(,f, )
Pao Uy SOy = Pe Vg
00 = E )
=T, PE ) = PS(t —n),  PEE) = Pawn(k) (41)
Pop(k) = ld_ksb‘(xm(uM 1) (y) = &
= Tk 1 — gy =0 Fa €+ (1—u)>)r

This result is also obtained from the Leibniz-rule which yields

1 d u"gb((lm)(u)
Paau(t =) = 4 Gt (ﬁ luso

1< t dk n dt—k gp((lny) (u)
- ﬁ,go ( k ) duF " ‘uzodut_k 1—u o

(42)
B l 1! ﬁ(un) dt—n gﬁ((l””) (u)
! (t —n)n! dun dut=" 1—wu | lu=0
_ 1 dtfn @&TW) (u)
S t—n)ldutm \ 1—u ) lu=0
We hence can write for the state-probability distribution
O (t) = Pawn(t —n) = Papneny(t —n—1), n,teNy. (43)

1
To evaluate this expression we account for the expansion with respect to (1—u)~1¢«, namely

-y &

m=0

—(u)

m

) gm-ﬁ-u( _ u)—a(m-{-u)—l (44)

which converges as (13) for |(1 — u)*lgé] < 1. Then we get

() s 1 m .
’Pa,u(k):%%kk (%@) — Z ( Z) (Iu’)mgm—ku( ( +M)+Z)k (45)

k!

u=0 m=0



where (p),, denotes the Pochhammer symbol (4). With relations (43) and (45) we can write
the state-probabilities a

o0 _1 m
o)1) = o) (1,6) = Y T eminr
m—0 m:

_ &4 Dy)m
(t—n—1)!

(1+afm+ vl + 1), fo 20

(46)
where n,t = {0,1,2,... } € Ny. It follows from the causality of P, ., (k) in (43) that @&72(2&) =
0 for ¢ < n and hence @&@(t)\tzo = 0 for n > 0. It is especially instructive to consider
contained special cases in (46), namely fractional Bernoulli » = 1 with 0 < a < 1 (subse-
quent Eq. (53)) as well as standard Bernoulli v = 1 with o = 1 (subsequent Eqgs. (53), (56)).

Consider now the survival probability, i.e. n = 0 in (46), namely

2O =13 W emir W4y iy, e
! > ~

= m! (t—1)!
U 0
o) () =1-vY(t), teNg
where WY () is the probability of at least one event within [0, ¢] :
w0 =5 E emer W44 oty 621
= ml (t—1)! (48)

U (t))im0 = 0

and has generating function (34). Since V¥ (¢)|;=0 = 0 we have for initial condition of the
survival probability @)&O)V(t)\ +—o = 1. Thus we identify for the state-probabilities the

important initial condition

@f{fﬁ(t)hfg = o) (u)],_, = o, n=1{0,1,2,...} € Ny. (49)

The initial condition of this form indeed is crucial for many applications of discrete-time
renewal processes which come along as Cauchy initial-value problems. By this reason we
have constructed generating function (30) such that it fulfills initial condition oY) (W)],—o = 0.
We will come back to this important issue later on in the context of ‘discrete-time random
walks’ (Section[d).

In order to verify that the state probabilities (46) approximate the continuous-time state
probabilities of the Prabhakar process, let us consider the continuous-time limiting process

1'We utilize the synonymous notations such as <1>§:i (t) and <1>§fl),(t, £), the latter when it is necessary to consider
the dependence of parameter £ (for instance in the continuous-time limit).
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Figure 3: State probabilities <I>( ") »(t)ct of the GFPP representing the continuous-time limit of
the PDTP state probabilities versus ¢ for different values of n. (a) = 0.5 and v = 0.5, (b)
a = 0.574 and v = 1.742. In the colorbar we represent the valuesn = 1,2,...,8. The results
were obtained numerically using &y = 1 with Eq. (52).

more closely (Appendices [A.2] especially (167)-(174) for shift-operator properties and gen-
eral limiting procedures). The continuous-time limit state probabilities are determined by
the limiting behavior of the well-scaled state probabilities in the sense of relation (172)

) (£)er =
Pa(Pet = T,

{Tlnhwg NTp) — f'(4+nh¢gn+'))(A—h)}5h(ﬂ

(50)

. 56“/ (()n-l—l)u
=D, — 6(t).
t ((50 +D?)nzx (50 + D?)(n-{-l)u) ( )
Laplace transforming this relation indeed recovers the Laplace transform of the Prabhakar
continuous-time state probabilities ([25], Eq. (36)). This continuous-time limit is obtained

explicitly by performing the well-scaled limit (174) in (46) by accounting for the fact that
the state probabilities are dimensionless cumulative distributions, namely

t
n) — 1 (n) [ 2 o
dsa,u(t)Ct }P—>H10 dsa,y (haé-Oh' ) . (51)

By using then the asymptotic relation of the Pochhammer symbol for k = % large (’,‘% =
D(ptk) kMot

TrtD) ™~ TGy We arrive at
n) () — aynv - Ota )" (nv)m _ (&ot*) ((n+ Dv)m }
CI)a,u( )ct 5 t mzo {F(am + avn + 1) F(Ozm + Oél/(n + 1) + 1) (52)

= (€0t)™ { Bt 1 (—60t®) — (Gt ESI Y (<6ot®) ), n €Ny, teRT

where in this expression appears the Prabhakar function E, ,(2) (3). Expression (52) indeed
coincides with the state probabilities of the continuous-time Prabhakar counting process
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(Generalized Fractional Poisson process - GFPP) [24], 25.

In Figure [3] we draw the GFPP state probabilities (52) for different states n. The state
probabilities exhibit for large ¢ an universal power-law limit which is independent of n (See
Eq. (61)). The larger n (indicated with brighter colors) the smaller the state probability is
for the same time ¢. This general behavior can be understood with the intuitive picture that
states with higher n are less ‘occupied’ at the same time ¢.

We show in [25]] that for v = 1 relation recovers Laskin’s fractional Poisson distribution
introduced in [8] which is also the scaling limit of discrete-time state probabilities for
v = 1. In order to see explicitly the connection with the fractional Poisson process we obtain
for v = 1 from the state probabilities

n n(an+ 1)t—n
@é’{(t@) = W

o0 ymemtn () ((n+m)+ 1)y (4 Dy (a(n+m) + 1)
+Z & (m! (t—n)! + (m_l)!1 (t—n—1) 1),t2n
(I)(()jg(t’g) =0, t<n

(53)
where n,t = {0,1,2,...} € Ny. For 0 < a < 1 these are the state-probabilities of the
fractional Bernoulli process (type B), and for a = 1 this expression recovers the state proba-
bilities of standard Bernoulli shown subsequently in Eqs. (55), (56). The state probabilities
have with the same limiting procedure the continuous-time limi

n) m (t o) &t | = D™ Et)™ ™ () (Rt D)me
D 1(t)et = hn%)@a (h,goh ) Tlan+1) +le a(m+m) 1 1) < ot (m— 1] )

_ (Got)" g~ (mtm)! (=&t
- nl Z m!  T(a(m+mn)+1)

m=0

teRT.

(54)
We identify indeed with Laskin’s fractional Poisson distribution [8]] which also is recov-
ered for v = 1 in the expression for GFPP state probabilities. It follows that the state
probabilities (53) of fractional Bernoulli are discrete-time approximations of the fractional
Poisson distribution (54).

Now let us consider a« = 1, v = 1, i.e. the case of (standard) Bernoulli more closely. The
generating functions of the state probabilities (37) then take the form

_PD _
AW = T gyt 5—5, p+qg=1, nelNy (55)
12Fq. (2.13) in [24] and Eq. (38) in [25])
BWwith (n)m + ("(+l)m) 1 _ (ntm)!
m—1)! n!m! °
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where the state probabilities yield (with p = % and q = H%)

R N S
(t—n)! dut=" (§ + 1 —u)ntt'u=0

(€+1)¢ +t— ¢ £ t\ noin ,neNy).
:W<?—n n>:<n>(§T1)t:<n>Pqt t>qp (LneN)

and ®{")(t,£) = 0, t<n

e\ (1,¢) =

(56)
We identify (56) with the Binomial distribution (i.e. the state distribution of the Bernoulli
process). The continuous-time limit of (56) is obtained from p = héo_ and g = —— thus

1+h&o 1+h&o
performing the well-scaled limit (51)) yields

|

™y —fim L (L t_ nen -
(I)l’l(t)d_ilgbn!h(h 1) ... . n+ 1) h"EY (14 héo) t € hNg
(57)
t n
= @e*@t, teRY, neN
n:
which is the Poisson distribution (also recovered in for a = 1. This reflects the well-
known fact that the standard Bernoulli process converges in a well-scaled continuous-time

limit to standard Poisson (see e.g. [16] and many others).

4.1 ASYMPTOTIC FEATURES

In many applications the asymptotic features for large and small observation times are
of interest. Clearly the asymptotic behavior for large ¢ in a discrete-time distribution is
determined by the leading power in (1 — u) in the limit v — 1 — 0 in the generating function.
The generating function behaves then as

7(V)u:u 1 — ) 71/:u00 _ m% T g )™
A =u(1450-0) =u 3 R -y .
58

0% (u) ~ W) (1) ~ <1 ——(1-uw*+0(1 - u)a> , (u—1-0), a€(0,1), v>0.

The asymptotic behavior of the waiting time density for ¢ large is hence governed by
the term —%(1 — u)®. We notice that this term is (up to the scaling multiplier %) the same
as in the generating function of Sibuya(«) (See Appendix [A.4). Thus we get for large ¢ the
fat-tailed behavior

Wy ) g ) Ny CWm e (Cam)e v e av 7T
O o o Loy (L a) Loav et
Spa (t)ct Ha (t)ct }LILHO hgpa (hvgoh 50 F(l — Oé)7 (OAS (07 1)
(59)

4and also in for v =1, a = 1, consult also [25] [34]]
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where the last line refers to the large-time asymptotic behavior of the continuous-time
limit which is of the same type. We notice that this asymptotic distribution is (due to the
multiplier %) a scaled version of Sibuya(«a). It follows that the PDTP converges for large
observation times to a scaled version of the Sibuya counting process (Appendix [A.5). This
is true for all v > 1 including v = 1 for the fractional Bernoulli counting process. The
asymptotic relation indeed is in accordance with the well-known fat-tailed asymptotic
behavior of the Prabhakar density of the GFPP in the continuous-time case (See e.g.
[25]], Eq. (35)). It is clear that the same tail occurs in a fractional Bernoulli process
(with rescaled parameter & = %) with discrete-time waiting time density being an approx-
imation of the Mittag-Leffler density. Indeed also is the fat-tail of the Mittag-Leffler
density reflecting the asymptotic ‘Mittag-Leffler universality’ [2].

Let us also consider the asymptotic behavior of the state probabilities. With the same argu-
ment we obtain from the generating function (37) the leading power in (1 —u) for u — 1 —0,
namel

) (u) = auf”u) {<1 i (I_TU)Q)_W . <1 . @>—(n+1)y}

B (1) ~ MO (u) ~ %(1 —u) ! (u—1-0)

Here we have accounted for the behavior of the memory generating function M (u) intro-
duced in (63) for v — 1 — 0, with the same leading term as the state probabilities, namely
MY (u) ~ %(1 —u)®~1. We observe in relation (6Q) that state probability (and memory-) gen-

ae(0,1).  (60)

erating functions Vn € Ny at u = 1 have a positive weak singularity ~ (1 —u)*! (a € (0,1)).
This weak singularity indeed is the origin of the asymptotic large-time power-law decay of
the PDTP state probabilities Vn € Ny and of the ‘memory function’ (introduced subsequently
in (66)), namely

_ o
O (t,6) ~ MOV (t) ~ %(‘Ut < at ! ) ~ %m,
(t large) a€(0,1) (61)
v 1t

t
™) — lim ®™ (_ a) o ~_
a,u(t)ct hl—% av \ g SOh - M (t)ct EO F(l — (X)

where the last line refers to the continuous-time limit. The power-law is universal and
reflects the long-time memory and non-Markovian feature in the PDTP for a € (0,1). This
asymptotic relation is in accordance with the large-time limiting behavior of the continuous-
time GFPP state probabilities [25]. Physically two ‘extreme’ regimes are noteworthy: (i)
a — 0+: There we have

. ¢ f a—1 _ _
a%m:(—”< ¢ )LO—%)—l

thus @é@’y(t,f) — % where extremely long waiting times occur thus the states n ‘live’ ex-
tremely long and the memory of the PDTP becomes infinite.

5For o = 1 we obtain the finite value &) (u)|u=1 = M (u)]u=1 = 1 + =
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In the second ‘extreme’ regime (ii) we have o — 1 — 0 where F(’T—_Qa) — 0(t) = 0 (¢ large)

indicating lack of memory (for v = 1) or short-time memory (for v # 1). This feature also
is reflected by the non-singular behavior of the state probability generating functions of
standard Bernoulli (55) which yield at « = 1 the finite value CI)%"B (w)] _, = % (Vn € Np).

u=1
We observe in these results the following general property of discrete-time counting pro-
cesses: If the state probability generating functions (and memory generating function) are
weakly singular ~ (1 —u)* (A € (—1,0)) at u = 1, then the discrete-time counting process
is non-Markovian and has long-time power-law memory as in with fat-tailed waiting-
time density (59). If in contrast the state probability generating functions (and memory
generating function) at © = 1 are finite, then the discrete-time counting process either is
memoryless with the Markovian property or is non-Markovian and has only a short-time
memory with a light-tailed waiting time density.

4.2 GENERALIZED FRACTIONAL DIFFERENCE EQUATIONS GOVERNING THE PDTP STATE
PROBABILITIES

The goal of this part is to derive recursive evolution equations that are solved by the PDTP
state probabilities. To this end we utilize the correspondence of generating functions and
their operator representations. Whenever we deal with operator-functions of the shift oper-
ator 7, we refer to a renewal chain with rescaled waiting times Z; € hN (h > 0) of the
PDTP with generating function (30). The state probability generating functions fulfill

(1) _
di?;)y(u) = u@éﬁjl)(u), neN (62)
Po (u)

and for n = 0 we have
_ o) 1 1 — )\
M (u) = 3f“): {<1+£——3L> —u}. (63)
po (u) I—u 3
where we refer (63) to as ‘memory generating function’. These simple relations allow us to
obtain recursive equations for the state probabilities. We introduce the operato

. 1 1= 1)\’ . . 1
Dah) = — = = (1 p ) L DL=Di) = (69
Po (T-p) ¢ Yo (T-1)
where we skip the argument in DY, = D%(h = 1) when we refer to integer discrete-time
processes with i = 1. We can then rewrite and compactly in operator form (See

also Appendix
DY - @0 (1) = B0 (E— 1) + Snog Mau (1), t,n € Ny. (65)

(65) can be conceived as generalized fractional Kolmogorov-Feller difference equations gov-
erning the time evolution of the PDTP state probabilities. We will determine them subse-
quently in explicit form including their continuous-time limit representations. For n = 0 (by

16We utilize as synonymous notations A~! = 4 and write for unity operator (zero-shift) simply 1 = 1, namely
T, _, =1
17Bear in mind the correspondence v 75 thus % <~ TM, see Appendix[A.2]and we use in this formulation

that <1>§:i (t) = 0 if at least one of the variables ¢,n < 0.
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accounting for <I>(*1)(t) = 0) we have with the ‘memory functjon

A A 1 A
Mo, (t) = DY - qsa(fg(t) = M{PY6,(t) = T Dios(t)—O(t—1), teZy (66)
— 1
fulfilling initial condition M, (t)|,_, = M"*(u)|,_, = (&g})u. For later use we introduced

in the ‘memory operator’ which has with £(h) = yh® the well-scaled representation
wew = — " {Dah) - T-n} (67)
h 1 T—h « -
which defines by M, ,(¢), = M,‘j"”&h(t) (t € hZg, € = £gh®) the well-scaled memory function
maintaining the initial condition of (66). We observe that in the case of Bernoulli o = 1,
v = 1 the memory function becomes ‘local’, namely Mé’léh(t) = @hdh(t) vanishing for
t > 0 which reflects the loss of memory in the standard Bernoulli process (See [[16] for
general aspects). Now we rewrite above introduced shift-operator functions and
in such a way that only existing generalized fractional integrals and derivative in the

continuous-time limit emerge, namely

DY (h) = & h™ (1= 1) (14 &h(1 = T0p,) ™)
_ gauh*fua] (1— ’f‘_h)(au] h*(auffalﬂ)(l _ T_h)au*(alfl (1 + &h*(1 — T—h)ia)y (68)

_ é—o—uhf [va] (1 _ T_h)]'au] Ba,y(h)

where we introduced the ceiling function [x] which indicates the smallest integer larger
or equal to u (See Appendix [A.3). In Appendix [A.3] (See especially Egs. (192)-(196)) is
shown that the operator limj, o h (1 — T_h)“” = D" that occurs in converges to
the Riemann-Liouville fractional derivative of order av. Relation contains the operator
function

A

Ba,y(h/) _ h*(a’/*’—aﬂ)(l _ Tih)al/f[au] (1 +£0ha(1 _ Tih),a)l/ (69)
which can be conceived as a discrete-time generalized fractional integral operatm@]. In
view of we further introduce

A h

K (h) = 7753(@ =&vptvel(p — Tp)lvI=1 B, ,(h). (70)
— T

All these operators are operator functions of the shift operator T, = e "t and can be
considered as discrete-time versions of of generalized fractional derivatives or integrals,
respectively. The discrete-time memory function (66) then can be evaluated as (See also

hT_ .
'®In (GB) we use ﬁéh(t) = 1o o hon(t — kh) = O(t) thus —7=0n(t) = O(t — ), see Appendix[A.2]
Tnvolving kernels which are at most weakly singular and hence integrable.
20We call an operator a ‘generalized fractional integral’ if it contains only non-negative powers of the discrete

integral operator h(1 — T_h)’l, see especially Appendix[A.3]and consult also [46]].
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Appendix

May(t) = —=—D01(1) - T-16(1) = KO (1) — Ot — 1)
-1
0) _ 1 AL I o [av]—1
’Ca,y(t) = 1 = Daél(t) =¢£ (1 71) Ba,y(t), t € Zy (71)
-1
Banlt) = By (0 (t) = 3 S (gmlomblovl Zov)e -y oy
o M t!
Now let us consider
A X (—p)m m ~ . _1\om+[av]—av
Buyme) = 3 0 e (h - 107 0
m=0 :
t € hZy
_ Z (_n’;)m (—&)™ Z (am + [O;:—| — )y, h(aer]'au]fau)q)(t — kh)
m=0 : k=0 :

(72)
where we put £ = {yh“ in order to have well-scaled operators with existing continuous-time
limits. This relation is a generalized fractional difference equation with memory where the
whole history {®(t — kh)} (t € hNp) of the causal function ®(¢) contributes. Now since
am + [av]| —av > 0if av ¢ N and am + [av] — av > 0 if av € N we can use for the
continuous-time limit that Wh(am [av]—av) _ %&' (h — drand 7 =
kh, Appendix [A.3) thus

am+[ov]|—av

—(am+[av]—av) T 4 -1
D; (t)r = lim (h(1 =Tp)7") D(t)

73
+lam+[av]—av)-1 (73)

:/0 ot = Mot am  Tar] —an) "

are Riemann-Liouville fractional integrals of orders (am + [ar] — av). Note that for av € N

where [av] — av = 0 the order m = 0 the kernel becomes lim,, ;4. % =4(7) a
Dirac’s d-distribution thus (73) recovers ®(¢).;. The continuous-time limit of (72) then yields

R t
i By (W8(0) = | Bos(r)a®(t = T)rdr
(74)

Foam+[av]—av—1

R G PP b o
_mz::o (=) /0 F(am%_[aﬂ_ay)cb(t Jerd
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with continuous-time limit kernel

[av]—av—1 - (_V)m (_é—oToz)m
T mZ:O m! T(am+ [av] —av)’ av ¢ N
Boy(T)et = reRT
= (o) (et
2 z_: m! f’(am) ’ av €N

T’—aﬂ*auflE;V’_aﬂ —CW(_&OTQ)’ av ¢ N
= TeRT (75)
D, (6(7) B, (—€7)) , av € N

containing the Prabhakar function Ef ,(z) (3). Then it follows that

Br(mat) = &7 (b1 - m) iy E gy

m=0
oo

Z (am + [av] = aV)k ) (am+ ol -av) oy — k), tehlo  (76)

is well-scaled in the sense of limiting equation (I74). Thus with (ZQ) we first get for the
continuous-time limit

Koy (B)er = lim K (h)on (1)
’ h—0 %

. teRT. (77)
= ¢;vpjr /0 B (T)ed(t — 7)dr = &5 DI 17 By (£)et

Note that, in this limiting procedure derivatives of integer orders come into play with [av|—
1=0for0 < arv <1and [arv] —1 € N for av > 1. We notice that kernel has Laplace
transform £(B,,(t)et)(s) = s~1%1 (s* + &)”. The continuous-time limit kernel is for
av ¢ N by the term m = 0 weakly singular. We then get for the continuous-time limit of

t
lim D (h) - #(1) = £, D] /0 Ba (t — 7)ot () . (78)

The results (77), (Z8) are in accordance with the continuous-time expressions derived for
the GFPP (Egs. (66)-(68) in [251)21.

Having derived these continuous-time limits, our goal is now to deduce the recursive gener-
alized fractional difference equations governing the state probabilities @&’?,),(t) of the PDTP.
To this end let us rewrite Eq. more explicitly. Taking into account the evaluations (Z1)),
(72) and this equation takes the form (with A = 1)

e (1-10) "y gy = e gy
m=0 ’ k=0 ’

o0

m)! t!

= Dt — 1) + 6 {s‘” (-7 s Bl (“m”“”“o‘””—@@—l)}

m=0

(79)

2'Where the definition of K}, (t).: there differs by a multiplier &} .
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where n,t € Ny. For later use and further analysis of the structure it appears instructive to
write this equation by accounting for (Z1)) as

o
(1= 1) > KOR)- 80 (k) = 8 (k= 1)+ (K)(8) — O(t = 1)), n,t € Ny. (80)
k=0
We observe that the k-series (due to causality and property @&7&(7& —k)=0fort—k < n)
has upper limit & = ¢t — n. The Equations (65), and indeed are equivalent discrete-
time versions of the generalized fractional Kolmogorov-Feller equations governing the state-
probabilities in a PDTP. These equations are non-local discrete-time convolutions with non-
Markovian long-time memory effects where the whole history {@&’?Z(t — k)} comes into play.
We will come back to this issue again later on. With (Z7) and we can directly write the
well-scaled continuous-time limit of in the form

t
E(?VD[OM / Bo,,(t - T)ct(pa?u(T)cth = (ﬁ((x?u_])(t)ct + 5n0Moz,V(t)ctv t e RF (81)
0

which is solved by the generalized fractional Poisson distribution functions (GFPP state
probabilities) @&’?Z(t)ct of (52) with the continuous-time limit kernel B, , (t).: (Z3). This equa-
tion contains the continuous-time limit of the memory function

Ma(t)er = lim M6, () = €5 D™ ™ Bo (B er — O(2) (82)

where M 4" is the well-scaled memory operator of (67).

Continuous-time limit memory function and ‘generalized fractional Kolmogorov-Feller
equations’ (81) indeed are in accordance with the results for the GFPP [25].

Let us analyze now more closely the important regime v = 1 with a € (0, 1].

(i) Fractional Bernoulli counting process (of type B), v =1 and a € (0, 1):

We obtain then for the above introduced quantities

Ko = (gu -0 + 1= 17 )60
t e Zy (83)
_ %(1 — 1) 7101 () + O(t)
thus 1
(1— T_I)]C((XO’% (t) = Dé(S] (t) = (E(Z — T_z)a + Z) 0t0- (84)

The memory function then yields

—1)¢ —
Ma,l(t):ll(l_a)t"i‘él(t):( )<a 1>+5t07 t € Ny (85)
£l ¢ ¢
Mll(t)_£+15t0, a=1, €Ny




and the well-scaled form

h A 1 A
May1 (89 = —=—(D&(h) = T-1)6(1) = <1 (1 - Th)af) hon(t), tehZo. (86)
- Ty
For later use we notice the continuous-time limit Mg, 1 ()¢ = limp,—,0 Ma,1(%, §h®) = g%r(t;—fa)

reflecting long-time power-law memory of fractional Bernoulli process. We used here
(1= T 1) 164 (t) = h”%\k:% (See Appendix [A.2).

The discrete-time fractional Kolmogorov-Feller equation then reads (d1(t) = dy)

(1Tl (1)

— ol (- 1) - €alll0) + S (-1 ( ot ) Fehof ac(0.1), teNo @)

This equation coincides with the fractional difference equation for the fractional Bernoulli
counting process (type B) given in [16] (See Proposition 7, with Egs. (81)-(82) therein). Eq.
is solved by the state probabilities (53). Indeed for v = 1 generating function of the
state probabilities with @&1)(@ = m yields

n)(u) — (u§)n[§ + (Z B u)ail]
T e =0T

which was also given in [16]. On the other hand recovers for a = 1 the generating
function (55) of standard Binomial distribution. We can also recover from Eq. for
v = 1 by accounting for (—1),, is nonzero only for m = 0 and m = 1 and where [«a] = 1. The
Eq. is the discrete-time fractional Kolmogorov-Feller equation of this process where
the memory function for ¢ large behaves as foo’)l( t) ~ é = a) thus fractional Bernoulli has

a long-time power-law memory and non-Markovian features.

=1

n € Ny (88)

Now let us consider more closely the continuous-time limit of Eq. (87). First let us write
Eq. (65) by accounting for the memory operator (67) and with (64) in well-scaled form
(& = &h™) to arrive at

(1= T-4)* @) (O
t € hZy. (89)
= Eoh®®U' TV (t = h)p — Eoh® @ (1)h + S0 (€0h™ + (1 — Tp)*~Y) Ry (¢)
The solution of this equation can be written in well-scaled operator representation (See Eq.

forv=1)
C(Eoh*+ (1 = Top) )

") (1)), = b Eoh®)™ T pn hn (1), t € hZy. (90)
1O = et (1= Tyt ) &
The limit h — 0 of yields for continuous-time limit @grf%(t)ct = (&fil)w (t) (with

Laplace transform E{(I)((x, (t)et}(s) = W) which can be identified with Laskin’s frac-
tional Poisson distribution (54) where n = 0 recovers the standard Mittag-Leffler survival
probability [8) 25]] (among many others). The continuous-time limit of Eq. (89) gives

+§0h5h( )
(91)

o ar A vag™ . (1), _ 1y _ g 2
lim A= (1= T-)* .} (1) = Jim &9 (@07t = )i = 247} (1)) +6n0 (m 5
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By using limy,_,q hdp(t) = 0, however 6y (t) — 6(t) together with

t—a’

AL = Top)™ (b3 () = A7V = Top)* Mo (6) = D76 = sy

we obtain as continuous-time limit of (89) the fractional differential equation

t*CE

- teRT . (92

DF- B (t)er = +E0 BT (8)et = €0 ) (£) et + 00
In this equation occurs the Riemann-Liouville fractional derivative Df* of order a (0 < av < 1)
(See Appendix [A.3] for details). Eq. (O2) coincides with the fractional Kolmogorov-Feller
equation given by Laskin [8] and is solved by the continuous-time state probabilities of
Laskin’s fractional Poisson distribution (54).

(ii) Bernoulli counting process, v =1, a = 1:

Eq. (87) reduces then to

(1= T )8 () =€ D (t— 1) = €8)(1) + (€ + 1)0npdio, a=1, teZy (93)

where the memory function M ;(t) = (521) 0;0 = 0isnull for ¢ > 0. This observation explains

our choice of the name ‘memory function’ for M,, , (). The Bernoulli process is memoryless
and Markovian and Eq. is solved by the Binomial distribution (56). Eq. indeed
is the Kolmogorov-Feller difference equation of the corresponding Bernoulli process with
v =1, a = 1. To see this let us consider fort =0and n = 0:
0 0 —1 0

21(0) = 07} (=1) = €0, (= 1) — €81 (0) + (6 + 1) (94)
by using <1>§j11>(0) = @5;”(—1) = 0 we recover in this equation the initial condition <1>§?) (0) =
1. Fort > 1 from Eq. we have then forn =0

) 1

o) (1) = H—Iéﬁ‘f?(t - 1), t>1. (95)

Now it follows from this recursion and the initial condition @&?{(0) = 1 that the survival
probability in the Bernoulli process is

L _ g t>0 (96)
(é— + ])t =4q, -

also in accordance with (56) for n = 0. Then let us finally consider forn>1andt>n
which writes

') (t) =

)

" 1
o\") (1) =

_§+1((pyg(t—1)+§¢§7J_1)(t—1)), t>n>1 (97)
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which is indeed solved by (56), namely

t—1 £ t—1 &t
(n >(§+1)t—1+§<”—1>(§+1)t‘11
t—1 t—1
n * n—1

t é—n t n t—n
:<n>(§+1)t:<n>pq ) t>n
= < Z )p"qt”(%(t—n)

and <I>(n)( t) = 0 for t < n. Hence together with shows that indeed is solved
by the state probabilities of the (standard) Bernoulli process (56). We also verify easily the
normalization

)y 1
(I)l,l(t) - E"’_l

(98)

n t n _t—n
§:¢&) §:<7l>pqt =(p+q' =1

n=0

The continuous-time limit of then yields (See also Eq. fora —1-0)
lim (1 = 723217} (1)
= &oh @7V (t = h), — Eh B () + 6p0(Eoh + DRGK(E), a=1, te N, (99)

Thus we get with (1 —7"_;,) — hD, and d(t) — (t) the equation
D0 (1)er = €0 08T ()er = €005 (Dt + 8n0d(1),  LER (100)

which is indeed solved by the Poisson distribution <1>§"1) (t)er = O(t) ©U 60t (See also limit-
ing equation (57)) and with @&?{(t)ct = e~%0!Q(t) thus D,gl)ﬁ( et = —£0<I>17i(t)ct + 6(t) occurs
in for n = 0. The limiting equation reflects the fact that the Bernoulli pro-
cess is a discrete-time version of the Poisson process, see also [16] among many others
and consult also [25] (Eqgs. (79), (80) in that paper.). This limiting equation can be recov-
ered from in the limit « — 1 — 0 when we account for (See also Appendix [A.3) that
limy 10 D¢ — D, reproduces the standard first-order derivative and memory function
limg 10 Ma1(t)et e = giod(t) becomes a Dirac distribution (See also Eq. (61))

- §0 L(l-a)
reflecting the memoryless Markovian feature of standard Poisson.

4.3 EXPECTED NUMBER OF ARRIVALS IN A PDTP

For many applications especially in problems of diffusive motion, the expected number of
arrivals within [0, ¢] is of utmost importance. For the PDTP this quantity is defined as

§2n¢@ teNy (101)
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with the state probabilities (I)t(l",),(t) of Eq. (46). We introduce the important generating
function

G (U, 0) = Gow(u, &,v) = 00 (4 Oovuf”unzl_uség 1
ga,l/( ) ) ga,l/( ’57 ) QCM,I/( )1;0( SDCV( )) 1_u 1 _u/l)@gé(u)
lv| <1, Jul|<1.
I L { S i O MO (u)
(1 —u) (141 —w)) —ww)  ([1+ (1 —w)]” —uv)’

(102)
We will see subsequently (Section [B) that this generating function is a key-quantity for
stochastic motions with PDTP waiting times. We refer this generating function to as ‘PDTP
generating function’ as it contains the complete stochastic information such as state prob-
abilities and the expected number of arrivals and also memory generating function (63).

It is now only a small step to directly extract from the asymptotic behavior in the
time domain for large ¢. Consider for u — 1 — 0 which yields for a € (0,1) the same
weakly singular behavior as in the PDTP state probability generating functions and memory
generating function (See Eqgs. (60), (61)), namel

Ma’”(u) v
i—v = (1 —w)

Gow(u,v) ~ (1 —uw)* 1, wu—=1-0, Jv<1, ac(0,1). (103)

Accounting for (61) we then get for the PDTP generating function the same type of asymp-
totic power-law behavior for ¢ large, namely

v [

€1 —0) Il —a)

G (1,6, ) ~ ae(0,1). (104)

For subsequent use let us also write the scaled time domain representation

hoo (1A - T - T

(1= Top) ([1+ £ = Top) - vjlh)dh(t)v t € hlZg

Gors(£,€, 0 = G (%,g,v) _

(105)
which conserves the initial condition of the process with 4 = 1, namely G, , (¢, ¢, v)h| o =
Gaw(u,v)|,_, = 1. With the scaling & = &h® (I05) and T, = e Pt the well-scaled
continuous-time limit writes

; 1+ £ D2y - 1
t = i e he _ D*J §o
g( 550)/0)015 hg’ngga,l/ (hago 7/U> t [1 +£i0Dta)a]y—’U

5(t), teR  (106)

with Laplace transform

11+ £s) -1

L{G(t, €0, v)e = 107
(00180000 = ST, (107)
The expected number of arrivals (101) are then given by
1 atJrl B 1 at
(W) (1) = 5 ozt 9o (D e = 5 N (W) cg (109

*? In the regime o = 1 we have the finite value G1 ., (u, v)u=1 = = (1 + £)-
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where

0
Mool = =1 = wgg) (109

is the generating function for the expected number of arrivals in (108). Note that all series
|u| < 1) where |@% (u)| < 1. For the

further evaluation it is useful to expand (109) as

Neo(u) Zu" ont (u). (110)

From (108) together with relations (42), (43) follows that the terms n > t are zero thus

i o0
= Zpa,m/(t_”): Z Qa%)(t), t,n €Ny (111)
= m=0
with
(m) t m Vn+m (ny)m 4 N 112
z:: (t—n)! (Oé(m—l—ny)—|— )t,n, t,n € Ny ( )

where P, . (k) is the probability P, . (t — n) of for at least n arrivals within [0, ¢].

Now we derive the continuous-time limit by taking into account that the expected number
of arrivals (107) is a dimensionless (in the sense of relation (174) a cumulative) distribution.
To this end we account for

gymtmpatuntm) (Eot)(mrem)
= . 11
(a(m—knu)—i—])%fn Tlamtarn 1) teR (113)

I
30 (£ — n)!

The continuous-time limit of (I12)) then is obtained by virtue of relation (174)) leading to

. = ()
(M) — 1 <_ ha) _y D7 . 114
Qoz,v( )et hg% Q h’gO 7; m! (ny)mf(am+aun+ 1) ( )
Hence the continuous-time limit of (111) yields
(N)aw(t)et = nz:l ot™) mZO m! T'(am+ avn+1)
te Rt (115)

(e 9]
v v v(n+1) ,av v(n+1
- Zfs B (<60t = 30 & OB (—tt?)
n=0
where Ef (z) denotes the Prabhakar function (3). The result (115) coincides with the ex-
pression given in [24] (Eq. (2.36) in that paper).

In diffusion problems especially of interest is the asymptotic behavior for large ¢. With the
same argument as in Section (4.I) we infer that this asymptotic behavior is contained in
the dominating term for v — 1, i.e. in the leading power of (1 — u). To cover this part we
rewrite generating function

! upy 1 Po u—1-
Now) = T T ~ T (- @) oty

€(0,1.  (116)
Now@) ~ S0 -1 (u>1-0)

’ v
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where this asymptotic formula also includes a = 1. Hence the large-time behavior of (101]

yields
1+ te
(nY (L) ~ 5( t!o‘)"‘ ~ %F(Z T (t large), «a € (0,1]. (117)

This expression contains, by accounting for (174)), also the continuous-time limit for large
observation times (1n)q., (t)et = limp—0(n)an (£, &h") = %"F(f—fm) We note that the average
number of arrivals within [0,t] of (I17) is a dimensionless function of ¢ (£, has physical di-
mension sec”®.). Also we mention that v for large ¢ enters the power-law (I17) only as a
scaling parameter where the smaller v the shorter the waiting times leading to an increase

of (I17) for a fixed t.

It is further noteworthy that in the fractional interval a € (0,1) the power-law (117) reflects
asymptotic self-similar scaling. In other words: For long observation times the event stream
converges to a stochastic fractal on the time line with scaling dimension 0 < a < 1 indicat-
ing a disjoint ‘dust like’ fractal. For a = 1 this behavior turns into linear law indicating
compact coverage of the time line by the events. Indeed for o = 1 relation (I17) recovers
the linear behavior of standard Bernoulli, and of standard Poisson in the continuous-time
limit. The asymptotic power-law (I117) together with (106), are in accordance with
the results obtained for the GFPP [25]].

Particularly instructive is again the standard Bernoulli case o = 1 and v = 1. (109) takes
then the particularly simple form

__ ¢ v
M’](u)_(@rz)(z—u? §+12ku. (118)
Thus (g:g)
<n>1,1(t):§%t—pt t € Np. (119)

We can easily reconfirm this well-known result by employing (101) accounting for the
Bernoulli process state probabilities (56). Then we get

(n)a(t) =Y < i ) np"q' " = p%(p +q)' =pt.

n=0

By virtue of Eq. (174), we can directly derive the continuous-time limit as

&bt

= lim —2——— =&, te Rt 120
h%O(fah—i-Z)h Sot, < ( )

(n)1,1(t)er
in accordance with above considerations. This result indeed is the well-known linear law
for the expected number of arrivals of the standard Poisson process (see e.g. [25] among
many others

The results of this subsection are particularly useful in problems of diffusive particle mo-
tions with PDTP waiting times between the particle jumps. We devote subsequent section
to this subject.

23Thi — S0ty Eot)™ _  d ,—&ot JOO° (Sot)™ _
This result can be reconfirmed by (n)ii(t)ee = e ') 77 nB0i- = Jre0fy T on B0 =
d t(v—1 _
EeEo (v )‘U:I = &t
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5 PRABHAKAR DISCRETE TIME RANDOM WALK ON UNDIRECTED GRAPHS

The goal of the present section is to analyze the stochastic motion on undirected graphs
governed by the PDTP. We consider a walker which performs random steps between con-
nected nodes where the IID waiting times between the steps are drawn from a discrete-time
renewal process. If in contrast the sejourn times on the nodes follow a continuous-time re-
newal process, then the resulting motion is a Montroll-Weiss continuous-time random walk
(CTRW) [47]. Instead we consider here walks where the waiting times between the steps
follow a PDTP. The so defined walk is a discrete-time generalization of the classical Montroll-
Weiss CTRW. We call this Montroll-Weiss type of walk ‘Discrete-time random walk’ (DTRW).

Consider now a random walker on an undirected connected graph of N states (nodes). To
characterize the walk on the network we introduce the NV x N one-step transition matrix
(also referred to as stochastic matrix) H = (H;;) where the matrix elements 0 < H;; < 1
indicate the conditional probabilities that the walker who is sitting on node 7 in one step
moves to node j. The transition matrix is normalized as Z 1 H;; = 1 (i.e. row-stochastic).
From row-stochasticity of H follows row-stochasticity of its matnx power‘ H" (n € Ny)
with the probability (H");; that the walker in n steps moves from node ¢ to j. The matrix
H" is the n-step transition matrix. The one-step transition matrix relates the topological
information of the network with the random walk and is defined by [27, |31} 28] |30]
HUZ%A@:@F%. (121)
In this relation is introduced the adjacency matrix A;; = Aj; (symmetric in an undirected
network) with A;; = 1 if the pair of nodes ij is connected by an edge, and A;; = 0 otherwise.
Further to force the walker to change the node in each step we have 4;; = 0,5 =1,... N,
i.e. there are no self-connections. The matrix L = (L;;) is referred to as Laplacian-matrix
with L;; = K;d;; — A;;. Due to this structure we have L;; = K; where K; = Zé\f:l Ajj is
the degree of node ¢ indicating the number of neighbor (connected) nodes with node :.
We see in (I21) that the inverse degrees play the role of row-normalization factors. In an
undirected graph the adjacency matrix and Laplacian matrices are symmetric whereas the
transition-matrix (I2I) in general is not if there is a pair of nodes 7, j such that K; # K;.
The spectral structure of Laplacian and transition matrix is analyzed in details in [[30] (and
see the references therein). We assume here a connected (ergodic) graph. In such a graph

the transition matrix has spectral representation

N
H = o) (07| + Y Am|vm) (U] (122)
m=2
with unique eigenvalue \; = 1 and |\,,| < 1 (m = 2,...,N) where |v1)(v;| indicates the

stationary (invariant) distribution with lim,,_,., H” = |v1)(v1|. We ignore here for simplicity
cases of so called bipartite graphs where an eigenvalue —1 occurs. For an outline consult
[30] and the references therein. For our convenience we employ in this section Dirac’s
(bm]ket>-notatio. Further |v,,) denote the right- and (v,,| the left- eigenvectors of the
generally non-symmetric transition matrix H. We have the properties (v,|vy,) = Oy With

24For a proof, see [30]
*In this notation S = |a)(b| stands for the N x N matrix which has the elements S;; = (i|a)(b|5) and (i|c) =
({c|?))* where (..)* indicates complex conjugation.
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the N x N unity matrix 1 = SN |v,)(Ty].

We analyze a Montroll-Weiss DTRW where the IID waiting times between the steps follow
a PDTP discrete-time density with generating function (30). Let P(t) = (P;;(t)) be the
transition matrix of this walk. The element P;;(t) indicates the probability that the walker
who is sitting at ¢ = 0 on node ¢ is present at time ¢ on node j. Since the walker is always
somewhere on the network this transition matrix as well is row-stochastic, i.e. fulfills 0 <
P;;(t) < 1 and is normalized as Z;V:l P;;(t) = 1. We assume the initial condition that at
t = 0 the walker is sitting at node ¢ which is expressed by Pij(t)\tzo = 0;;. Then by simple
conditioning arguments we take into account that the walker can move from ¢ to 5 within
the time interval [0,¢] inn = 0,1, ,... € Ny steps where the occurrence of n steps is governed
by the PDTP state probabilities P(J,, < t) = <I>( »(t) (i.e. the probabilities that the walker
makes n steps within [0, ¢]). The transition rnatrlx of a DTRW can be written as a Cox-series
[48@, namely

P l/ Z H" @(n

t)’t:O :5ij7 t €Ny (123)

containing here the PDTP state probabilities <1>(")( t) of (46). We refer this walk to as Prab-
hakar DTRW. Transition matrix (123) is a matrix function of H. It follows from that in
all equations subsequently derived the matrices have a common base of eigenvectors with
H and hence are commuting among each other and with H. So P*¥(¢) - H = H - P ()

is commuting since our initial condition is P(0) = 1 (commuting with HP7. Keep in mind
that P;;(t) 0;; indeed requires the state probabilities to fulfill the initial conditions

(1),
For the proofs to follow we utilize the generating function of the transition matrix (I2Z3)28

’t:O -
= 0,0 which per construction is fulfilled (See Eq. (49)).

) & ) B
P = LA Sy - 2 1)

1 (124)
:Ma,u(u) ([1+E(1—u) ] 1—UH)_ :g_a,u(u’£>H)

which we identify with the PDTP generating function with matrix argument v - H
containing memory generating function M®"(u) of ©3). Series (I24) is convergent for
lu| < 1 since up?) = [Eut| < E 1 = 1 and H has eigenvalues |A\;| < 1. We can easily confirm
that the transition matrix (124) is row-stochastic by Z;V:l P3Y(u) = (i)((l",),(u) = 1. Using
with (124]) yields for the transition matrix (I23) the canonic representation

N
Pa,u(t) = ga#’(t’H) = |f01><61 | + Z ga,l/(t, >\m)|vm><6m|a IS NO (125)
m=2
with time-domain representation G, , (¢, A\) = G(¢,£, \) given in (L05). We considered that

for Ay = 1 we have
ga,u(ta )\)’)\:1 =1, Vvt € Np.

261n a general DTRW the state-probabilities of the respective discrete-time counting process are replacing
the PDTP state-probabilities.

*"Clearly P(t) and H do not commute if the initial condition is such that H - P(0) # P(0) - H, i.e. if initial
condition P(0) and H do not have the same base of eigenvectors.

®defined by P*" (u) = » P (t)u’

t=0
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It follows from the asymptotic behavior of the state probabilities, memory function (GI)
and PDTP generating function (asymptotic relations (103) and (104)) that the stationary
distribution for large ¢ is approached by the power-laM

(2]

v t“

N _
P(t) ~ [on) (3] + 5 7 g Ivm_><;:|, ae(0,1) (126)

This relation shows the non-Markovian long-time memory feature of the Prabhakar DTRW.
Noteworthy here the already mentioned limit @ — 04 where extremely long waiting times
between the steps occur with ﬁ ~ O(t) = 1. The walk then becomes ‘infinitely slow’

thus there is a range for ¢t large where P*"(t) ~ |v1){(v1] + %Z%ZQ % and thus the
walk ‘struggles’ to take the stationary distribution |v;)(v1| (Which eventually is taken since
(1 a) — 0+ for infinitesimally small positive «).

Now our goal is to derive the evolution equation that governs the PDTP transition matrix.
To this end we account for

g_a,l/(u, >‘)

~(v)

= ulGap(u, ) + M (u) (127)
Pa’ (u)

with memory generating function M®¥ (u) (€3). Rewriting (I27) in operator form yields
DY Ga(t,N) = AGau(t — 1, ) + Mo (1), t € Ny (128)

containing the memory function M, ,(t) defined in (ZI). We then can write (128) in matri-
cial representation as

DYPYY () — Mg, ()1 = H- P (t — 1), PEY(0) = 6. (129)

This equation is the Kolmogorov-Feller generalized fractional difference equation that gov-
erns the Prabhakar DTRW on the networkPd. Since M, (1) o = Drou(t ), 0= (5“) fulfill
the same initial condition, Eq. recovers for ¢t = 0 the initial condition of the transmon
matrix (where due to causality the right-hand side for ¢ = 0 is null).

Eq. refers to the general class of equations governing discrete-time semi-Markov
chains given in [16] (See Theorem 3.4.). We can conceive as the discrete-time Cauchy
problem which is solved by transition matrix where the complete history { ;" (t — k)}
(0 < k < t) of the walk comes into play. This shows the following representation of (129),
namely

o] N
(1= T0) 3 KLU RIPG (¢~ k) — 85 [KOU0) — Ot — 1)] = 30 Hy P (6 - 1), tEN,
k=0 r=1
(130)

also reflecting Eq. (80). This equation contains on the right-hand side the topological infor-
mation of the graph (See (I2I)). We observe as a consequence of causality (P;;"(t — k) = 0
for k > t) that the upper limit of the k-summation on the left-hand side is k = ¢. Eqs. (129),
are equivalent representations of the discrete-time Kolmogorov-Feller equations gov-
erning the stochastic motion of a Prabhakar DTRW. These equations are explicit accounting

For aw — 1 — 0 we get =5 — 6(t) = 0.

30Be reminded that with our initial condition P(0) = 1 the matrices on the right-hand side commute.
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for relations (71)) and (Z6).
Continuous-time limit
Then by the same scaling arguments as in previous sections and outlined in Appendix

it is not a big deal to establish the continuous time limit of these equations. In view of (80Q)
having continuous-time limit (81) we arrive at

5 "D [av] / Ba l/ ctPa V( T)cth - 5@']' (507”Dt[ay‘|718a,u(t)ct - G(t)) = Z HZ'TPTC;‘W(t)cta
r=1
teRT
t N
go_yD(OM_l /0 Bou(T)ct Dth‘(;’V(t — T)etdT = Z(Hrj - 5ij)Pz%V(t)ct
r=1
(131)

where §;; = ﬂ?’”(t)ct\tzo is the initial condition and in the formulation of the last line we
used on the right-hand side row-normalization of the transition matrix. The continuous-time
limit kernel B, ,(t).+ was determined in and IC((XO)V( et = & "Dy [av]= 1Ba,y(t)ct in relation
(D). Eq. is in accordance with the ‘generalized fractional Kolmogorov-Feller equa-
tion’ derived for the Prabhakar CTRW on undirected networks [25].

Caserv=1,0<a<1:

Let us discuss the case v = 1 with 0 < a < 1 more closely, i.e. the walk subordinated
to fractional Bernoulli (type B). We refer this walk to as Fractional Bernoulli Walk (FBW).
(130) then takes with Eqgs. (83)-(85) the form of a fractional difference equation:

A [e% o —1 [o'8 (6N
(J—T_]) Pij’l(t)—éij l(—])t<a ¢ )—i—fdw = P 1 —i—fZHWP It Z) t € Ny.

(132)
o = 0ij. The memory term

This equation for ¢ = 0 yields the initial condition Pf;’l(t)\ i

(—1)¢ < a—tl ) ~ I’(%—aa)’ (t large), o« € (0,1)

reflects the long-time memory and non- Markovianity of the process where this memory for
a — 0+ 0 becomes extremely long where F( &y ©(t) = 1; whereas o — 1 — 0 represents

the memoryless limit with r(1 5 d(t) = 0. In order to analyze the continuous-time limit
we account for the generating function (124) of the transition matrix

P (u) = (6+ (1 —u)* ") [€(1 — uH) + 1(1 — u)?] . (133)
The transition matrix of the FBW has the well-scaled operator representatio

P (1) = (€4 (1 — To)* ) [0 —HT) +1(2 — 7o) hou(t),  t€hZo. (139)

31We utilize here notation P*'!(¢); with subscript (...), when we refer to the time scaled walk with t € hZo.
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It follows from representation (134) that P*!(¢) solves the Cauchy problem

(1= Tp) P> (b)), — L(E + (1= Tp)* ) hop(t) = E(HT_, — )P (1),
t e hZy (135)
Pa’l(t)h}t:(] =1

where this equation is the scaled version of (132). This equation is also consistent with
the fractional difference equations (87), for the fractional Bernoulli state probabilities.
Consider generating function (I02) with (105) for v = 1, namely

t t & (n) <t ) . E+ (1 —T_p) !
Eal=60)=Gas (=)= ") (-, — ) — hou(t), tERT
<h§v> Ga,1 <h v> 7;) 1\ 7€) PP ST n(t), te€ hig
(136)

which also is obtained by using Eq. (90). The scaled state distribution of the fractional
Bernoulli process (53) is then obtained from this generating function by

t 1 d" t
o) (_ ) _ LA (_ )
ol h”S n! don”® h”s’
This is the analogue equation as for the fractional Poisson distribution in the continuous-
time limit which is shown a little later. We also show that generating function (136) is a
discrete-time approximation of the standard Mittag-Leffler function. The transition matrix
(134) can then be written in the form of the matrix function

. (137)
v=0

PYL (1), = Ea (%gﬂ) , t € hiZy. (138)

Let us first consider the continuous-time limit of generating function (136)

t h+hl=o(1 =T ;)1
£ (160,00 = Jim £ (3,600 0) = Jim — ST g

h=0 &o(1 — vT_p,) + h=a(1 = T_p)~
(139)
= Lé(t) = B, (—&o(1 —v)t%) tcRT
- 50(1 — 1)) + D? — L 0 )

conserving the initial condition Sa(t,fo,v)ct\ b = 1 of (136). In this relation the standard
Mittag-Leffler function

oo
Zm

Eo(z) =) Tam 1) (140)

m=0
comes into play. This result is easily confirmed in view of Laplace transform L{E, (—at®)}(s) =
2::; of the Mittag-Leffler function. In this way we have shown that generating function
also is a discrete-time approximation of the Mittag-Leffler function (I39). Indeed
Laskin’s fractional Poisson distribution is obtained from the Mittag-Leffler generating

function by [8] [35]] (and many others)

1d"
o1 (B)et = — = Fa(=Co(1 = 0)t%)],_, (141)

which is also the continuous-time limit of Eq. (137). The result (139) allows us to get the
continuous-time limit of the transition matrix (138) in the form of the Mittag-Leffler matrix
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function .
Pl (£),, — lim £, (—, coh®, H) = B (—6o(1 — H)®)
h—0 h

N (142)

= |U1><T)1| + Z |vm><®m|Ea(_£0(1 - Am)ta)’ teR*

m=2
conserving initial condition P*7 ()|t = 0 = 1. Accounting for the Mittag-Leffler asymp-
totic relation (holding for the eigenvalues |A\| < 1) E,(—&p(1 — A\)t*) ~ m% for
large t, we observe (142) agrees with (126) for v = 1.

The continuous-time limit of Eq. (132) yields

o N
DO‘Pa‘l()t—&-i:fO (Hir — 6ir) P2 () ot
t Ci Z_] F(l—O[) T;L r r 7‘] Ci
teRY, 0O<a<1 (143)
1 t
———— [ (t=7) D Py (T)a = Ly P2 (1)
F(1_@/0( )" z .

where the first line contains the Riemann-Liouville fractional derivative Df* of order «
whereas in the second line we utilize the Caputo-fractional derivative of order «. The frac-
tional evolution equation (143) with initial condition Pg’l(t) = 0;; indeed is solved by
the the Mittag-Leffler transition matrix (142]).

ct ’t:O

Eq. (I43) is the fractional Kolmogorov-Feller equation governing fractional diffusion in the
network, i.e. a CTRW in the network subordinated to a fractional Poisson process. The frac-
tional differential continuous-limit equation refers to the class of equations governing
semi-Markov processes related to a-stable subordinators in [16] (Egs. (14), (15) in that
paper). Fractional differential equations of this type (mostly for infinite continuous spaces)
with Mittag-Leffler solutions occur in a wide range of problems in fractional dynamics and
anomalous diffusion (see e.g. [12} (10} [25] [34] [4], [51).

It remains us to consider the case v = 1, a = 1 which is a walk subordinated to a standard
Bernoulli process. We refer this walk to as Bernoulli Walk (BW). We then get for (130) the
difference equation

N
(1= T1) PyT (1) = 6g00(€+ 1) =€ Y (Ha Ty — ) PL1 (1), tEN, (144)
r=1
where with T,lPTl]?l(t) = Prljfl(t — 1) and the memory term ~ dy9 is null for ¢ > 0, i.e. the
process is memory-less and Markovian reflecting these properties of standard Bernoulli
process. Eq. (144) is in accordance with the difference equation given in [16] holding for
Markov chains (See Eq. (65) in that paper). Let us rewrite Eq. (144) also in matricial
representation

(1 +OPHI() =01+ 1) =1 +EH)PLI(t— 1), teNy. (145)

By using causality, i.e. P!(—1) = 0 this equation recovers for ¢t = 0 the initial condition
P11(0) = 1. For ¢t > 1 this equation yields the recursion

PI(t) = %rg 1+ cH)PHI(t—1), PLI(0)=1. (146)

36



Thus by iterating this recursion yields for the transition matrix P1!(t) = e +§) (14 €¢H)".
On the other hand in view of the Binomial distribution we can obtain this result also by
employing the Cox series (123), namely

1
PLI(t) = P14, "=~ (14+H)=(pH+¢1)!, teN
(147)
where p = ﬁ—g and ¢ = 1—}r£ In view of (I47) and also with Binomial distribution it

follows that p is the probability that the walker makes a step and ¢ that it does not make a
step in a time unit 1. For p = 1, ¢ = 0 the walker hence makes (almost surely) ¢ steps up to
time ¢ and (I47) recovers P! (t) = H! the definition of the ¢-step transition matrix. On the
other hand for p = 0, ¢ = 1 the walker (almost surely) does not move thus in this case the
walker remains on his departure node with P11 (¢) = 1.

Now we can directly derive the continuous-time limit of (I47) by considering the process
on ¢t € hNj to arrive at (See Eq. (174))

t 1
PY(t)y = lim PM! <—, £0h> = lim ——— (1 + &hH)*
h—0 h
(148)
— S0t LoHt _ e—fmf(l—H)7 teRT.

This result is also consistent with the Cox-series generated with the Poisson-distribution
state probabilities

(o] t n
Phl(t)y = 9(15)67501t Z H"—(gfl!) = @(t)e*&’tegoHt

N
=01 ([o1) (1] + Y [vm) (G |e2 711, teR (149)

where we added here the Heaviside function to emphasize causality. By accounting for
the spectral structure of H, namely A\; = 1 and m — 1 eigenvalues with A\, — 1 < 0 we
have limy s e?Gm =Dt — 0 for m = 2,... N thus the transition matrix P11 (t), — |v1) (7]
approaches asymptotically the stationary distribution. We also notice that the matrix expo-
nential (148), is recovered for a = 1 by the Mittag-Leffler transition matrix (142]).

Finally the continuous-time limit of Eq. (144) is obtained as

DtPiljjl(t)ct - 5@]6(t) = _£OPZ' ct + 50 Z Hzrpl ! = Z prl !
teR (150)

DPH () — 16(t) = & (H— 1) PH1 (1)

with initial condition P! (¢)|;—o = 1. The continuous-time limit is the Kolmogorov-
Feller equation governing the transition probabilities in continuous-time Markov chains, i.e.
CTRWs on graphs with underlying standard Poisson process. It is straight-forward to see
that Cauchy problem is solved by the continuous-time limit exponential transition ma-
trix (148), (149). The Eq. can be also be recovered from the fractional case
in the limit o« — 1 — 0. Kolmogorov-Feller equations are widely used as master equations
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to model Markovian walks on graphs (Markov chains) and normal diffusion in multidimen-
sional infinite spaces [116| |30]] (and see the references therein).

In this section we focused on walks subordinated to PDTPs which we refer to as Prabhakar
DTRWs and their special cases such as fractional Bernoulli and standard Bernoulli as well
as their classical continuous-time limits. The advantage of the Prabhakar DTRW with the
PDTP counting process of three parameters a € (0,1], v > 0, £ > 0 is the great flexibility to
adapt real-world stochastic processes.

Another interesting case (though not being Prabhakar) is the DTRW with Sibuya counting
process. A detailed analysis of this walk is beyond the scope of the present paper. The
essential aspects are analyzed in [[16]. We confine us here to a brief outline in the spirit of
a Montroll Weiss Sibuya DTRW model in Appendix

6 INFLUENCE OF WAITING TIME INITIAL CONDITIONS ON DTRW FEATURES

This section is devoted to briefly analyze the effect of the initial condition of the discrete-
time waiting-time density in a DTRW. In this paper we have constructed discrete-time
counting processes with discrete-time waiting time densities w(t) on ¢t € {0,1,2,...} with
w(t)] +—o = 0. Here our aim is to consider the effect of a discrete-time counting process
which has w(0) = 1 — € with 0 < € < 1. The waiting time generating function of such a
process then is given by
o
Eu? = o(u) = 1 —e+u2uk_1w(k). (151)
k=1

The state probabilities (probabilities for n arrivals within [0,¢]) then have the generating
function

80 ) = 1)

Now let us consider the initial condition of the state probabilities

(w(u))®, n=20,1,2,... (152)

oM(t)|,_, = " (w)|,_, =€l —&", n=01,2,... (153)
(n) €
with normalization ()|, _,=-=1

(i) The first observation is that the initial condition of the survival probability is ®© (t)|,_, =
e. The good initial condition ®(™(0) = 6, is only fulfilled for ¢ = 1 and as a consequence
w(0) =1—€=0.

(ii) The second observation is that for e — 0 we have w(0) = 1—e — 1 and hence &%) (¢) ’t:O —
0 for the survival probability. Hence at ¢ = 0 at least one event already has arrived (almost
surely).

Consider now a Montroll-Weiss DTRW with this discrete-time counting process. Then with
(123) the generating function of the transition matrix by accounting for Eq. (152) writes

Plu)= 3 6()(u)H" = 1%"57) (1 — w(u)H) " . (154)
n=0

38



The ‘natural’ initial condition is P(t = 0) = (d;;) when the walker at ¢t = 0 is sitting on a
given initial node ¢. However, this natural initial condition is fulfilled if and only if the state
probabilities fulfill the initial condition ®™ (¢t = 0) = §,0 which is true only for ¢ = 1 (See
(153)). Let us now consider the effect of ¢ < 1 on the initial condition of the transition
matrix, namely

P(t)],_y = P(u)luco = 3 (1 — )"H"
n=0
%) N o
o] S e = e 3 S (1= )" [ (155)
n=0 m=2n=0
PO) = fo)(an] + ¢ 3 L e 1)) 3 L)l
= 1=An(l—¢) = 1= Apw(0)

We observe that for ¢ — 0 (i.e. w(0) — 1 — 0) the transition matrix already at ¢t = 0 takes the
stationary distribution P(0) — |v1)(v1| (and not as it is in a ‘good’ DTRW for ¢ — oo). Then
the departure node of the walker becomes maximally uncertain in the sense of a random
initial condition where the walker at ¢ = 0 (almost surely) makes a huge number of steps
to reach ‘immediately’ the stationary equilibrium distribution which remains unchanged
P(t) = ’1)1><1_)1‘ Vt.

In view of this consideration we can formulate an ‘uncertainty principle’ as follows: The
more P(Z = t) = w(t) is ‘localized versus t = 0’, the more variable is the (random) initial
condition of the transition matrix. As a consequence for w(0) > 0 the transition matrix does
not solve a Cauchy initial value problem and the departure node is ‘uncertain’. On the other
hand for ¢ — 1 (i.e. w(0) — 0) the initial condition becomes P(¢t = 0) = 1 thus the DTRW
then is a ‘good walk’ with a well-defined (‘certain’) departure node.

We notice that relation is consistent with recent results obtained by a different ap-
proach [132]].

7 CONCLUSIONS

In this paper we analyzed discrete-time renewal processes and their continuous-time limits.
We focused especially on counting processes which are ‘Prabhakar’. These processes are
discrete-time approximations of the Prabhakar continuous-time renewal process (GFPP).
Among the discrete-time Prabhakar processes one process (the PDTP) stands out as it con-
tains for special choices of parameters (namely for » = 1 and 0 < a < 1) the fractional
Bernoulli counting process and (for » = 1 and a = 1) the standard Bernoulli process. The
PDTP and the class of discrete-time ‘Prabhakar’ counting processes converge in well-scaled
continuous-time limits to the continuous-time Prabhakar process.

The PDTP is constructed such that zero waiting times between events are forbidden leading
to strictly positive interarrival times. This ‘good’ initial condition makes the PDTP useful to
define a Montroll-Weiss DTRW that solves a Cauchy problem with a well-defined departure
node of the walker. We called this walk Prabhakar DTRW. We derived for the Prabhakar
DTRW generalized fractional discrete-time Kolmogorov-Feller equations that govern the re-
sulting stochastic dynamics on undirected graphs. The Prabhakar DTRW (unless for a = 1
and v = 1) is non-Markovian where in the range o € (0,1) and v > 0 for long observation
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times universal (Mittag-Leffler) power-law long-time memory effects emerge with fat-tailed
waiting time densities.

We demonstrate explicitly that for certain choices of parameters the generalized fractional
difference Kolmogorov-Feller equations of the Prabhakar DTRW turn into their classical
counterparts of fractional Bernoulli and standard Bernoulli, and the same is true for their
continuous-time limits recovering fractional Poisson and Poisson, respectively.

Although we focused on undirected graphs, a promising field of applications of the PDTP
and Prabhakar DTRW arises from biased walks on directed graphs (See [49] for a recent
model of fractional dynamics on directed graphs). Among these cases Prabhakar DTRWs
come along as strictly increasing walks with interesting applications such as ‘aging in
complex systems’. These problems exhibit strictly increasing random quantities (‘damage-
misrepair accumulation’) [29]. Generally the Prabhakar DTRW approach opens a huge
potential of new interdisciplinary applications to topical problems as various as the time
evolution of pandemic spread, communication in complex networks, dynamics in public
transport networks, anomalous relaxation, collapse of financial markets, just to denominate
a few examples.

A APPENDICES - SUPPLEMENTARY MATERIALS

A.1 DISCRETE CONVOLUTIONS AND GENERATING FUNCTIONS

In this appendix we review some basic properties of generating functions (discrete Laplace
transforms) which are powerful analytical tools. The generating function is defined by

g(u) = Eu? = Z uFg(k), lu| < 1 (156)

where we assume P(Z = k) = g(k) is a discrete-time waiting time probability density in a
discrete-time counting process. Normalization is expressed by g(u)|,=1 = 1, Eu? stands for
expectation value of uZ and Z € {0,1,2,..} = Ny a.s. indicates a discrete random variable
which takes the values Z = k with probability P(Z = k) = g(k). We notice the correspon-
dence of generating functions with Laplace transforms by introducing the density (PDF)

=Y 6(t—k)g(k), teR (157)

defined on continuous-time where §(7) stands for Dirac’s J-distribution. Density has
Laplace transform

L) = [ (At =B = g(e™),  Rs>0 (158)

which is the generating function (I56) for u = e_* and g(e™*)| _, = X320 g(k) = 1 reflects
normalization. The discrete convolution operator. of two causal functions ¢(t), h(t) defined
ont € Ny is defined as

(@ 1)0) = (b)) = 3 9G)A1 =) = 7GRN0, 1€N0 (159)

32We use sometimes also the synonymous notation g(t)  h(t) for (I59).
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where g(u)h(u) = 32 ulg(t) = h(t) is the generating function of the discrete convolution.
In the following we denote the nth convolution power with
t
(904" = 525Gz, tim €Ny (160)
which includes n = 0 and yields unity (g(t)*)? = d; (where J;; denotes the Kronecker symbol,
which in the following will also be denoted by the equivalent notation ¢; ;). Relation
can be extended to non-integer (especially fractional) convolution powers n € R.

Now let us see the connection between generating functions and the shift operator T4
which is defined by 7" ¢(t) = g(t—1). Consider again generating function and replace
u by the shift operator T, and use (T_l)”éw =T 1610 = d(t—n),0 = Otn to arrive at
. s 1 dt
I(T-1)o10 =Y g(k)du = g(t) = 7 7ut9(Wlu=0, ¢ €No. (161)
=0 . au
In the present paper we extensively make use of the correspondence of generating func-
tions and shift-operator counterparts. Such procedures turn out to be especially useful in
the definition and determination of suitably scaled continuous-time limits and governing
discrete-time evolution equations.

A.2 SHIFT OPERATORS AND CAUSAL DISTRIBUTIONS

We consider a causal distribution ©(¢)g(t) having all its non-zero values on ¢t € {0, h,2h,...} =
hZy (h > 0) and zero values for ¢ < 0. For its definition we make use of the discrete-time
Heaviside function defined by

1, te{0,h,2h,... }
On(t) = O(t) = t € hZy, h>0. (162)
0, te{—h,—2h,...}

We especially emphasize that with this definition ©,(0) = 1. In the entire paper for Heavi-
side functions we write ©,(t) = O(¢), i.e. we may skip subscript h. Without loss of general-
ity we may identify the discrete-time Heaviside function with its continuous-time counter-
part, i.e. the conventional Heaviside- unit-step function with O(¢) = 1 for ¢ > 0 (especially
©(0) = 1) and O(t) = 0 for t < 0 defined on ¢ € R. This is necessary when we use 7._;, = e~
leading to the ‘distributional representation’ e~"”t@(t) = ©(t — h) which is defined on ¢ € R.
This allows to define Laplace transformation of d;,(t) as in which has ‘good properties’
in the limit for » — 0.

Let 05 (we also use notation d;;) be the Kronecker-o defined for any positive and negative
integer including zero by

1, 1=
dij = 0i—jo = i, € Zg (163)
0, i
where we have the translational invariance property d; i jtm = 0;; (m € Zg). Then we

define the ‘discrete-time d-distribution’ as follows

1
o) —0(t—h) 1-T, 1 B

on(t) = ; —6(t) = 201, = tehZy (164)
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where 5370 in this relation indicates the Kronecker-Symbol where we notice that % €
Zy. We observe that for h = 1 we have 01(t) = . Formula (164) defines a discrete-time
density on t € hZ,. However, it makes sense to extend this definition to ¢ € R. With this
extended definition &y (t) = w becomes an integrable distribution in the Gelfand-
Shilov sense [50] with 6, (t) = # for t € [0, ) and ,(t) = 0 else. Then we have [*_ 5, (7)dr =
foh dp(7)dT = 1 and 0,,(t) has a well-defined Laplace transform (subsequent relation (166)).
Of great importance is the continuous-time limit of the discrete-time J-distribution

1 — e hDe

lim 6,(1) = lim ————6)(t) = D,6(1) = 5(1). teR (165)

recovering Dirac’s continuous-time J-distribution. Further, it appears also useful to briefly
consider the Laplace transform of d;,(¢), namely

) 0 1 — ¢—hD:
L{S (D)} (s) = / " bn(te e = [ - _St(eih)@(t)dt
B N O ) PN U A R (166)
—/_009(75)?6 dt = - /0 e *'dt R{s} >0
1= e hs
N hs

where indeed limj,_,o £{05(t)}(s) = L£{d(¢)}(s) = 1 recovers the Laplace transform of Dirac’s
d-distribution reflecting (I65). We applied here partial integration and we used 7_;, = e Pt
having adjoint operator (T_;)1 = T\, = e'Pt (with e/Pte=5t = ehse=st),

Continuous-time limit of discrete-time densities

Let g(k) be a ‘discrete-time density’ such as for instance a discrete-time waiting time dis-
tribution P(Z = k) = g(k,C) (k € Np) and C stands for an internal parameter (or a set of
parameters). We often write g(¢) instead of g(¢, C') if only the time dependence is of interest.
We assume g(t) = O(t)g(t) (t € Zo) to be a causal distribution. Then we can define the
‘scaled causal discrete-time density’ by accounting for as follows

9 = G50 = 3 ok, OV on(t) = 3 gk, O)on(t — ki)

k=0 k=0
=0(t)h g (% C) , t € hZy (167)
1 t
=h""g E’C , t € hNy

which due to the summation over non-negative k is non-zero only for ¢ > 0 (causal-
ity). Here the process takes place on t € hNy and the scaled discrete-time density g(t), =
h~lg(£,C) (t € hNg) as well as g(t),—1 = g(t,C) (¢t € Ng) both have physical dimension sec ™!
and merit therefore to be called (discrete-time) dens1t1e. When £ is finite the parameter

*Note that g(%7 () is dimensionless since % is dimensionless as t and h have units sec.
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C does not necessarily need to be scaled with h. However, we will see subsequently that
generally we need to introduce a scaling law C' = C(h) = Cyh” such that the continuous-
time limit A — 0 of exists. The constant C; > 0 is independent of h and is a free
parameter. Cy has units sec™” (as C' = Cph” is dimensionless).

Now let us define the continuous-time limit density of (167) and introduce the variable
T = hk € hNy and rescaled parameter C(h) = Cyh” with scaling dimension p such that the
limit

g(t,Co)et = hm g(T R)OR(t) = hm Z ( Cohp) op(t — hk)h = / (1,C0)etd(t — 7)dT

1 1/t
_ — 13 _ _ 4
ROt = g <h’00h >

(168)

exists. In the second line we used 0, (t — kh) = 16%7,? of (164). We call g(t)et = g(t,Co)et

(t € RT) the continuous-time limit density of the discrete-time density g(¢,C) (t € Np).

We refer %g(%,C) (t = {0,h,2h,...,} € hNp) to as the ‘scaled’ discrete-time density and

%g(%, Coh?) the ‘well-scaled’ discrete-time density, the latter with suitably chosen scaling
1

dimension p such that the continuous-time limit exists. We further notice that C, ? defines
a characteristic time scale in the continuous-time density g(¢, Cp)c:.

Limiting relation indeed is useful when we consider processes on discrete times € hNg
and especially for the transition to the continuous-time limit » — 0 where the asymptotic
behavior of g(k) with k = % large comes into play. To see this we consider the important
case of a fat-tailed behavior g(k) = g(k,C) ~ Ck~*~! for large k with a € (0, 1) such as for
instance in relation (59). Then we need to rescale the internal parameter C'(h) = Cyh” such
that this limit

t t —a—1
— lim = A~ ! — P 1 —1 P _ 1 pta—a—1 R
g(t, Cp)et }IL;mO h g(h,Cgh )%er})h Coh (h) fngno CohPTt , te

(169)

exists. Clearly this limit exists if and only if p + a« = 0 and hence p = —«a thus the required
scaling is C'(h) = Cyh™®. Then the continuous-time limit yields

L 3 _ o
gt Coler = Jim 1" (3. Cob ™) = Cot™o". (170)

We notice that a fat-tailed continuous-time limit of the form originates from a discrete-
time density having generating function g(u) = 1-C’(1—u)*+0(1—u)* (with C' = Cw >
0) which corresponds to a rescaled version of Sibuya(a). This underlines the utmost uni-
versal importance of Sibuya(a) which is recalled in more details in Appendices
Furthermore, to establish the connection to relation (59): When we identify the constants
C(h) = g(hi) (and Cy = = ﬁ) then relations (169), recover (59).

Well-scaled limiting procedures in the sense of relations (168)-(1/0) are recurrently per-
formed in the present paper.

Continuous-time limit of ‘cumulative discrete-time distributions’
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Apart from densities we also deal with ‘cumulative discrete-time distributions’ which we
define as

G(t) = G(t)h=1 = % (f(_uL) lu=o = >_ g(t — k)O(k)
k=0
=0(t)xg(t) = ! 1T g(t) =>_ g(k), t € Ng (171)
-l k=0

where ¢(t) = ¢(t,C) is a causal discrete-time density as defined above in @E7P4. cumula-
tive distributions in the sense of (171)) are distributions generated by summation of discrete-
time densities and are dimensionless distributions. Examples of cumulative discrete-time
distributions include the (dimensionless) state probabilities (I)&"Z(t) (See (46)). As cumula-
tive distributions are dimensionless, we have to think the sum (IZ1) multiplied with a time
increments h = 1 (having physical dimension sec). With these observations we define the
‘cumulative scaled discrete-time distribution’ as

h h

- - — 5t = g(T_p)O(), tehz (172)
i, PR n(t) = g(T-1)O(t) 0

G(t)n G(T_n)on(t) = g(T-p)

where - ; on(t) = O(t) (See (164)) and G(t)p—1 recovers (171). Now in order to consider
—T_p

the continuous-time limit we rewrite (172) as

ok
1-T,

ot =3 ha(t — k= 3" o= F 0

k=0 k=0

G(t)n

t € hN, (173)
" t
Y4k 0) =G (5.€)
k=0

where G(k,C) = G(k,C)1 (k = % € Np) is the cumulative distribution (I71) and g(¢), =
G(T_,)8,(t) indicates a causal scaled density as in (I67). The continuous-time limit then is
obtained as

t
= 1i = |i — e P
G(t’CO)Ct_}L%G(t)h %%G<h’c(h) Coh >1
teRT. (174)

t
=Dﬁmumd:49m%mw

The scaling of the constant(s) C'(h) = Cph” has to be suitably chosen such that the limit
(I74) exists where the same scaling dimension p occurs as for the density in (168). This
equation is constructive for the explicit evaluation of continuous-time limits for instance in
the state probabilities since it is the limit of the integer time expression G(£,Coh?); (+ € N
large) of Eq. (I171) for h — 0.

Further properties of causal discrete-time distributions

Now let us consider discrete-time convolutions of causal distributions G(¢) = ©(t)g(t). By

34Causality makes in the sum 17;71 g(t) =320 (T-xO(t)g(t) = > 50, O(t — k)g(t — k) the upper limit k = ¢.
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accounting for the shift operator 7" such that 7', g(t) = g(t — n), especially we define

T ndij = i—nj = 0ijin = 0iTn
(175)
Tn = (Ton) = (Tp) ™

where with At we indicate the adjoint (hermitian conjugate) operator to A. It is well-known
that shift operators are unitary and represent a commutative (Abelian) group. From obser-
vation we introduce the notation
Tubij = Gitay = Oij—a = 0i T a,
(176)
81Ty = bijan = 6ipj = T_u0i .

We introduce the convention that if we write the shift operator T to the left of the Kronecker-
symbol J; ; it acts on the left index (,..) and if we write it to the right of the Kronecker-
symbol, then it acts on right index (..,j). Let us consider now a chain of discrete-time
convolutions

(G1+Gox...xG)(t) = g1 (T-1)G2(T1) ... Gu(T-1) 610

= > D 0D Sitirter 4. O(t1)O(t2) ... O(tn)g(t1)g(ta) ... gltn), tE Ly

ti=—00 tea=—00 tn=—00

(177)

where the first line establishes the shift-operator representation. We notice in view of
Gi(T-1)g;(T-1) = g;(T-1)g:(T_,) that discrete-time convolutions (as their continuous-time
counterparts) indeed are commuting. The convolution power is a special case of
(I77). The generating function of (177) can be recovered by

o

Z(Gl*GQ*...*Gn)(t)ut

t=0

= Y Y Y 0t)0(t) .. Ot)g(t)g(ta) - gltn) X S Stirrtr pul (178)
t1=—00 ta=—00 tn=—00 t=0

=TI 3 gltpub = gi(w)ga(w) .. gu(u)
j=11,=0

reflecting also shift-operator representation in (I177). Then define operator functions A(T,l),
B(T41) which commute and act on a convolution of the form (178)

A(T_1)B(T'1)(Gy * Gy * ... x Gp)(t)

[e.9] (e 9]

= Z e Z O(t1)O(t2) ... O(tn)g(t1)g(t2) - - - g(tn)A(T—l)B(T+1)5t7t1+t2+...+tn
T (179)
S o> 0(t)O(t2) ... O(ta)g(t)g(t2) . . 9(tn)Ot b +totttn A(T 1) B(T-y)

= (G1*Gax ... % Gp)(t)B(T-1)A(T11)
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where it is crucial here that ¢ € Z,. All the representations in (179) are equivalent where
. . t R R
we utilized (176) with the adjoint operator function {A(T_l)B (T+1)} = B(T_1)A(T41) (com-

muting). For instance consider A(T_l) =1T_,, then we have

T (G xGox...%Gp)(t) = (G %Go % ...%Gp)(t —n)

= > .. > Ot)O(t2) ... O(tn)g(t1)g(ta) - - - g(tn)St—nts +tot..+1,
tom—00  th——o0 (180)

= O(t1)O(t2) ... O(tn)g(t1)g(t2) - . - g(tn)dt b1 +to . A tntn

A

= (Gl * GQ *x...% Gn)(t)T+n

Application of any shift-operator functions on discrete-time convolutions of causal distri-
butions is hence well-defined in the sense by reducing the shift operations to shift
operations in the argument of the Kronecker-§. In the distributional sense all operations in-
volving operator functions of shift operators act on convolutions (for instance the discrete-
time fractional Kolmogorov-Feller equations (65), and (80)) and are well-defined as
they can be reduced to shift operations acting on Kronecker-ds defined on Z,. It is straight-
forward to rewrite all these relations for their scaled counterparts defined on hZg involv-
ing discrete-time ¢-distributions generalizing the Kronecker-ds. We can conceive the
causal discrete-time distributions in a wider sense as discrete-time counterparts of Gelfand-
Shilov generalized functions and distributions [50].

A.3 GENERALIZED FRACTIONAL INTEGRALS AND DERIVATIVES

Here we consider some properties of discrete-time convolution operators and their continuous-
time limits in order to establish the connection with fractional calculus. To this end let us
introduce the notion of ‘generalized discrete-time fractional integrals and derivatives’ in
the spirit of Ref. [46]. Let O(¢) f(t) be a causal discrete-time distribution defined on ¢ € hZ

(h > 0). Then we define the well-scaled ‘discrete-time integral’ as

h

o) =S TowOWf () = S Bt — kh) = 3" hf(kh),  tehZ, (181)
1 =T k=0 k=0 k=0

which is well-scaled thus its continuous-time limit # — 0 exists for sufficiently ‘good’, i.e.
absolutely integrable distributions f(¢) defined on ¢t € R™. The continuous-time limit then
yields the standard integral

. h iy ot .
Jim, ey O () = D7 O (1) _/0 f(rdr,  teR*. (182)
Now we introduce ‘generalized derivatives and integrals’ which include traditional and
fractional derivatives and integrals. We generalize (181) by introducing the well-scaled
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‘discrete-time fractional integral as

h ' — pH - _ —H _ B
(m> -O(t)f(t) = h" Y ( 1)"“( L )f(t hk)O(t — kh)

k=0
n> 0, tehNy. (183)

t
n
— hp, _1\k —K _
S0 ) s m
k=0
Taking into account that the shift operator can be represented as

d

T = e hPr Dy = —
h ) t dt

(184)

where limj,_,oh~'(1 — T_}) - f(t) denoting the traditional derivative of first order. Then we
consider the limit

Jim (1 — e "POTRE(t) = DM f(1) (185)

which defines first of all an operator representation of the integral of order u > 0. Now we
evaluate explicitly the continuous-time limit of (I83) to arrive at

D" f(t) = %i_)n% (1 — e PPy =H L f(t) = %im > —T]f)f(t — kh)

[th—?] th—1
S Fh_uir(u—'rk)f(t—k:h)%— - TR gy

k=0 (k) (ke +1) k=1+[th=9] [(p) D'(k + 1)
z pl §e€(0,1) (186)
= lim Z h(kh) f(t . /{?h) + O(h(lfé),quQé)
h—0 _ F(Iu)
k=1+4[th=9]
t p—1
= lim T ft—m7)dr + O(h(lf(s)/,rf?é)

h=0 Jn(1+(th=91) T'(1)

)
= f(t—7)dr.
o I'(w)
We indeed identify the last line with the Riemann-Liouville fractional integral of order p
(> 0) [51] where 1 € N recovers traditional integer order integration and for y — 04 the

kernel % — (1) thus reproducing the identity DY" f(t) = f(t). For u > 0 the kernel %
is on R* a locally integrable function.

In the deduction we employed the ceiling functiond [..] namely ko = [th~%] where we
have limy,_,o h(1 + [th™%]) ~ th'=% — 0. We choose d € (0,1) such that the first sum S (h) in
the second line tends to zero for h — 0 at least as Sj(h) ~ h*(1=9+20 which is shown below.
The crucial point for this choice is that hkq(h) ~ th'=% — 0, however kq(h) ~ th=® — oo for
h — 0. Hence in the second sum of the second line in all terms k is large; so can employ

35For a definition see below (192).
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the asymptotic relation —~%+1 __ K1 The gcaling behavior of S;(h) for h — 0 is then
TG ™~ TG

obtained as follows

ko ko _
&w»zg;§%§%{§ﬁu—km~f@—nmmw;%< :><=Wa Fo(h) = [th™0]

— Pt — nhkg d* 1) = f(t— phkg) A (—1)f0 [ LT 0,1
_f( -n 0) ]’C—O'duko( _u) |u:0_f( -n 0) (_) k:(] ) 776(7)

(= k) T R0 2 1) e (B Dk

T(ko + )I(p — 1) kq!
hikl 2 th—2 s _
&WNﬂtW%Hw:yﬁﬁm;EWhW”NW”m%%Q (h—0)

(187)
where in (I87)%9 1 # 1. In the last line we used that ko = [th=0] ~ th~% (large) with 6 € (0,1)
and x> 0 and the interim value f(t—nhko) ~ f(t) is approximately constant over the (small)
interval [t — koh, t] especially for h — 0.

A more sophisticated generalized integral operator which we refer to as ‘Mittag-Leffler
integral’ is of interest [52]]. We can define this convolution operator by the following well-
scaled continuous-time limiting procedure

§(h)

Lo f()= fim oo g S0, n> 0, L kN (188)

where £(h) = {h* is chosen such that exists. Then has the Laplace transform

0o h*
li . — 1 —st EO
h1—>rnO£{IM 5h(t)}(8) }L1—>H6 0_ e thu + (1 _ e—th)

on(t)dt

>0 (189)

o €o )
B ilzli% & +hH(1— e—hs)ﬂﬁ{éh(t)}(s) &+t

where we made use of the limiting property lim;_,o £L{3,(¢)}(s) = L£{(¢)}(s) = 1 of (1&6).
We identify (189) with the Laplace transform of the Mittag-Leffler density. Now rewrite
(188) as a series of Riemann-Liouville fractional integral operators

T, 3(t) = lim S (-1 (6ot (1— e M2 #)" 5,0

h—0
n=1
p>0, teRt (190)
> — —n 50
L -8(t) = D> (~1)" D™ - 6(t) = - 6(t)
(] n;l 0+t §O+Dé‘

36The case p = 1 of standard integration is considered above (I81)-(I82).
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where the Riemann-Liouville integrals D, " - §(t) are defined by (I86). Thus we obtain the
continuous-time limit convolution kernel

€o L5()

Iu'5(t):m

teRT

/ PG T ) = G Ep(—ot) = (1~ B (o)
OF( ) — <0 22 0 dt J7ANNY

(191)
which we identify with the Mittag-Leffler density where here we have t > 0 and ¢ =1
recovers the exponential density Z; - §(t) = &e ™%t

So far in this appendix we generalized well-scaled discrete-time fractional integrals which
involve uniquely non-negative powers of the well-scaled discrete-time integral operator
k%h‘ Now we analyze operators involving its negative powers leading to the notion of
generalized fractional derivatives. To this end we define the well-scaled ‘discrete-time frac-
tional derivative’ a

h M .
. — hTH _ 122
(1 - T_h> f(t)=h"H(1 —=T_p)" O(t)f(t)

>0, tehNy.  (192)

[ #
_h ;( - )(—U’“f(t—k‘h)

Then, recall the ceiling function [p] indicates the smallest integer larger or equal to p. We
have —1 < p— [pu] < 0with —1 < p— [u] < 0if u ¢ N and zero if p = [p] is integer. Then
(192) can be decomposed as follows

hH(1 — Top) = b= 1el (1 — T_p) I plel=w (g — oy )r=Tnl (193)

>

which is a discrete-time derivative of integer-order [u]| applied to a (generalized fractional
discrete-time) integral of order [x] — . The continuous-time limit of (192)) is then obtained
by accounting for
d#
im A~ I#1 ul — _ plul
]11_% h (1 —1T-p) = =D, (194)
converges to the integer-order traditional derivative of order [x] and

lim AP (1 — Ty Tl (1) (195)
h—0

converges by taking into account (186) to the Riemann-Liouville fractional integral of order
[1] — p. Hence the continuous-time limit of (192)) yields
T ”,LL" —H— 1

T — T . = [ t ~ T
Df-f(t)—gl_r}})h M1 = T_p)"- f(t) = D /Of(t )F(M—M)

which we identify with the Riemann-Liouville fractional derivative or order u [51]] where
rlrl=r=1 dque to —1 < [u] —p—1 < 0is if u ¢ Ny a weakly singular integrable function.
For [u] — p — 0, i.e. in the limit of y approaching integer we have the distributional

Flul—p—1

relation T+—~— — d(7) [50] thus converges to the integer order derivative D} - f(t) —
] P(Tul—w)
DI 1 (1).

37The limit h — 0 of this relation can be identified with the Griinwald-Letnikov derivative, e.g. [15].

dr, teR" (196)
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A.4 SIBUYA WALK

We consider now a strictly increasing random walk with Z; € N are IID steps occurring with
the probabilities

P(Z) =) = wa(r) = (1) ( . )

_(—1yt ala—1).(a—7r+1)
7!
This distribution is referred to as Sibuya(«) (See [16] for a thorough analysis of properties).
The limit « — 1 — 0 gives a ‘trivial walk’ where the walker in each step hops from r to
r + 1 (almost surely) with transition probabilities w;(r) = d,; (r € Ny). Despite a = 1 is

admissible, per definition Sibuya(«) covers only the fractional interval « € (0, 1).

, rTeN, wa(r)|r:0 =0, a€(0,1). (197)

Sibuya(«) has the generating function

o
Ga(u) = 3 (— 1)k ( Z ) =1 (1w |u <1 (198)
k=1
with w,(r) = 44w(u)|,—o gives the probabilities (I97). We notice that for large r using
the asymptotic formula F(F?:f)c) ~ r¢ we have
L «
walr) = (-1 ( ‘ )
a T'(r—a) ar—o-1 roo-l

= T = )T ~ T —a) = (o)’ (r large), a€(0,1) (199)

which is fat-tailed with the same tail as the Mittag-Leffler density.

An interesting quantity in a strictly increasing walk is the expected hitting number 7(r)
of a node r. For o = 1 this quantity is trivial and yields 7,-1(r) = 1 which is the upper
bound in a strictly increasing walk. Since allows long-range jumps (with overleaping
of nodes) and in view that the walk is strictly increasing so that nodes can be visited either
once or never, intuitively we infer that the expected hitting number fulfills 0 < 7,(r) < 1
in the fractional interval a € (0,1). This will be indeed confirmed subsequently by means
of explicit formulas. The expected hitting number 7,(r) indicates the average number of
visits of a node r and generally is an important quantity to describe recurrence phenomena
53] 54 [30]. It is clear that a strictly increasing walk always is transient, since the walker
cannot return to a node. Generally the expected hitting number of a node in a strictly
increasing walk fulfills 0 < 7(r) < 1. By simple conditioning arguments we have tha

o
7(r) = >_ (wax)"(r) (200)
n=0
where (wyx)"(r) indicate convolution powers (See Appendix [A.I). It follows that (200) for

Sibuya(«) has the generating function

Ga(t) = 3 (@a(w)" = ———— = (1 —w)®,  |u| <1 (201)
n=0

1 — 1w (u)

3For an analysis of this quantity for space-fractional Markovian walks on undirected networks, see [30].
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where w,(u) is the generating function (198) of the Sibuya-steps. The expected hitting
number of a node r € Ny in a Sibuya walk is then obtained as

1 d 1 1 d
% 1—w)"9 _
7a(r) rldu” 1 — we(u) lu=0 7! du’"( )" u=0
r € Ny (202)
_afla+1)...(a+r—1) 1 T(a+r) ()
B 7! () T(r+1) 7!
where («), stands for the Pochhammer-symbol (). For o = 1 we have 7i(r) = % =1

Vr € Ny which is the above anticipated result when the walker hops in each step from r to
r + 1, thus the walker hits each node once (almost surely). Hence 71(r) = 1 is the upper
bound for 7,(r) which can be seen accounting for

-

Ta(T):H(J-l-a_,]), 0<a<i (203)
j=1 J

where each multiplier fulfills 0 < 1 + O‘T’l < 1 thus 0 < 7,(r) < 1. The lower bound

To+(r) ~ &y (i.e. null for r > 0) is approached for &« — 0+ where also for r large we then

have 7,(r) ~ ?Q(—;; ~ §(t) = 0. The physical interpretation is that the steps then become

infinitely long, thus any finite node r > 0 is over-leaped where only the departure node

r = 0 is occupied once.

On the other hand for &« — 1 — 0 we have 7_¢(k) = 1 thus each node is hit once (almost
surely) since the walker moves in any time step from r to its right neighbor node r + 1 (with
transition probabilities wq (r) = §,1).

It is instructive to recall briefly the limiting distribution of the rescaled integer random vari-
able 0,(n) = A\,0(n) for infinitely many steps n — oo where o(n) = >_7_; Z; is an integer
random variable with IID Sibuya steps Z;. Then let us consider the Laplace transform

n

00 n
nh_)rglo EG_S)\"UO‘(n) = H (EC_SAan) = <Z e_SA”Twa(T)>
i=1 r=0 (204)

- (1 —(1- e*AnS)a)" - (wa(u - e*AnS))".

In this limiting relation we rescale the Sibuya random variable o(n) = >°7_1 Z; — A,0(n)
such that the limit (204) exists. This requires the scaling factor \,, — 0 and 1—(1—e =)«
1 —s*\2 + O(A\%s?) thus (204) remains finit

Eefs)\nga(n) ~ (1 _ )\‘;‘L‘Sa)n, n — 0o (205)

if and only if we choose \,, = (%)é where £ is an arbitrary positive constant independent on
n. With this choice we get

n
Ee~shnoa(t) (1 - és") e (206)
n

Equation (206) is the Laplace transform of the limiting distribution emerging for many
1

Sibuya steps (n — oo) of the rescaled random variable %aa(n) which hence is a stable
subordinator (see e.g. [16] and the references therein). "

39 e. neither null nor infinity.
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A.5 SIBUYA- COUNTING PROCESS AND DTRW

In this appendix we review some pertinent results for the ‘Sibuya counting process’ (i.e.
the discrete-time counting process with waiting times following Sibuya(«)) and develop the
Sibuya Montroll-Weiss DTRW as a walk subordinated to the Sibuya counting process. The
interested reader is referred to [16] for a profound analysis, and see also the references
therein. The generating function of the Sibuya survival probability is then with ob-
tained as

oy (u) =

Z—_U(z — W (u)) = (1 — u)*! (207)

which yields the survival probability

(0) Zd —(0 Zd_tl_ a1 _ r't+1—a)

fulfilling initial condition Q)Ega (t)] +—o = 1. We observe that for & — 1 — 0 the survival prob-

ability ®g1(t) = 040 for ¢t > 0 is vanishing since for o = 1 the waiting time is equal to one
(almost surely with wj (t) = d;1). Now consider the behavior for ¢ large which yields

t €Ny (208)

0, Tt+1-a) =
455?&( )= It+1)I(1—-a) T -a)

€(0,1) (209)

with the same tail as has the Mittag-Leffler waiting time distribution. Hence for large ob-
servation times the Sibuya counting process behaves as a fractional Poisson process and
the same is true for the PDTP (See asymptotic relations for the PDTP state probabil-
ities.). We mention the state-probabilities, i.e. probabilities for n arrivals in the discrete
time interval [0, ¢] are given by

n 1 dt a— a\”n
(1) = == {1 =) (L= (1 =)} umo,  mtEN (210)

with generating function W(u’)a(u))") = @g"()x(u) =(1—uw)* 1 (1-(1-u)"" and refer
to Ref. [16] for a thorough analysis.

SIBUYA DTRW

Due to the general importance of Sibuya(«) let us briefly outline the Sibuya Montroll-Weiss
DTRW where we subordinate a walk with one step-transition matrix H to a Sibuya counting
process. Then we obtain for the generating function of the transition matrix the Cox-series

(See (123))
Ps(u)= Y H"®") (u) = (1 —u)* ! [1-H+H({ —u))] . (211)
n=0

We call the random walk with transition matrix generating function (211) the ‘Sibuya
DTRW'. Formula (211)) is related to the generating function

sl ) = 3 3 8§y = L2l 5 (e
n=07r=0 —u n=0
(212)
_ (1~ wa(u)) 1 (=)t

= <1 <1
1—u 1—?}11_)a(u) 1_U+U(1—u)047 ‘U’ >~ 4 ‘?}‘



by v — H. Now its is only a small step to write down the Kolmogorov-Feller type equations
for the Sibuya DTRW, namely

(1 —T_;)*HPgs(t) = (H—-1)Pg(t) +1(1 — T_1)* 16y (213)

or

. -1
<J—TJWHPaw=aﬂ—nPao+1@4ﬁ<“t ). (214)
This equation is the Kolmogorov-Feller fractional difference equation solved by the transi-
tion matrix Pg(¢) in a Montroll-Weiss Sibuya DTRW.

Let us also consider a walk not taking place on an undirected network, but the simplest
variant of strictly increasing walk where the walker at each event makes a unit step into
the positive integer direction. This walk simply counts the arrivals and has the transition
probabilities H;; = d;11,; i.e. we have then in (214) (HPs(t))ij = >.720 0i+1,6FPkj = Piy1-
For this walk Eq. (214) then takes the form

a—1

U—ﬁmﬂmm—PW<t )%:mwm—%m 215)

where this equation is also obtained in [16]] (Remark 7 in that paper).

References

[1] R. Kutner, J. Masoliver, The continuous time random walk, still trendy: fifty-year
history, state of art and outlook, Eur. Phys. J. B 90:50 (2017).

[2] R. Gorenflo, F. Mainardi, The asymptotic universality of the Mittag-Leffler waiting
time law in continuous time random walks, Invited lecture at the 373. WE-Heraeus-
Seminar on Anomalous Transport: Experimental Results and Theoretical Challenges,
Physikzentrum Bad-Honnef (Germany), 12-16 July 2006.

[3] R. Gorenflo, Mittag-Leffler Waiting Time, Power Laws, Rarefaction, Continuous Time
Random Walk, Diffusion Limit, larXiv:1004.4413 [math.PR] (2010).

[4] R. Metzler, J. Klafter, The Random Walk’s Guide to Anomalous Diffusion : A Fractional
Dynamics Approach, Phys. Rep 339, pp. 1-77 (2000).

[5] R. Metzler, ]J. Klafter, The restaurant at the end of the random walk: recent develop-
ments in the description of anomalous transport by fractional dynamics, J. Phys. A:
Math. Gen. 37 R161-R208 (2004).

[6] R. Hilfer, L. Anton, Fractional master equations and fractal time random walks, Phys.
Rev. E 51(2), R848 (1995).

[7] O.N. Repin and A.I. Saichev, Fractional Poisson law. Radiophysics and Quantum Elec-
tronics, 43:738-741 (2000).

[8] N. Laskin, Fractional Poisson process, Communications in Nonlinear Science and
Numerical Simulation, Vol. 8, Issues 3-4, 201-213 (2003).

53


http://arxiv.org/abs/1004.4413

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

N. Laskin, Some applications of the fractional Poisson probability distribution, ]J.
Math. Phys. 50, 113513 (2009).

F. Mainardi, R. Gorenflo, E. Scalas. A fractional generalization of the Poisson pro-
cesses. Vietnam Journ. Math. 32, 53-64. MR2120631 (2004).

R. Gorenflo, F. Mainardi, On the Fractional Poisson Process and the Discretized Sta-
ble Subordinator, Axioms 4(3), 321-344 (2015).

G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep 371
(6), 461-580 (2002).

L. Beghin, E. Orsingher. Fractional Poisson processes and related planar random
motions. Electron. ]J. Probab., 14(61), 1790-1826 (2009).

M.M. Meerschaert, E. Nane, P. Villaisamy, The Fractional Poisson Process and the
Inverse Stable Subordinator, Electron. J. Probab., Vol. 16, Paper no. 59, 1600-1620
(2011).

M. M. Meerschaert, A. Sikorski, Stochastic Models for Fractional Calculus, De
Gruyter Studies in Mathematics, Vol. 43, Walter de Gruyter, Berlin/Boston, 2019,
ISBN 978-3-11-056024-4.

A. Pachon, F. Polito, C. Ricciuti, On Discrete-Time Semi-Markov processes, Discrete
and Continuous Dynamical Systems B (In press) arXiv: 1807.07932 [math.PR].

P. Lévy, Processus semi-Markovien, Proc. Int. Congr. Math. 3, 416-426 (1956)

W.L. Smith, Regenerative Stochastic Processes, Proc. Roy. Soc. London, Ser. A, 232,
6-31 (1955).

L. Takdacs, On sojourn time problem, Theor. Veroyatmost. i Primenen Akad. Nauk, Vol
3, 61-69 (1958).

R. Pyke, Markov Renewal Processes with Finitely many states, Ann. Math. Statist.,
32,1243-1259 (1961).

W. Feller, On Semi-Markov Processes, PNAS 51, 653-659 (1964).

R.N. Pillai and K. Jayakumar, Discrete Mittag-Leffler distributions, Stat. Prob. Lett.,
23, 271-274 (1995).

C. N. Angstmann, B. I. Henry, B. A. Jacobs, A. V. McGann, A Time-Fractional Gener-
alised Advection Equation from a Stochastic Process, Chaos, Solitons & Fractals 102,
175-183 (2017).

D. O. Cahoy, F. Polito, Renewal processes based on generalized Mittag-Leffler waiting
times, Commun Nonlinear Sci Numer Simul, Vol. 18 (3), 639-650, 2013.

T.M. Michelitsch & A.P Riascos, Continuous time random walk and diffusion with
generalized fractional Poisson process, Physica A: Statistical Mechanics and its Ap-
plications, Vol. 545, 123294 (2020), larXiv:1907.03830! .

54


http://arxiv.org/abs/1907.03830

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

A. Giusti, General Fractional Calculus and Prabhakar Theory, Comm. Nonlinear Sci.
Numer. Simulat. 83 (2020) 105114.

J.D. Noh & H. Rieger, Random walks on complex networks, Phys. Rev. Lett. 92 (2004)
118701.

M.E.J. Newman , Networks: An Introduction, Oxford University Press, Oxford, 2010.

A. P. Riascos, J. Wang-Michelitsch, and T. M. Michelitsch, Aging in transport processes
on networks with stochastic cumulative damage, Phys. Rev. E 100, 022312, 2019.

T. Michelitsch, A.P. Riascos, B.A. Collet, A. Nowakowski, F. Nicolleau, Fractional Dy-
namics on Networks and Lattices, ISTE-Wiley March 2019, ISBN : 9781786301581.

A.P. Riascos, ]J.L. Mateos, Fractional dynamics on networks: Emergence of anomalous
diffusion and Lévy flights, Phys. Rev. E 90 (2014) 032809.

A. P. Riascos, D. Boyer, P. Herringer, & J. L. Mateos, Random walks on networks with
stochastic resetting (2019), larXiv:1901.13568!.

A. P. Riascos, J. L. Mateos, Networks and long-range mobility in cities: A study of
more than one billion taxi trips in New York City, Science reports (2020) 10:4022 |
https://doi.org/10.1038/s41598-020-60875-w

T.M. Michelitsch, A.P. Riascos, Generalized fractional Poisson process and related
stochastic dynamics, Submitted (24 June 2019), Preprint: arXiv:1906.09704! .

T.M. Michelitsch, A.P. Riascos, B.A. Collet, A.F. Nowakowski, F.C.G.A. Nicolleau,
Generalized space-time fractional dynamics in networks and lattices Generalized
Space-Time Fractional Dynamics in Networks and Lattices. In: Altenbach H.,
Eremeyev V., Pavlov 1., Porubov A. (eds) Nonlinear Wave Dynamics of Materials
and Structures. Advanced Structured Materials , vol 122. Springer, Cham (2020),
arXiv:1910.05949 .

T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler func-
tion in the kernel, Yokohama Math. J. 19, pp. 7-15 (1971).

A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio and F. Mainardi,
A practical guide to Prabhakar fractional calculus, Fract. Calc. Appl. Anal., Vol. 23,
No. 1, pp. 9-54 (2020).

R. Garra, R. Gorenflo, F. Polito, Z. Tomovski. Hilfer-Prabhakar derivatives and some
applications. Appl. Math. Comput. 2014, 242, 576-589.

M.A. dos Santos, Fractional Prabhakar Derivative in Diffusion Equation with Non-
Static Stochastic Resetting, Physics, 1(1), 40-58 (2019).

F. Mainardi, R. Garrappa, On complete monotonicity of the Prabhakar function and
non-Debye relaxation in dielectrics. Journal of Computational Physics, 293, 70-80
(2015).

55


http://arxiv.org/abs/1901.13568
http://arxiv.org/abs/1906.09704
http://arxiv.org/abs/1910.05949

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

A.K. Shukla , J.C. Prajapati, On a generalization of Mittag-Leffler function and its
properties, J. Math. Anal. Appl. 336, pp. 797-811 (2007).

H.J. Haubold, A.M. Mathhai, R.K. Saxena, Mittag-Leffler functions and their applica-
tions, J. Appl. Math., 2011(298628):51 (2011).

L. Beghin, E. Orsingher, Poisson-type processes governed by fractional and higher- or-
der recursive differential equations. Electron. J. Probab. 15, No 22 (2010), 684-709.

A. M. Mathai, Some properties of Mittag-Leffler functions and matrix variant ana-
logues: A statistical perspective, Fract. Calc. Appl. Anal., Vol. 13, No. 2 (2010).

V.S. Barbu, N. Limnios, Semi-Markov Chains and Hidden Semi-Markov Models to-
ward Applications, Springer New York (2008).

T. Michelitsch, G. Maugin, S. Derogar, A. Nowakowski, F. Nicolleau, Sur une général-
isation de l'opérateur fractionnaire, (2011), larXiv:1111.1898 [physics.class-ph].

E. W. Montroll and G. H. Weiss, Random walks on lattices II., J. Math. Phys, Vol. 6,
No. 2, 167-181 (1965).

D.R. Cox. Renewal Theory, Second edition, Methuen. London (1967).

A. P. Riascos, T. M. Michelitsch, A. Pizarro-Medina, Non-local biased random walks
and fractional transport on directed networks (Submitted), arXiv:2004.00575/[cond-
mat.stat-mech] .

I.M. Gel’fand, G.E. Shilov, (1968). Generalized Functions, Vols. I, II, III, Academic
Press, New York, 1968, reprinted by the AMS (2016).

S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory
and Applications, Gordon and Breach, London, 1993.

A. A. Kilbas, M. Saigo, R.K. Saxena, Generalized Mittag-Leffler Function and Gen-
eralized Fractional Calculus Operators. Integral Transforms and Special Functions,
15(1), 31-49 (2004).

T.M. Michelitsch, B. A. Collet, A.P. Riascos, A.F. Nowakowski & F.C.G.A. Nicolleau,
Recurrence of random walks with long-range steps generated by fractional Laplacian
matrices on regular networks and simple cubic lattices, Journal of Physics A: Math.
Theor. 50 505004 (2017), larXiv:1707.05843| .

T.M. Michelitsch, B. Collet, A.P. Riascos, A. Nowakowski A., F. Nicolleau, On Re-
currence and Transience of Fractional RandomWalks in Lattices. In: Altenbach H.,
Pouget J., Rousseau M., Collet B., Michelitsch T. (eds) Generalized Models and Non-
classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89.
Springer, Cham (2018).

56


http://arxiv.org/abs/1111.1898
http://arxiv.org/abs/2004.00575
http://arxiv.org/abs/1707.05843

	1 INTRODUCTION
	2 PRABHAKAR CONTINUOUS-TIME RENEWAL PROCESS
	3 DISCRETE-TIME VARIANTS OF THE GFPP
	3.1 CONTINUOUS-TIME LIMIT
	3.2 GENERALIZATION

	4 DISCRETE-TIME VERSIONS OF PRABHAKAR-GENERALIZED POISSON DISTRIBUTION
	4.1 ASYMPTOTIC FEATURES
	4.2 GENERALIZED FRACTIONAL DIFFERENCE EQUATIONS GOVERNING THE PDTP STATE PROBABILITIES
	4.3 EXPECTED NUMBER OF ARRIVALS IN A PDTP

	5 PRABHAKAR DISCRETE TIME RANDOM WALK ON UNDIRECTED GRAPHS
	6 INFLUENCE OF WAITING TIME INITIAL CONDITIONS ON DTRW FEATURES
	7 CONCLUSIONS
	A APPENDICES - SUPPLEMENTARY MATERIALS
	A.1 DISCRETE CONVOLUTIONS AND GENERATING FUNCTIONS
	A.2 SHIFT OPERATORS AND CAUSAL DISTRIBUTIONS
	A.3 GENERALIZED FRACTIONAL INTEGRALS AND DERIVATIVES
	A.4 SIBUYA WALK
	A.5 SIBUYA- COUNTING PROCESS AND DTRW


