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Abstract. In 3-D microwave imaging, gradient-based optimization algorithms usually make
use of the so-called stabilized version of the biconjugate gradient iterative method (BiCGStab)
in order to solve multiple linear systems. We propose to use a block version of BiCGStab
to jointly solve the mutiple right-hand side linear systems. Illuminations are partitioned in
subgroups, which makes the method more efficient. The reconstruction process is studied on
realistic simulated data and illustrates the efficiency of the method compared to BiCGStab.

1. Introduction
The development of microwave imaging algorithms has received a lot of interest in the last few
years with applications such as biomedical imaging and geoscience [1, 2]. Solving the inverse
scattering problem under realistic condtions presents several difficulties, a critical one being
the reduction of the computational cost associated with three-dimensional problems. Nonlinear
inversion methods usually rely on iterative algorithms to reconstruct the dielectric properties of
the unknown object. A regularized data misfit cost function is minimized using a gradient-based
optimization procedure, such as the Distorted Born iterative method (DBIM) [3] or the Gauss-
Newton method [2, 4]. At each iteration, the computation of a descent direction and of a step size
requires the evaluation of the objective function and of its gradient. Such computations rely on
the resolution of linear systems equal to the number of illuminations. In practice, exact inversion
of such systems becomes computationally prohibitive for large 3-D problems and approximate
solutions are obtained with iterative methods, such as the conjugate gradient method [5], the
quasi minimal residual (QMR) method [6] or the stabilized version of the biconjugate gradient
stabilized (BiCGStab) method [1, 7].

Different methods have been proposed to solve efficiently such multiple systems, such as the
marching-on-anything technique [4] or a massive parallelization scheme [2]. Since the linear
systems share the same system matrix, block versions of iterative algorithms are appropriate,
which simultaneously solve linear systems with multiple right-hand sides. In [8], a block-
QMR algorithm was proposed for microwave imaging. In [9], a block version of BiCGStab
was developed for random system inversion, which was shown to outperform the Block-QMR
algorithm. In [10], we proposed a Partial-Block BiCGStab procedure to solve multiple forward
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problems in 3-D microwave imaging, which partitions the sources in several subgroups and uses
Block-BiCGStab on each group. In this paper, the Partial-Block BiCGStab algorithm is applied
for the computation of the objective function and its gradient at each iteration of the inversion
process.

In Section 2, the 3-D formulation is presented. The inverse problem is introduced in Section
3 where the Block-BiCGStab algorithm and the Partial-Block version are detailed. Finally, the
computational costs of the different methods are compared on simulated data in Section 4.

2. Formulation of the 3-D Problem
An unknown inhomogeneous object of complex permittivity ε(r) is included in a volume V ,
where r denotes the spatial position in V . We assume a homogeneous background medium
with complex permittivity εb and magnetic permeability µ0, that is the vacuum permeability.
We suppose that all objects and media are nonmagnetic. Successive known harmonic incident
electric fields Einc

i (r), i = 1, . . . , NS illuminate the object with angular frequency ω. The
scattered fields Escat

i are measured at locations rRj , j = 1, . . . , NR. In the following, the time

dependence term e−jωt is omitted. The observation equation links the data with the total electric
field Ei in the domain V . It reads [11]:

Escat
i (rRj ) =

(
k2b +∇∇·

) ∫
V
g(rRj , r

′)χ(r′)Ei(r
′)dr′, ∀j = 1, . . . , NR (1)

where kb and χ respectively denote the wavenumber kb = ω2µ0εb and the contrast function
χ(r) = (ε(r)−εb)/εb. The∇∇· term represents the gradient of the divergence. The homogeneous
Green’s function g(r, r′) is defined as g(r, r′) = exp

(
jkb‖r − r′‖

)
/4π‖r − r′‖. Note that the

integral in (1) is a convolution with the kernel g(r, r′). The total field Ei(r) in the domain V
is ruled by the electric field integral equation (EFIE) or domain equation:

Ei(r) = Einc
i (r) +

(
k2b +∇∇·

) ∫
V
g(r, r′)χ(r′)Ei(r

′)dr′, ∀r ∈ V. (2)

In order to obtain a discrete model, we assume that the volume V is a cuboid divided into N
cubic voxels of dimensions Nx, Ny and Nz. Let einci denote the vector of length 3N containing
the components of the incident field discretized on each voxel n with center rn, n = 1, . . . , N .
Similarly, let ei denote the discretized total electric field. The contrast function χ(r) is assumed
to be constant on each voxel. The vector x of length N contains the unknown contrast on all
voxels. The domain equation (2) is discretized using the method of moments [12], which yields:

ei = einci + GXei, (3)

where X is a 3N × 3N diagonal matrix whose diagonal contains three replicas of the vector x
and G is a 3N×3N convolution matrix corresponding to the discretization of (k2b +∇∇·)g(r, r′).
The discretization procedure is detailed in [13]. Eq. (3) can be written as a linear system:

einci = Lx ei, with Lx = I3N −GX (4)

where I3N is the identity matrix of size 3N . Determining the total field ei in (4) corresponds to
solving the forward problem.

The observation equation (1) is discretized similarly. The three components of the scattered
fields Escat

i measured at the NR receivers are stored in the vector yi of size 3NR. The discretized
observation equation reads

yi = Go X ei + b. (5)
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The NR × N matrix Go is constructed similarly to G. The vector b is a perturbation term
accounting for noise and model errors. Combining the domain equation (4) and the observation
equation (5), the measurements yi can be expressed as functions of the contrast x according to:

yi = Go X L−1x einci + b. (6)

3. Three-dimensional reconstruction
3.1. Optimization of a regularized objective function
Solving the inverse problem consists in determining the contrast function of an unknown object
embedded in the volume V from measurements of the scattered field for NS incident fields. Using
the discretized model (6), the problem amounts to estimating the discretized contrast x from
data y1, . . . ,yNS

. This problem is ill-posed, therefore we define the solution as the minimizer of
a regularized cost function:

x̂ = arg min
x
F(x), with F(x) = FD(x) + λR(x) (7)

where FD(x) =
∑NS

i=1

∣∣∣∣yi −GoXL−1x einci

∣∣∣∣2 is the quadratic data misfit and R(x) is a
regularization term operating on the differences between adjacent voxels:

R(x) =
∑
k,`,m

ϕ(Xk,`,m − Xk−1,`,m) + ϕ(Xk,`,m − Xk,`−1,m) + ϕ(Xk,`,m − Xk,`,m−1) (8)

where {Xk,`,m}k,`,m represents the 3-D arrangement of x. We use the “`2`1” function ϕ(u) =√
δ2 + |u|2, which tends to preserve edges in the reconstructed 3D-image. Moreover, for any

δ 6= 0, the cost function is continuously differentiable on RN and gradient-based optimization
methods can be used to solve (7). The parameter λ controls the trade-off between the data
misfit and the regularization function. In this paper, parameters λ and δ are set empirically. We
consider the local minimization of criterion (7) with the L-BFGS algorithm [14]. Each iteration
of such algorithm involves one computation of the gradient and possibly several computations
of the objective function for the line search step. The gradient reads:

∇xF = −
NS∑
i=1

diag
{
L−1x einci

}† (
Lx

)−1 [
G†o
(
yi −GoXL−1x einci

)]
+∇xR, (9)

where the symbol † denotes the Hermitian adjoint, the overline denotes the complex conjugation
and diag{u} stands for the diagonal matrix with diagonal u.

3.2. Block algorithms for linear system resolutions
The evaluation of the cost function F requires the computation of NS forward problems L−1x einci ,
i = 1, . . . , NS . The computation of the gradient also requires the resolution of NS systems with
matrix Lx. For realistic 3-D problems, exact inversion of such linear systems is computationally
prohibitive: Lx is a full matrix with 3N×3N elements. Consequently, the systems are generally
solved by iterative methods, such as the BiCGStab algorithm [1, 2], which must be called NS

times for the computation of F and NS times for the resolution of systems with normal matrix
Lx in (9). The most computationally demanding steps in BiCGStab are the matrix-vector
multiplications with the matrix Lx, which essentially correspond to convolution operations,
that can be efficiently implemented by Fast Fourier Transform algorithms.

In this paper, we propose a method to solve all the linear systems jointly. Indeed, the operator
Lx does not depend on the illuminations and the linear systems can be aggregated. The forward
problems involved in the computation of both the cost function and its gradient read:

E = L−1x Einc (10)
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with Einc = [einc1 , . . . , eincNS
] and E = [e1, . . . , eNS

]. The computation of the gradient also requires

a second set of system resolutions with matrix Lx, that can also be aggregated as:

Lx
−1
[
G(3)

o

† (
Y −G(3)

o X(3)L−1x Einc
)]

(11)

with Y = [y1, . . . ,yNR
]. We propose to use the Block-BiCGStab algorithm, which is a

generalization of the BiCGstab algorithm to multiple right-hand side systems [9]. It is described
in Algorithm 1 for the joint resolution of the forward problems in (10). The notation 〈T,S〉F
denotes the Frobenius product between matrices T and S, that is, the trace of matrix T†S. If
NS = 1, Block-BiCGStab reduces to BiCGStab. In the following, the implementation of the
computation of the total fields in (10) is detailed. The resolution of (11) is performed similarly.

Algorithm 1 Block-BiCGStab algorithm

1: For an initial guess E(0), R(0) = Einc − LxE
(0),

P(0) = R(0)

2: Choose an arbitrary 3N ×NS matrix R̃0

3: k = 0
4: repeat

5: V = LxP
(k)

6: solve (R̃†
0V)A = R̃†

0R
(k)

7: S = R(k) −VA
8: T = LxS
9: ω = 〈T,S〉F /〈T,T〉F

10: E(k+1) = E(k) + P(k)A + ωS
11: R(k+1) = S− ωT

12: solve (R̃†
0V)B = −R̃†

0T

13: P(k+1) = R(k+1) + (P(k) − ωV)B
14: k ← k + 1
15: until ∀i, ‖r(k)

i ‖/‖e
inc
i ‖ < tolerance, where r

(k)
i is

the i-th column of R(k)

Algorithm 2 Partial-Block BiCGStab algorithm

1: Build subsets Einc(p) for p = 1 . . . P by partitioning
the NS sources.

2: for p = 1 . . . P do

3: Run the Block-BiCGStab algorithm on Einc(p)

and E(p) instead of Einc and E.
4: end for

The Block-BiCGStab method is an iterative algorithm, where each iteration requires the

resolution of two linear systems of size NS with matrix R̃†0V at steps 6 and 12 of Algorithm 1.
These systems are relatively small, therefore the corresponding matrices can be computed and
system resolutions can be performed exactly. However, during the iterative process, the matrix

R̃†0V may become ill-conditioned, which leads to instabilities. This may happen in particular
when two sources, say with indices i and j, are very close. In that case, the incident fields einci

and eincj are highly correlated and this property is propagated into the quantities R(k) and V.
To overcome the instabilities, we propose a procedure called Partial-Block BiCGStab. To avoid
ill-conditioned matrices, the NS sources are divided into P subgroups such that all sources
in one subgroup p are as far as possible from each other. Then, matrix Einc is split into P

submatrices Einc(p) in which the columns are weakly correlated. Similarly, matrix E is split into
submatrices E(p). Then, the Block-BiCGStab is applied independently on the P subproblems.
This procedure is summarized in Algorithm 2. For P = 1, Partial-Block BiCGStab reduces
to Block-BiCGStab. For P = NS , it reduces to the BiCGStab algorithm. The choice of P is
important, more information on its influence are given in [10]. The resolution of the multiple
forward problems is faster for Partial-Block BiCGStab than for BiCGStab and is even better for
high contrasted objects [10]. Here, the Partial-Block BiCGStab procedure is used to compute
the cost function and the gradient as well in order to speed up the reconstruction algorithm
using L-BFGS.
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Figure 1. Left: configuration setup with 96 sources and 96 receivers (cyan x symbols)
distributed on three coaxial circles. The black cube represents the volume of interest V . The
four different symbols (+, ?, ◦, �) represent the four subgroups of sources.
Right: cross-section of the object at y = 0. First colum: real and imaginary parts of the obtained
solution. Second column: true object.

4. Simulation Results
In this section, we evaluate the computation time and the convergence of our method compared
to BiCGStab and Block-BiCGStab. First, the resolution of the multiple forward problems are
studied. Then, results on the reconstruction process are presented. We consider a simulated
experiment presented in Fig. 1 (left) that can be found in the literature, with NS = 96 sources
at frequency 2.45 GHz embedded in the air of permittivity εb = 1. The sources are placed on
three coaxial circles at heights z = −λb, 0 and λb, and radius 1.5λb, where λb is the wavelength
of the incident fields. On each circle, NS/3 = 32 sources are equally distributed. A lossy cube
of size 0.5λb with contrast χ1 = 6 + 1.2j is embedded in a cubic volume V of size λb. Inside the
lossy cube, a cuboid is inserted with square cross-section of 0.25λb, height 0.5λb and contrast
χ2 = 8 + 4j. The volume V is discretized into 8× 8× 8 voxels. The 96 receivers are placed on
three coaxial circles at the same heights as the sources and with radius 1.3λb.

Synthetic data are simulated on a grid of 16× 16× 16 voxels and zero-mean white Gaussian
noise is added with signal-to-noise ratio equal to 20 dB. The reconstruction procedure is
implemented with Matlab on a personal computer with 8 Go RAM and eight cores clocked
at 3.40 GHz (four hyperthreaded cores). The reconstruction process is parallelized by simply
executing loops with Matlab parfor instruction. For BiCGStab, the 2NS system resolutions
are sent in parallel to the different processors. The Block-BiCGStab algorithm is not easily
parallelizable and therefore is not parallelized. For the Partial-Block BiCGStab algorithm, the
resolutions of the different subproblems are also sent in parallel to the different processors. For
Partial-Block BiCGStab, we divide the set of sources into four subgroups (see Fig. 1 left). For

Block-BiCGStab and Partial-Block BiCGStab, R̃0 is set to LxR(0).
Fig. 2 plots the evolution of the relative residual errors for the resolution of the 96 forward

problems using the three algorithms: BiCGStab, Block-BiCGStab and Partial-Block BiCGStab.
The tolerance is set to 10−6, which is a strict value. Two initializations are tested: E(0) = Einc,
and E(0) close to the exact solution of (10) (which can be computed directly for such reasonable
size problem). We note that regardless of the initialization, BiCGStab and Partial-Block
BiCGStab converge in nearly the same number of iterations, but Partial-Block BiCGStab is
the most efficient. On the contrary, the Block-BiCGStab algorithm converges much faster if
it is initialized close to the solution. The computation times for the three resolutions with
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Figure 2. Residual errors for the 96 forward problems as a function of iterations for BiCGStab,
Block-BiCGStab and Partial-Block BiCGStab. First row: algorithms are initialized with the
incident fields E(0) = Einc. Second row: algorithms are initialized close to the solution.

E(0) = Einc are respectively 17 s, 38 s and 6.5 s. With parallelization, the cost of BiCGStab
decreases to 4.3 s and that of Partial-Block BiCGStab to 2.2 s.

In the reconstruction process, the three algorithms were implemented to solve (10) and (11)
involved in the cost function and its gradient. The hyperparameter λ was set to 10−5 and δ to
10−2. At iteration k of the L-BFGS algorithm, the resolutions of (10) and (11) are initialized
with the solutions obtained at iteration k− 1. Implementations based on the BiCGStab, Block-
BiCGStab and Partial-Block BiCGStab algorithms converge respectively in 855 s, 1004 s and
573 s. The tolerance set to 10−6 on the residual errors for the three algorithms leads to good
accuracy in the resolutions of the linear systems.

A perspective is to solve inverse problems of larger size. We will also study the influence of
the tolerance: a weak tolerance generates strong approximations in the system resolutions and
could introduce instabilities in the convergence of the reconstruction algorithm.
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