
HAL Id: hal-02586239
https://hal.science/hal-02586239v3

Submitted on 7 Jun 2020 (v3), last revised 16 Jun 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data distribution on a multi-GPU node for TomoBayes
CT reconstruction

Mohammed Chghaf, Nicolas Gac

To cite this version:
Mohammed Chghaf, Nicolas Gac. Data distribution on a multi-GPU node for TomoBayes CT recon-
struction. The 26th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, Aug 2020, Virtual conference (Covid), South Korea. �hal-02586239v3�

https://hal.science/hal-02586239v3
https://hal.archives-ouvertes.fr

Data distribution on a multi-GPU node for
TomoBayes CT reconstruction

Mohammed Chghaf
Université Paris-Saclay, CNRS, CentraleSupélec, L2S

91192 Gif-sur-Yvette cedex, France
mohammed.chghaf@gmail.com

Nicolas Gac
Université Paris-Saclay, CNRS, CentraleSupélec, L2S

91192 Gif-sur-Yvette cedex, France
nicolas.gac@universite-paris-saclay.fr

Abstract—Computed tomography (CT) is an imaging tech-
nique that uses iterative algorithms to reconstruct the interior
of large volumes. Graphics Processing Units (GPUs) are cur-
rently the preferred technology for computation acceleration.
However, the collected data storage can exceed the internal
memory of current GPUs and therefore requires costly CPU
GPU data transfers. In this paper, we present a strategy of
data distribution over several GPUs avoiding this bottleneck. We
provide experimental results showing that our memory-saving
method accelerates the iterative reconstruction. We achieve a
better parallelisation efficiency using 8 GPUs to reconstruct a
volume of size 4 GB than reconstructions based on centralised
data storage on CPU.

Index Terms—Computed Tomography, Multi GPU, Data Dis-
tribution, Iterative reconstruction

I. INTRODUCTION

Reconstruction time is critical for Computed Tomography
(CT) applied to Non-Destructive Testing (NDT) or medical
imaging. For instance, in interventional radiology, filtered
backprojection is prefered to compute-intensive iterative al-
gorithms, although last ones offer better image quality.

When applied on huge volume (2563 to 20483 voxels),
GPU is well adapted to massively parallelise the projection
and backprojection operators used in iterative algorithms. In
that way, GPU has become the mainstream accelerator [1],
and several tomography toolboxes such as Astra [2], Tigre
[3] or TomoBayes [4] succeed to reduce computation time
by one or two orders of magnitude. However, as the GPUs
internal memory is limited, all the input projection data and
the reconstructed volumes have to be stored on the host CPU
and transferred to the GPU at each operator call. These addi-
tional communication costs notably reduce the parallelisation
efficiency on multi-GPU nodes. The limited bandwidth of the
PCI bus which connects the CPU host to the several GPU
boards then becomes a bottleneck.

In order to leverage the potential of multi-GPU parallelisa-
tion, CPU-GPU communication times can be partially hidden
thanks to streams like in [5], Tigre [6] or TomoBayes [7].
Managing small chunks of data allows overlapping of compu-
tation kernels and upload/download data transfers. Although
communication costs are reduced in these works, data remains
centralised on the CPU. The Message-Passing Interface ver-
sion of the Astra toolbox [8] refined in [9] manages a data
distribution on the several GPUs of a multi-node server. During

iteration, data exchanges are made between GPUs and nodes
through MPI.

In this paper, we propose an efficient data distribution strat-
egy between multiple GPUs on the same node. This solution
is based on high-speed peer-to-peer GPU communication. We
provide experimental results for an iterative algorithm.

II. ITERATIVE COMPUTED TOMOGRAPHY ALGORITHMS

Iterative CT algorithms aim is to create a three-dimensional
(3D) representation of an object using only external mea-
surements. An X-ray source irradiates the object while a
flat detector is placed on the opposite side. The intensity
of the X-rays decreases due to the object variable density
before reaching the sensor. The measurements of the decreased
intensities by the detector cells form an image which is called
a projection. In order to acquire several views, the object is
rotated around Z-axis. A sinogram is created by stacking all
of the measured attenuations from the detector cells acquired
at different angles.

Mathematically, the projection operation can be expressed
by an algebraic equation with the matrix-vector product:
g = Hf ; f is the volume to be reconstructed, g is the
vector of measurements and H is the projection matrix. The
backprojection operation is represented by H>.

In iterative reconstruction methods, the projection and the
backprojection operators correspond to the main computa-
tional burden. Therefore, reducing the calculation time implies
speeding up these two operations through GPU parallelisation.

III. PROPOSED METHOD: DATA PARTITIONING

For cone-beam geometry, an intrinsic data dependency
represents a lock for simple data distribution between GPUs.
In the parallel-beam case, the problem can be easily solved by
splitting the volume to equal slices perpendicular to the axis
of rotation and equivalent to the number of GPUs used. The
slices of the volume corresponding to the projections on the
detector will be separate and will allow the calculations to be
carried out independently. However, in the case of cone-beam
CT, the divergent beams between the source and the detector
can intersect more than one area of the volume. Therefore,
to perform a projection where each GPU is responsible for a
slice of the volume, some data from the two adjacent slices are

needed to perform the necessary calculation of the projection
in these overlapping regions.

The proposed strategy decomposes the volume and the
projections into slices of the same number of the used GPUs.
This allows copying from the CPU to the GPU only the bare
minimum of data in order to speed up the calculations. The
remaining data needed for computing is then transferred using
only the high-speed peer-to-peer GPU communication.

For the projection operator, the volume data are stored in the
CPU; then we distribute them equally over all the GPUs used.
Before starting the operation, we compute the limits of the
sub-volume necessary to perform the calculation of each zone
of the detector. The missing parts are then copied with direct
peer-to-peer communication from the adjacent GPUs to the
concerned GPU. Once the projection operation is completed,
the measurements are then retrieved to the CPU.

Similarly, we can find the limits of each subset of projection
measurements that will be used for backprojection for each
GPU. The remaining data needed are then copied to the
adjacent GPUs.

As shown in Fig. 1, generally, to calculate the projection
Pn of a given sub-volume, we will need the sub-volume
Vnmiddle

stored in GPUn, the sub-volume Vnup
stored in

GPUn+1 and the sub-volume Vnbottom
stored in GPUn−1.

In this case, Vnup and Vnbottom
are copied using peer-to-peer

communication from GPUn+1 and GPUn−1, respectively to
GPUn just before the projection operation.

The realisation of the iterative algorithm requires interme-
diate operations such as the calculation of the differences be-
tween the estimated measurements and the real measurements,
image filtering steps or reduction operations. The proposed
solution allows all these operations to be carried out directly
on the GPUs without the need for intermediate exchanges
between CPU and GPU.

Fig. 1. Data partitioning for a forward projection in the case of cone-beam
acquisition using 4 GPUs.

IV. RESULTS

For the experiments, two servers made of intel Xeon CPU
hosts with several GPUs were used. On the first one, 8
Maxwell Titan X GPUs are connected through a PCI gen3.
On the second one, 4 V100 GPUs are connected through a
NVLink bus. The reconstructions have been done for 10243

(4 GB) sized Shepp-Logan ghost.

In order to evaluate the impact of data communication, a
simple loop with only H and H> has been evaluated. At each
iteration, the volume f is updated: fi+1 = H>Hfi. The graph
on Fig. IV presents the acceleration factor reached by our inter-
GPU strategy for this H>H loop in comparison with the CPU-
GPU strategy, with and without streams, and the MPI Astra.
On multiGPU servers, the acceleration factor increases with
the number of GPUs. Our inter-GPU strategy is indeed less
sensitive to the data communication needed at each iteration
loop by the multiGPU compute distribution.

The table on Fig. IV exposes the reconstruction time for the
H>H loop and a complete iterative algorithm minimising the
Mean Square (MS) criterium ||g − Hf ||2. At each iteration,
the intermediate operations are thus also taken into account:
fi+1 = fi − 2H>(g − Hfi). Because of the data storage
on GPU, the CUDA implementation of the intermediate com-
putations has been eased for inter-GPU TomoBayes. It has
therefore allowed a 3.5 acceleration factor compared with
CPU-GPU TomoBayes. It also reaches a 1.23 acceleration
compared to the all GPU Astra implementation.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 2 4 8

T
o

m
o

B
a
y
e
s
 i
n

te
r-

G
P

U

a
c
c
e
le

ra
ti

o
n

 f
a
c
to

r

Numbers of GPUs

TomoBayes CPU−GPU w. streams (8 GPUs server)
TomoBayes CPU−GPU w. streams (4 GPUs server)

TomoBayes CPU−GPU wo. streams (8 GPUs server)
TomoBayes CPU−GPU wo. streams (4 GPUs server)

MPI Astra (8 GPUs server)
MPI Astra (4 GPUs server)

inter-GPU
HtH (s) 5.8 6.1 ×1.05 6.4 ×1.09 7.4 ×1.28

MS (mn) 6.3 21.9 ×3.46 22.2 ×3.52 7.8 ×1.23

Fig. 2. Reconstruction for a 10243 volume with 100 iterations on servers
with 8 Maxwell Titan X and 4 V100; (top) Acceleration factor obtained with
TomoBayes inter-GPU for the HtH loop; (bottom) Processing time for a HtH
loop and MS algorithm with 8 Titan X GPUs.

V. CONCLUSION

In this work, we clarified the existing parallelisation bottle-
neck on multiGPU server for cone-beam iterative CT recon-
struction. We presented a data distribution and synchronization
strategy avoiding the costly CPU-GPU communications. We
showed a clear improvement in performance on iterative
algorithms with a better multiGPU parallelisation potential
benefit compared to some state of the art implementations.
[1] F. Xu et al., “CT on GPU,” Phys. Med. Biol., 2007, open access.
[2] “Astra toolbox,” 2012, www.astra-toolbox.com.
[3] A. Biguri et al., “MATLAB-GPU TIGRE,” BPEX, 2016, open access.
[4] C. Chapdelaine et al., “TomoBayes,” 2019, hal-01771489.
[5] H. Muthukrishnan et al., “GPU Scaling,” in CT meet., 2018, open access.
[6] A. Biguri et al., “multigpus TIGRE,” 2019, arXiv:1905.03748.
[7] N. Georgin et al., “MultiGPU BP/P,” in Fully 3D, 2019, hal-02070223.
[8] W. Palenstijn et al., “Astra toolbox,” ASCI, 2017, open access.
[9] J.-W. Buurlage et al., “A projection-based distributed tomographic recon-

struction,” in SIAM PPSC, 2020, open access.

http://www.cs.stonybrook.edu/%7Emueller/papers/pmb7_12_006.pdf
hhttp://www.astra-toolbox.com/
https://iopscience-iop-org.proxy.scd.u-psud.fr/article/10.1088/2057-1976/2/5/055010/meta
https://hal.inria.fr/hal-01771489
http://web.eecs.umich.edu/~fessler/papers/lists/files/proc/18/web/muthukrishnan-18-igs.pdf
https://arxiv.org/abs/1905.03748
https://hal.archives-ouvertes.fr/hal-02070223
https://ascimaging.springeropen.com/track/pdf/10.1186/s40679-016-0032-z
https://epubs.siam.org/doi/10.1137/1.9781611976137.6

	Introduction
	Iterative Computed Tomography algorithms
	Proposed method: data partitioning
	Results
	Conclusion

