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SMOOTH MIN-DIVERGENCE INFERENCE IN SEMI
PARAMETRIC MODELS

MICHEL BRONIATOWSKI(1), JUSTIN STEWARD MOUTSOUKA(1)

Abstract. This paper considers inference in some semi parametric models through
some specific class of statistical procedure, which have proved to be of valuable
interest in parametric estimation, namely the power divergence family defined by
Basu Hodjt, Harris and Jones (1998).
At a first glance their divergence is not fitted to semiparametric inference. How-
ever extending the parametric setting to a smoothed semiparametric one, it is
possible to make inference both on θT and on the density of PθT in semiparamet-
ric models defined by moment conditions indexed by some parameter θ, where the
data are generated under some unknown θT . This question is of interest; indeed
usually the estimation of the density of PθT with respect to a dominating measure
(here the Lebesgue measure) is an open chalenge in the realm of semi parametric
models. This is the focus of the present paper.
Key words and phrases :Semi parametric models, Inference, Minimum di-

vergence inference

1. Introduction

This paper considers inference in some semi parametric models through some
specific class of statistical procedure, which have proved to be of valuable interest
in parametric estimation. The global paradigm which is considered here consists in
the minimization of a pseudo distance between the empirical measure defined by the
data set and a model, defined loosely as a collection of probability measures which
we consider as candidates for the generic distribution of the data set. This framework
is generally referred to as a "divergence based approach"; according to the choice of
the divergence (or "pseudo distance"), many classical methods for estimation and
testing can be recovered. Before entering into our topics in a more detailed way, let
us describe rapidly some of the various divergences which have been discussed in
the recent past, and present their specificities.

1.1. Divergences. A divergence (or discrepancy) between two probability measures
P andQ defined on the same measurable space X equipped with its Borel field B (X )
is a positive mapping

(P,Q)→ D (Q,P )

such that D (Q,P ) = 0 if and only if Q = P. No symmetry is assumed, nor any
triangular inequality; therefore a divergence need not be a distance. Constructions
of such functions D are numerous; we briefly sketch two main schemes, each of
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which leading to specific fields of applications in statistics and learning. We refer to
Broniatowski and Stummer (2019) or Broniatowski and Vajda (2012) for description
and further references. In this paper the space X is the euclidean space Rd, endowed
with its Borel field. In the sequelM1 designates the class of all probability measures
defined on (X ,B (X )) .

1.1.1. Ali Silvey and Csiszar divergences. A first class of divergences has been intro-
duced by Ali and Silvey (1966), and by Csiszár (1967); for Q absolutely continuous
with respect to P

D(Q,P ) :=

∫
f

(
dQ

dP

)
dP

where f is a non negative convex function defined on R+ which satisfies f(1) = 0.
When the support of Q is not included in the support of P then D(Q,P ) := +∞.
Typical examples of functions f are f0(x) := − log x+x−1, f1 (x) := x log x−x+1,

f1/2(x) := 2 (
√
x− 1)

2
, f2(x) := (1/2) (x− 1)2 , f−1(x) := (1/2) (x−1)2

x
.

In the above list, f0 induces the likelihood divergence (modified Kulback-Leibler
divergence) , f1 induces the Kulback-Leibler divergences, f1/2 defines the Hellinger
divergence, while f2 and f−1 respectively define the Pearson (resp. the Neyman)
Chi-square divergences. Note that by its very definition, given a sample of iid copies
X1, .., Xn of a generic rv X with continuous distribution on Rd and a model M
of continuous distributions on Rd it may hold that the projection of P on M be
defined, although the natural proxy of P defined through the empirical measure

Pn :=
1

n

n∑
i=1

δXi

is at infinite "distance" fromM for any n. This drawback can be overpassed
and leads to general techniques in parametric inference, encompassing the various
classical ones associated to the various names cited hereabove; see Broniatowski and
Keziou (2009). We will turn to semiparametric inference a bit later.

A convenient class of such functions f can be defined through the so-called
Cressie-Read functions, which are indexed by a real valued parameter

fγ(x) :=
xγ − γx+ γ − 1

γ(γ − 1)
,

and the examples listed hereabove are indeed indexed along the value of γ (with
limit expansions for the case when γ = 0, 1).

1.1.2. The BHHJ power divergences. This class of divergences has been introduced
by Basu Hodjt, Harris and Jones Basu and al. (1998), referred to as BHHJ divergence
here, and is defined for distributions which are absolutely continuous with respect
to the Lebesgue measure λ on Rd. Given P and Q with respective densities p and q
the power divergence with real power index α is defined through
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Dα(Q,P ) =

∫
ϕ(q(x), p(x))dx (1.1)

where

ϕ(u, v) = uα+1 −
(

1 +
1

α

)
uα × v +

1

α
vα+1.

We will consider only values of α in (0; 1) .
The developed form of Dα(Q,P ) is therefore

Dα(Q,P ) =

∫ {
qα+1(v)−

(
1 +

1

α

)
qα(v)p(v) +

1

α
pα+1(v)

}
dv (1.2)

Motivation for using the BHHJ divergence in parametric inference is considered
in Basu and al. (1998). This class of divergences is well suited for the parametric
estimation; indeed consider a parametric model M := {Pθ, θ ∈ Θ} of absolutely
continuous measures where Θ is some parameter space; it then holds

Dα(Pθ, P ) = Rα(Pθ, P ) + β

where

β :=
1

α

∫
pα+1(v)dv

is independent upon θ; therefore minimizing Dα(Pθ, P ) on θ amounts to minimize
Rα(Pθ, P ); when dealing with estimation, P is supposed to be PT , the distribution
of the generic observation X, and substitution of the unknown measure PT by the
empirical measure Pn yields the corresponding statistical criterion

Rα(Pθ, Pn) :=

∫
pα+1
θ (v)dv − 1

n

(
1 +

1

α

) n∑
i=1

pαθ (Xi) (1.3)

which can be minimized upon θ and produce an estimator of θT whenever PT = PθT .
Whenever the integral in the above display does not depend on the parameter θ,
as holds for location models, then minimizing upon θ in Rα(Pθ, Pn) amounts to
smooth the usual likelihood score by a factor pαθ which damps the role of outliers in
the estimating equation.

This procedure has been developed extensively and leads to classical limit re-
sults for estimation and testing; see Theorem 2 in Basu and al. (1998). The per-
formance of this approach has been compared to similar treatments making use
of Csiszar divergences, both under the model and under misspecification; globally
speaking, performances of either Csiszar divergence approach or power divergence
approach are quite similar (same limit distribution of the estimator and of the test
statistics as for the maximum likelihood approach (which falls in the field of Csiszar
divergences but not in the field of power ones for α in (0, 1)), nearly similar results
in simulation runs on small or medium size samples, Tuning of the parameter α or
γ allows to obtain reasonably robust estimators under contamination, as measures
through the Influence function; see Toma and Broniatowski (2011).
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The main properties of BHHJ divergences are:
Fact 1: Dα(Q,P ) is a divergence in that it is non-negative for all absolutely

continuous probability measures P and Q and equals 0 iff P = Q a.e..
Fact 2: The mapping Q→ Dα(Q,P ) from P (λ) to R+ is convex.

1.2. Semi parametric models. In this paper we extend the power divergence
approach to some specific class of semi parametric models. Such models are defined
through constraints on moments; define l linearly independent functions

(X,Θ) 3 (x, θ)→ gj (x, θ) 1 ≤ j ≤ l. (1.4)

For any θ let’s denote byMθ the set of all measures inM1 defined by

Mθ :=

{
Q ∈M1 such that

∫
gj(x, θ)dQ(x) = 0, 1 ≤ j ≤ l

}
(1.5)

Measures in Mθ therefor satisfy l linear constraints. The model M is defined
through

M = ∪θ∈ΘMθ (1.6)

The inference on θ in the above model can be performed in a natural way for
a number of statistical criterions. Indeed for example for Cressie Read criterions, or
more generally for Csiszar type ones, a simple plug in of the empirical measure Pn
in place of P in the divergence D(Q,P ) allows to minimize it on Mθ for given θ,
and then to optimize upon θ. This is due to the fact that the minimizer of D(Q,Pn)
on Mθ has support included in the sample points Xi’s. Therefore the seemingly
formidable search for this minimization problem boils down to a finite dimensional
one, on the simplex of Rn. This is the core argument for Empirical Likelihood meth-
ods and their extensions. All minimum empirical divergence methods (therefore
including EL) aim at assessing whether the modelM is valid and at the estimation
of θT , the true value of the parameter. so they do not provide any knowledge on
the density of PθT (whenever P0 = PθT belongs to M) nor on the density of the
projection of P0 onM taking into account the very definition of the model.

In the present case, due to the very form of Dα(Q,P ) as in (1.3) no plug in of
Pn is feasible. Looking at (1.3) it may seem that the divergence Dα is not fitted to
semiparametric inference. However extending the parametric setting to a smoothed
semiparametric one, it is possible to make inference both on θT and on the density
of PθT . This is the focus of the present paper.

The setting when estimating θ in M is clearly quite different as in the para-
metric case, where Mθ is not defined by any such condition as above, but merely
consists in a single distribution Pθ. Consider the estimation of θ inM making use
of (1.3). Clearly this yields to a two steps minimization; the first one consists in the
search for the minimizer Qθ of Rα(Q,Pn) for Q in Mθ, and the subsequent min-
imization should select the value of θ which indeed solves minθ Rα(Qθ, Pn) where
Qθ solves the first minimization, whenever possible. Now the first minimization is
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indeed diffi cult, since the classMθ consists in an infinite family of distributions on
which the minimization of Rα(Q,Pn) should be performed.

This program can however be experimented, as soon as some appropriate set-
ting is defined. This setting should contain various ingredients; firstly the model
should be such that all minimization procedures should be well defined; our basic
setting will imply that the mappingM3 Q→ Dα(Q,P ) be sci in a proper topology
for which, for all θ, the convex setMθ should be closed, for any P ., and the level
sets of the mapping Q → Dα(Q,P ) should be compact. As such its estimator can
also be defined. Additional regularity assumptions on the model, with respect to the
variation of θ in Θ, will be necessary in order to perform the second optimization.

The problem at hand writes therefore

θ̂ := arg min
θ∈Θ

min
Q∈Mθ

Rα(Q,Pn), (1.7)

where for all θ, Mθ consists in a family of distributions with densities wrt the
Lebesgue measure, with some prescribed regularity. We need to introduce some
description on the model; this is done in the next Section.

2. Notation and properties of the semi parametric model

2.1. Constraints. All distributions in our model are defined on a compact subset
K of Rm.

The linearly independent functions (g1, ..., gl) introduced in (1.4) should satisfy
some basic requirements. Each of the functions gl is defined on K with values in R.
hence g := (g1, ..., gl)

T is defined on K ×Θ with values in Rl The parameter space
Θ is a compact subset in Rd.
We assume that for all θ the mapping

x −→ g(x, θ) is continuous on int(K). (G1)

All functions gl’s are uniformly bounded

sup
θ

sup
x∈K
‖g(x, θ)‖ <∞ (G2)

where ‖x‖ designates the usual norm in Rl.
We also assume uniform continuity of g in the sense

As θn → θ

lim
n→∞

sup
x∈K
‖g(x, θn)− g(x, θ)‖ = 0 (G3)
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2.2. Regularity and smoothness assumptions
. The semi parametric modelM will be assumed to consist in regular measures, in
the sense that they should have density with respect to the Lebesgue measure λ on
K, and that their densities should be smooth. This is formalized as follows.

Let P be the class of all probability measures with support K, and P(λ) the
class of all probability measures in P which are a.c. wrt λ.

We now define a subset E of p.m’s in P(λ) which is identified by some smooth-
ness properties pertaining to their densities. Any measure Q in P(λ) is identified
with its density q. An element in E will be indifferently identified either by some
probability measure Q or by its density q.

The set E is endowed with the metric induced by the sup norm on K; for q
and q′ in E, denote

d(q, q′) := sup
x∈K
|q(x)− q′(x)| .

Four conditions will be assumed on E.
1-Let x0 be some point in K.

There exists N > 0 such that for all Q in E,

q(x0) < N. (E1)

2-The class E is equicontinuous: for all ε > 0, there exists δ > 0 such that for
all Q in E,

sup
|x−x′|<δ

|q(x)− q(x′)| < ε. (E2)

3- For all Q ∈ E, the map x→ qα(x) is a Lipschitz function

sup
x,y∈K

|qα(x)− qα(y)|
|x− y| ≤ C (E3)

for .some C > 0.

Remark 1. Since for any positive δ, |q(x)− q(y)| < δ implies |qα(x)− qα(y)| < η for
some η > 0, due to α ∈ (0, 1), it follows that when E2 holds, sup|x−y|<ε |qα(x)− qα(y)| <
η, which implies that qα is equicontinuous. Therefore E3 enforces E2.

For each θ we consider the parametric submodel

Mθ :=

{
Q ∈ P(λ) such that

∫
q(x)dλ(x) = 1,

∫
g(x, θ)q(x)dλ(x) = 0

}
,
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and its smooth counterpart
MθE :=Mθ ∩ E,

which we assume to be non void. We define the modelM through

M = ∪θ∈ΘMθ

and the smooth version ofM is defined by

ME = ∪θ∈ΘMθ ∩ E = ∪θMθE .

The first additional condition is an identifiability property of the model with
respect to θ.

We assume that for θ 6= θ′,

Mθ ∩Mθ′ = ∅ (M1)

We assume that the collection of submodelsMθ is well separated in the sense
that
Suppose that

(d(θ, θ′) > ε)⇒
(

inf
{q∈MθE

,q′∈Mθ′
E
}
d(q, q′) > δ

)
. (M2)

As a consequence of those smoothness assumptions we denote indifferently
Dα(Q,P ) by Dα(q, P ) . The same notation is adopted for Rα(Q,P ) (to be defined
further on), etc.

Example 2.1. g(x) = x− θ,Mθ = {Q :
∫
xdQ(x) = θ} and clearlyMθ ∩M′

θ = ∅
. Whenever

∣∣∫ x(q(x)− q′(x))dx
∣∣ > ε then

∫
|q(x)− q′(x)| dx > ε/K , and therefore

d(q, q′) > δ for some δ > 0.

2.3. The estimator. Given an i.i.d. sample (X1, X2, ..., Xn) such that (X1) has
distribution Pθ0 ∈ Mθ0 for some θ0 ∈ Θ we intend to provide an estimator for θ0

minimizing the pseudo-distance between Pn andME where

Pn :=
1

n

n∑
i=1

δXi

is the empirical measure pertaining to the sample set (X1, X2, ..., Xn) . Note that
the estimation is performed in the smooth modelME and not inM.

We introduce the estimator of θ0 in ME by

θ̂ := arg inf
θ

inf
Q∈MθE

Dα(Q,Pn). (2.1)

Formula (2.1) provides an natural estimate of θ0 if Pθ0 ∈ Mθ0E
. Indeed under

the identifiability condition (H3) we prove that the above estimator converges to
θ0 = arg infθ infQ∈Mθ

Dα(Q,Pθ0).( see Theorem 1 and Theorem 9 ).
In the alternative case that Pθ0 ∈ Mθ0 but Pθ0 /∈ E then formula (2.1) defines an
estimator of some θ̃ := arg infθ infQ∈MθE

Dα(Q,Pθ0). Hence θ̃ is the Dα−projection
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of Pθ0 onME, and θ̃ may be different from θ0 but still represents a proxy of θ0,in
the smooth model. We will consider a natural condition which entrains that θ̃ =
θ0.(Theorem 1).

3. Projection and regularization

We denote P0 the distribution of the variable X1. In this section we consider
both cases P0 ∈Mθ0 and P0 ∈Mθ0E

for some θ0.

Suppose that the following condition holds

inf
Q∈Mθ0E

Dα(Q,P0) < inf
Q∈MθE

Dα(Q,P0) (3.1)

for all θ 6= θ0 , whenever P0 belongs to Mθ0 which formalizes the fact that P0 is
approximated smoothly smoothly with a better score inMθ0E

than in anyMθE , as
soon as P0 belongs toMθ0 .

Theorem 1. Under (3.1) it holds, whenever P0 belongs toM or toME,

θ0 = arg inf
θ

inf
Q∈MθE

Dα(Q,P0) = arg inf
θ

inf
Q∈Mθ

Dα(Q,P0) (3.2)

.

Proof. First case: Suppose that P0 = Pθ0 ∈ME., i.e. PO ∈Mθ0E
. Then

inf
Q∈Mθ0E

Dα(Q,P0) = 0.

.
SinceME ⊃Mθ0E

, we have

inf
Q∈ME

Dα(Q,P0) = 0.

Furthermore, θ0 realizes infQ∈Mθ0E
Dα(Q,P0) = 0.

So
θ0 ∈ arg inf

θ
inf

Q∈Mθ0E

Dα(Q,P0).

It must be shown that θ0 is the only parameter θ that satisfies infQ∈Mθ0E
Dα(Q,P0) =

0.
Suppose that θ1 6= θ0 such that θ1 ∈ arg infθ infQ∈Mθ0E

Dα(Q,P0).Then

inf
Q∈Mθ1E

Dα(Q,P0) = inf
Q∈Mθ0E

Dα(Q,P0) = 0.

SinceMθ1E
⊂Mθ1

0 = inf
Q∈Mθ1E

Dα(Q,P0) ≥ inf
Q∈Mθ1

Dα(Q,P0) ≥ 0.
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Hence
inf

Q∈Mθ1

Dα(Q,P0) = 0.

θ0 is the only θ who realizes P0 ∈Mθ0 so θ1 does not exist, otherwise P0 = Pθ1 due
to M1.
Second case: Suppose that P0 = Pθ0 ∈M and P0 /∈ME.. Recall that

θ0 = arg inf
θ

inf
Q∈Mθ

Dα(Q,P0).

We want to show that
θ0 = arg inf

θ
inf

Q∈MθE

Dα(Q,P0)

.
We project P0 = Pθ0 onME and define

θ1 ∈ arg inf
θ

inf
Q∈MθE

Dα(Q,P0).

Assume that θ1 6= θ0 .
We then have

inf
Q∈Mθ1E

Dα(Q,P0) ≤ inf
Q∈MθE

Dα(Q,P0)

for all θ by definition of θ1 .So taking θ = θ0 ,we have

inf
Q∈Mθ1E

Dα(Q,P0) ≤ inf
Q∈Mθ0E

Dα(Q,P0) (3.3)

Under (3.1) it holds . Dα(Mθ0E
, Pθ0) < Dα(MθE , Pθ0), for all θ 6= θ0.

Then (3.3) is impossible, so θ1 = θ0 .We have proved (3.2).
�

Before handling inference we need to explore some properties of minimum
pseudo-distance approximations in ME. We will make use of a number of defin-
itions, which we quote now. For fixed P in ME the divergence Dα(., P )|E is the
restriction of Q→ Dα(Q,P ) onME.
For fixed θ, define therefore the projection of P onMθE

Q∗θ = arg inf
Q∈MθE

Dα(Q,P )|E

whenever defined.
Since for Q ∈ME

Dα(Q,P )|E = Dα(Q,P )

it holds
arg inf

Q∈MθE

Dα(Q,P ) = arg inf
Q∈MθE

Dα(Q,P )|E = Q∗θ.

We first set some general definition.
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Definition 1. Let Ω be some subset of P. The α−divergence between the set Ω and
a p.m. P is defined by

Dα(Ω, P ) := inf
Q∈Ω

Dα(Q,P ).

A probability measure Q∗ ∈ Ω, such that Dα(Q∗, P ) <∞ and

Dα(Q∗, P ) ≤ Dα(Q,P ) for all Q ∈ Ω,

is called a projection of P on Ω. This projection may not exist, or may be not
defined uniquely.

Definition 2. The sequence of functions qn ∈ E tends to q strongly if and if

sup
x∈K
|qn(x)− q(x)| → 0.

To (Qn)n ⊂ME ,we associate (qn).If there exists some q in E such that

sup
x∈K
|qn(x)− q(x)| → 0, (3.4)

then Qn converges strongly to Q such that Q(A) =
∫

1A(x)q(x)dx for all A ∈ B(R)

.Denote
(
Qn−→

st
Q
)
when (3.4) holds ; Q may not be a probability measure .

4. Projection:existence and uniqueness

We need some preliminary result pertaining to the properties ofME.

4.1. Closure of ME. By Arzela-Ascoli Theorem the set E is pre-compact when
endowed by the strong topology defined in Definition 1.
Let (Qn) be a family of probability measures on K; by compactness of K, it holds

Proposition 1. (Qn)n≥0 is a tight family.

As a consequence it holds

Proposition 2. Let (Qn)n≥1 be a family of p.m’s with densities in E.Assume that
there exists q in E such that limn→∞ supx∈K |qn(x) − q(x)| → 0 . Then (Qn)n≥1 is
relatively compact.

Proof. Let {nj} ⊂ {n} and
dQnj
dλ

(x) = qnj(x),and supx∈K |qnj(x)− q(x)| −→ 0 then
(Qnj) converges to some p.m Q and Q(A) =

∫
A
q(x)dλ(x) for all A in B(K).

.
Indeed∣∣∣∣Qnj(A)−

∫
A

q(x)dλ(x)

∣∣∣∣ =

∣∣∣∣∫ 1A(x)qnj(x)dλ(x)−
∫

1A(x)q(x)dλ(x)

∣∣∣∣
≤ sup

x∈K

∣∣qnj(x)− q(x)
∣∣λ(A) −→ 0.

So (Qnj)j≥1 converges to Q, such that q(x) = dQ
dλ

(x) .That Q is a probability measure
is a consequence of Prohorov Theorem since (Qn)n≥1 is a tight family of p.m’s . �
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Theorem 2. Under G1, G2 and G3 the setME is closed for the strong topology of
convergence defined in Definition 1.

Proof. Assume that (Qn)n≥1 ⊂ME and assume that there exists q such that

sup
E
|qn(x)− q(x)| −→ 0,

with qn(x) := (dQn/dλ) (x). Define Q(A) :=
∫
A
q(x)dλ(x)for any set A and we have(

Qn−→
st
Q
)
by Proposition 2 . We want to prove that Q ∈ME

(A) q is a density
(B)

∫
K
g(x, θ)q(x)dx = 0 for some θ .

(C) q is equicontinuous.
We prove (A); This follows from Prohorov Theorem. We prove (B) Let θn be

defined by
∫
g(x, θn)qn(x)dx = 0; such a θn indeed exists since Qn ∈M.

Since Θ is a compact set in Rd,we select nj ⊂ n such that the subsequence θnj
admits a limit θ and

∫
g(x, θnj)qnj(x)dx = 0 .

We prove that
∣∣∫
K
g(x, θ)q(x)dx

∣∣ = 0
Indeed∣∣∣∣∫
K

g(x, θ)q(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫
K

g(x, θ)qnj(x)dx

∣∣∣∣+

∣∣∣∣∫
K

g(x, θ)q(x)dx−
∫
K

g(x, θ)qnj(x))dx

∣∣∣∣
≤ B + A

A =

∣∣∣∣∫
K

g(x, θ)
(
q(x)− qnj(x)

)
dx

∣∣∣∣
which tends to 0 by G2.
Next

B ≤
∫
K

∣∣g(x, θ)− g(x, θnj)
∣∣ qnj(x)dx+

∣∣∣∣∫
K

g(x, θnj)qnj(x)dx

∣∣∣∣ ≤ C +D

and D = 0 by definition of θnj .

Hence

B ≤ C =

∫
K

∣∣g(x, θ)− g(x, θnj)
∣∣ qnj(x)dx

≤ sup
x∈K

∣∣g(x, θ)− g(x, θnj)
∣∣ ∫

K

qnj(x)dx

= sup
x∈K

∣∣g(x, θ)− g(x, θnj)
∣∣→ 0

where we used G3
We have proved that any converging sequence θnj satisfies

∫
K
g(x, θ)q(x)dx when
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θ = limnj→∞ θnj .
Consider two converging subsequences nj and n′j with θnj → θ and θ′nj → θ̄,we have∫

K

g(x, θ)q(x)dx =

∫
K

g(x, θ̄)q(x)dx.

By M1 it follows that θ = θ̄ therefore we have prove that there exists a unique
θ ∈ Θ such that ∫

K

g(x, θ)q(x)dx = 0

which proves (B).
We prove that there exists some N > 0 such that |q(x0)| ≤ N . Indeed

|q(x0)− qn(x0) + qn(x0)| ≤ |qn(x0)|+ |qn(x0)− q(x0)| ≤ N + |qn(x0)− q(x0)| ≤ N + ε

for all ε > 0 and therefore |q(x0)| ≤ N , since

|qn(x0)− q(x0)| → 0.

We prove that q is uniformly equicontinuous on K; indeed

|q(x)− q(x′)| = |q(x)− qn(x) + qn(x)− q(x′) + qn(x′)− qn(x′)|.
Hence

sup
|x−x′|<δ

|q(x)−q(x′)| ≤ sup
|x−x′|<δ

|q(x)−qn(x)|+ sup
|x−x′|<δ

|q(x′)−qn(x′)|+ sup
|x−x′|<δ

|qn(x)−qn(x′)|

≤ 2 sup
x∈K
|q(x)− qn(x)|+ sup

|x−x′|<δ
|qn(x)− qn(x′)| ≤ 2ε+ η.

The first term in the last display tends to 0 by hypothesis; the second one is smaller
than any positive ε for adequate δ > 0. Hence q ∈ E. �
4.2. Existence and uniqueness of the Dα-projection of P on ME.. For any
P in P (λ) let a > 0 and

AE(a) := {Q ∈ME : Dα(Q,P ) ≤ a}
be some level set of the divergence Q→ Dα(Q,P ).

Proposition 3. For any α ∈ (0, 1) the divergence function Q 7→ Dα(Q,P ) from P(λ)
to [0,+∞] is s.c.i. for the strong topology.

Proof. We prove that AE(a) is a closed subset in ME equipped with the strong
topology . Recall that Q→ Dα(Q,P ) s.c.i is equivalent to AE(a) is closed.
Let Qn ∈ AE(a) ∩ME. Denote

dQn
dλ

(x) = qn(x) with qn ∈ E,and assume that there
exists a function q defined on K such that

sup
x∈K
|qn(x)− q(x)| → 0.
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Define
dQ

dλ
(x) = q(x)

we prove that q ∈ E and with Q(A) :=
∫

1A(x)q(x)dλ(x), it holds Q ∈ AE(a).
SinceME is closed, (see Theorem 2) the measureQ defined byQ(A) =

∫
1A(x)q(x)dλ(x)

for all A ∈ B(R) is inME.
It remains to prove that Dα(Q,P ) ≤ a.
Consider the concave mapping t→ tα defined on R+ which thus satisfies

|tα − sα| ≤ αmax
(
tα−1, sα−1

)
|t− s| (4.1)

and set t := qβn(x) and s := qβ(x) with β := (α + 1)/α; we then have

sup
x∈K

∣∣qα+1
n (x)− qα+1(x)

∣∣ ≤ sup
x∈K

{
(α + 1)

[
max

(
qα+1
n (x), qα+1(x)

)]
|qαn(x)− qα(x)|

}
(4.2)

It holds similarly

sup
x∈K
|qαn(x)− qα(x)| ≤ sup

x∈K
{α [max (qn(x), q(x))] |qn(x)− q(x)|} → 0. (4.3)

Since the function q is bounded on K .
We have

sup
x∈K

∣∣qα+1
n (x)− qα+1(x)

∣∣ ≤ (α + 1) sup
x∈K
|qα(x)||qn(x)− q(x)| → 0

Since fn is bounded on K,

|qαn(x)− qα(x)| ≤ |qαn(x)|+ |qα(x)| <∞.

So |qαn(x)− qα(x)| is bounded.
Consider now the mapping

x→ ϕ(qn(x), p(x))− ϕ(q(x), p(x)).

Since

ϕ(qn(x), p(x))− ϕ(q(x), p(x)) = qα+1
n (x)− qα+1(x)−

(
1 +

1

α

)
p(x) (qαn(x)− qα(x))

.
using (4.2) and (4.3)

sup
x∈K
|ϕ(qn(x), p(x))− ϕ(q(x), p(x))| → 0

.
Integrating we have∫

ϕ(qn(x), p(x))dx− δ ≤
∫
ϕ(q(x), p(x))dx = Dα(Q,P ) ≤

∫
ϕ(qn(x), p(x))dx+ δ.

(4.4)
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for any δ > 0, for n large. Since Qn ∈ AE(a),
∫
ϕ(qn(x), p(x))dx ≤ a; the inequality

(4.4) becomes∫
ϕ(qn(x), p(x))dx− δ ≤

∫
ϕ(q(x), p(x))dx ≤

∫
ϕ(qn(x), p(x))dx+ δ ≤

a+ δ

So
∫
ϕ(q(x), p(x))dx ≤ a; hence Q ∈ AE(a) and thus AE(a) is a closed set inME.

�

Theorem 3. For all a > 0 the set AE(a) is compact for the strong topology.

Proof. By Arzela-Ascoli Theorem, E has a compact closure . AE(a) is closed in
Cl(E).
AE(a) is a closed subset of Cl(E),which is compact �
Proposition 4. For any θ in Θ

Q∗ = arg inf
Q∈MθE

Dα(Q,P ).

exists and is unique.

Proof. Let aθ := infQ∈MθE
Dα(Q,P ) and let ε > 0. .Then AE(aθ + ε) 6= ∅ AE(aθ +

ε) ∩MθE 6= ∅.
It can be observed that for all θ the setMθE is a closed set, following the same

arguments as in Proposition 3. SinceMθE is closed and AE(aθ+ε) is compact then
AE(aθ + ε) ∩MθE is compact. Since

arg inf
q∈MθE

Dα(Q,P ) = arg inf
q∈AE(aθ+ε)∩MθE

Dα(Q,P )

, existence of the projection follows from the lower semi continuity ofQ→ Dα(Q,P ).Since
ϕ is strictly convex,then the function Q ∈ P(λ)→ Dα(Q,P ) is also strictly convex
,and the projection of P on any closed convex set Ω in MθE is uniquely defined
whenever it exists. �

Consider now the Dα projection of P on a convex subset inME. Similarly as
in Proposition 4 it holds

Theorem 4. For any convex set Ω inME the Dα projection of P on Ω exists and is
unique.

Proof. The proof mimics the one in Proposition 4. Let

a := inf
Q∈M

E

Dα(Q,P )

and ε > 0. Then AE(a + ε) ∩ M
E
6= ∅ .Since M

E
is closed (see Theorem ??)

and AE(a+ ε) is compact, existence of the projection follows. Uniqueness is due to
convexity. . � �
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5. Minimum pseudo-distance estimator

Let X1, ..., Xn denote an i.i.d. sample of a random vector X ∈ Rm with distri-
bution P0. Let Pn(.) be the empirical measure pertaining to this sample, namely

Pn(.) :=
1

n

n∑
i=1

δXi(.),

where δx(.) denotes the Dirac measure at point x. We define

Dα(MθE , P0) = inf
Q∈MθE

Dα(Q,P0)

= inf
Q∈MθE

{∫ (
qα+1(x)−

(
1 +

1

α

)
qα(x)p0(x) +

1

α
pα+1

0 (x)

)
dx

}
Since optimization only pertains to Q define in the following

Rα(MθE , P0) = inf
Q∈MθE

Rα(Q,P0)

= inf
Q∈MθE

{∫ (
qα+1(x)−

(
1 +

1

α

)
qα(x)p0(x)

)
dx

}
the “plug-in”estimate of Rα(MθE , P0) through

R̂α(MθE , P0) := inf
Q∈MθE

Rα(Q,Pn)

= inf
Q∈MθE

{∫
qα+1(x)dx−

(
1 +

1

α

)∫
qα(x)dPn(x)

}
= inf

Q∈MθE

{∫
qα+1(x)dx−

(
1 +

1

α

)
1

n

n∑
i=1

qα(Xi)

}
In the same way,

Rα(M, P0) := inf
θ∈Θ

inf
Q∈MθE

Rα(Q,P0)

= inf
θ∈Θ

inf
Q∈MθE

{∫
qα+1(x)dx−

(
1 +

1

α

)∫
qα(x)dP0(x)

}
can be estimated by

R̂α(M, P0) := inf
θ∈Θ

inf
Q∈MθE

{∫
qα+1(x)dx−

(
1 +

1

α

)
1

n

n∑
i=1

qα(Xi)

}
Since

arg inf
q∈MθE

Dα(Mθ, P0) = arg inf
q∈MθE

Rα(Mθ, P0)

for any θ
arg inf

q∈MθE

Rα(MθE , P0)
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exists and is unique( P0 ∈ ∪MθE or not ).
We will consider estimators of θ0 where P0 = Pθ0 for a unique θ0 ∈ Θ ;this corre-
sponds to the fact that P0 ∈M. In this cases by uniqueness of arg infθ∈ΘRα(MθE , P0)
and since the infimum is reached at θ = θ0 under the model, we estimate θ0 through

θ̂α := arg inf
θ∈Θ

inf
Q∈MθE

{∫
qα+1(x)dx−

(
1 +

1

α

)
1

n

n∑
i=1

qα(Xi)

}
6. Asymptotic properties

The pseudodistances BHHJ will be applied in the standard statistical estima-
tion model with i.i.d observations X1, ..., Xn governed by P0 from a family P =
{Pθ : θ ∈ Θ} of probability measures on (Rk,B

(
Rk
)
) indexed by a set parameters

Θ ⊂ Rd . All distributions in P are assumed absolutely continuous, and λ denotes
the Lebesgue measure on Rk. Denote pθ = dPθ/dλ for θ ∈ Θ .

Remark 2. If P0 ∈ M there exists an unique Pθ0 ∈ M such that P0 = Pθ0 ∈ M
then by identifiability

arg inf
θ
Dα(Pθ, Pθ0) = θ0

In other words the unknown parameter θ0 is the unique minimizer of the func-
tion Dα(Pθ, P0)

θ0 = arg min
θ
Dα(Pθ, Pθ0) ∈ Θ (6.1)

The empirical probability measures Pn are known to converge weakly to P0 as n −→
∞ . Therefore by plugging in 6.1 the measures Pn for P0 one intuitively expects to
obtain the estimator under the form

θ̂α(n) = arg min
θ∈Θ

Mn(Pθ, Pn)

that converges to θ0 as n→∞, where Mn(Pθ, Pn) is some empirical criterion which
estimates the objective function Rα(Pθ, P0).

We will repeatedly make use of a basic result which we recall for convenience.
Denote Mn(τ) a family of random functions of a parameter τ which belongs to a
space T endowed which a metric denoted d .
Assuming that the sequencesMn converges uniformly to some deterministic function
M defined on T , then the following result provides a set of suffi cient conditions
which entail the weak convergence of minimizers of Mn to the minimizer of M ,if
well defined.

Lemma 1. (Van der Vaart (1998), theorem 5.7) Assume that (1)supτ∈T |Mn(τ) −
M(τ)| P−→0, (2)For any ε > 0, inf{t∈T,d(t,t0)≥ε}M(t) > M(t0), (3) the sequence tn
satisfies

Mn(tn) ≤Mn(t0) + 0p(1)

Then the sequence tn satisfies



SMOOTH MIN-DIVERGENCE INFERENCE IN SEMI PARAMETRIC MODELS 17

d(tn, t0)
P−→0.

Lemma1 will be used according to the context of minimization at hand.
By (1.7) we consider the inner and the outer minimization problems leading to the
estimator. This will be performed in two steps: the inner minimization with respect
to Q inMθE for fixed θ, and the outer minimization wrt θ.
Here we establish the consistency of the minimum pseudodistance estimator on the
closed set of measures a.c.w.r.t λ .

6.1. Inner minimization: convergence of the projection of Pnon MθE . Fix

θ ∈ Θ. Denote
Mn(Q) := Rα(Q,Pn)

where Q ∈MθE .

Denote
qn(θ) := arg inf

q∈MθE

Rα(Q,Pn). (6.2)

where,as before,Q is identified with its density q .Existence and uniqueness of a
p.m Qn(θ) with density qn(θ) follows from Proposition 4,following verbatim its
proof,substituting P by Pn .
Denote accordingly the unique minimizer of Rα(Q,P0) ,

q∗θ := arg inf
q∈MθE

Rα(Q,P0). (6.3)

We prove that qn(θ) converges to q∗θ making use of Lemma 1.
Setting

Mn(τ) := Rα(Q,Pn),

with τ = dQ
dλ
,setting d(τ , τ ′) = supx∈K |q(x)− q′(x)|,it holds.

Lemma 2. Fix θ. Then Condition (1) in Lemma 1 holds

sup
q∈MθE

|Rα(Q,Pn)−Rα(Q,P0)| → 0 in probability

Proof. It holds

sup
q∈MθE

|Rα(Q,Pn)−Rα(Q,P0)| ≤
(

1 +
1

α

)
sup

q∈MθE

∣∣∣∣∣ 1n
n∑
i=1

qα(Xi)− EP0(qα(X))

∣∣∣∣∣
which tends to 0 almost surely as n tends to infinity, since qα is a Lipschitz function
for all q ∈MθE , and a class of Lipschitz function is a Glivenko-Cantelli class .

�
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We now prove that the second condition in Lemma 1 holds

Lemma 3. For any ε > 0,

inf
{q:‖q−q∗(θ)‖>ε,q∈MθE

}
Rα(Q,P0) > Rα(Q∗θ, P0).

where dQ/dP = q and dQ∗θ/dP = q∗θ .

Proof. We thus prove condition (2) in Lemma 1. By Proposition4

Q∗θ := arg inf
Q∈MθE

Rα(Q,P0)

exists with uniqueness. Denote q∗θ := dQ∗(θ)
dλ

.It holds

inf
‖q−q∗θ‖>ε,q∈MθE

Rα(Q,P0) > Rα(Q∗(θ), P0)

.Indeed by definition for all Q ,such that dQ
dλ

(x) = q(x)

Rα(Q∗(θ), P0) ≤ Rα(Q,P0)

and therefore
Rα(Q∗(θ), P0) ≤ inf

‖q−q∗(θ)‖>ε
Rα(Q,P0).

Now let Q∗(θ) such that dQ∗(θ)/dλ(x) = q∗(θ)(x) and Q such that dQ(θ)/dλ(x) =
q(θ)(x). We prove that the inequality is strict .From the above display we get

Rα(q∗(θ), P0) +
1

α

∫
pα+1

0 (x)dx ≤ inf
‖q−q∗(θ)‖>ε

{
Rα(q, P0) +

1

α

∫
pα+1

0 (x)dx

}
i.e.

Dα(MθE , P0) ≤ inf
‖q−q∗(θ)‖>ε,q∈MθE

Dα(Q,P0)

Now if equality holds,there exists q ∈MθE , q 6= q∗(θ) such that

Dα(MθE , P0) = Dα(q∗(θ), P0) = Dα(q, P0) (6.4)

. It hold Q 6= Q∗(θ) since q∗(θ) and q ∈ E .But the projection of P0 on MθE is
unique, so (6.4) cannot hold.

�
We also prove that the third condition in Lemma 1 holds.

Lemma 4. It holds
Rα(qn(θ), Pn) ≤ Rα(q∗θ , P0) + op(1).

Proof. This follows from the very definition of qn(θ) for which Rα(qn(θ), Pn) ≤
Rα(q, Pn) for all q ∈MθE . �

Making use Lemma 1 we have proved
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Theorem 5. For any θ ∈ Θ,it holds, with qn(θ) defined in (6.2) and q∗θ defined in
(6.3)

sup
x∈K
|qn(θ)(x)− q∗θ(x)| P−→0.

6.2. Outer minimization. We now consider the minimization in θ ,with the fol-
lowing notation .Let

θ̂n := arg inf
θ

inf
q∈MθE

Rα(Q,Pn) = arg inf
θ
Rα(qn(θ), Pn)

and
θ0 := arg inf

θ
inf

q∈MθE

Rα(Q,P0) = arg inf
θ
Rα(q∗θ , P0)

The parameter θ0 such that P0 = Pθ0 is defined in a unique way by the above display;
indeed firstly note that θ0 is well defined ,either when P0 ∈ M (i.e. P0 = Pθ0) (see
Theorem 1) or P0 /∈M,in which casePθ0 is the Dα−projection of P0 onME.
By the Theorem 5,we have proved that

sup
x∈K
|qn(θ)(x)− q∗θ(x)| P−→0.

where q∗θ is defined in (6.3).We want to show that

arg inf
θ
Rα(qn(θ), Pn)

P−→ arg inf
θ
Rα(q∗θ , P0).

where q∗θ = arg infq∈MθE
Rα(Q,P0).

By definition
θ̂n := arg inf

θ
Rα(qn(θ), Pn);

we prove that
arg inf

θ
Rα(q∗θ , P0) = θ0 (6.5)

We consider two cases:

(Case 1) If P0 ∈M, i.e. if ∃!θ0 such that P0 = Pθ0then (6.5) holds.
(Case 2) If P0 /∈M,θ0 = arg infQ∈ME

Dα(Q,P0)and under Condition (3.1) ,

θ0 = arg inf
θ

inf
Q∈MθE

Dα(Q,P0).

Therefore (6.5) holds.
We make use of Lemma 1 with

Mn(θ) : = Rα(qn(θ), Pn), (6.6)

M(θ) : = Rα(Q∗θ, P0).

We prove that θ̂n converges to θ0 making use of Lemma 1.
Set

Mn(τ) := Rα(Qn(θ), Pn)
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with qn(θ)(x) = dQn(θ)
dλ

(x) setting

d(qn(θ), q∗θ) = sup
x∈K
|qn(θ)(x)− q∗θ(x)|

it holds.

Proposition 5. Suppose that the following condition

sup
{q∈MθE

,q′∈Mθ′
E
,d(θ,θ′)<δ}

d(q, q′) < Kδ (6.7)

holds for some K > 0 independent on θ and θ′; then

sup
θ∈Θ

sup
x∈K
|qn(θ)(x)− q∗θ(x)| P−→0.

Proof. By Theorem 5 for all θ

d(qn(θ), q∗θ)→ 0 in probability.

We want to prove that uniform convergence upon θ holds. Define θn by

supθ∈Θd(qn(θ), q∗θ) = d(qn(θn), q∗θn). (6.8)

Let {nj} ⊂ {n}and suppose θ such that θnj → θ.
We show that d(qnj(θnj), q

∗
θnj

) > c > 0 cannot hold.

Now by definition (6.8)

supθ∈Θd(qnj(θ), q
∗
θ) = d(qnj(θnj), q

∗
θnj

)

≤ d(qnj(θnj), qnj(θ)) + d(qnj(θ), q
∗
θ) + d(q∗θnj , q

∗
θ)

= : I1 + I2 + I3.

Now I1 = d(qnj(θnj), qnj(θ)) and d(θnj , θ) → 0. Hence under (6.7), I1
P−→0. Now

I2 = d(qnj(θ), q
∗
θ) ; both qnj(θ) and q

∗
θ belong to MθE

; By Theorem 5 in MθE
,

d(qnj(θ), q
∗
θ)

P−→0 so I2
P−→0,

As for I3 = d(q∗θ , q
∗
θnj

)
P−→0 as for I1.We have proved that

lim
j→∞

sup
θ∈Θ

d
(
qnj(θ), q

∗
θ

)
= 0 in probability. (6.9)

Assume now that (6.8)
does not hold. In such a case there exists a subsequence {mk} ⊂ {n} and η > 0

such that
sup
θ
d(qmk(θ), q

∗
θ) > η.

Let θmk := arg supθ d(qmkj(θ), q
∗
θ), whence

d(qmk(θnj), q
∗
θmk

) > η



SMOOTH MIN-DIVERGENCE INFERENCE IN SEMI PARAMETRIC MODELS 21

for all k. Extract from {mk} a further subsequence {nj} along which θnj converges
to some θ. Then (6.9) proves our claim, by contradiction. �

Under Condition (6.7) in Proposition 5 , condition (1) in Lemma 1 holds i.e.

sup
θ∈Θ
|Mn(θ)−M(θ)| P−→0

with Mn(θ) and M(θ) defined in (6.6)

Proof. .Define

Mn(θ) = Rα(qn(θ), Pn), and M(θ) = Rα(q∗θ , P0)

with

Rα(qn(θ), Pn) =

∫
qα+1
n (θ)(x)dx−

(
1 +

1

α

)∫
qαn(θ)(x)dPn(x)

and

Rα(q∗θ , P0) =

∫
q∗α+1
θ (x)dx−

(
1 +

1

α

)∫
(x)q∗αθ (x)dP0(x)

Hence

sup
θ∈Θ
|Mn(θ)−M(θ)| ≤ sup

θ∈Θ

∫ ∣∣qα+1
n (θ)(x)− q∗α+1

θ (x)
∣∣ dx+(

1 +
1

α

)
sup
θ∈Θ

∫
|qαn(θ)(x)− q∗αθ (x)| dPn(x)

+

(
1 +

1

α

)
sup
θ∈Θ

∣∣∣∣∫ q∗αθ (x)d(Pn − P0)

∣∣∣∣
≤ R1 +R2 +R3.

Now

R1 = supθ∈Θ

∫ ∣∣qα+1
n (θ)(x)− q∗α+1

θ (x)
∣∣ dx

≤ supθ∈Θsupx∈K |qn(θ)(x)− q∗θ(x)| × Cste
which tends to 0 in Probability by Proposition 5.

Also

R2 =

(
1 +

1

α

)
sup
θ∈Θ

∫
|qαn(θ)(x)− q∗αθ (x)| dPn(x) ≤ sup

θ∈Θ

(
1 +

1

α

)
1

n

∑
|qαn(θ)(Xi)− q∗αθ (Xi)|

≤ cste× sup
θ∈Θ
|qn(θ)(x)− q∗θ(x)|

which tends to 0 in Probability, making use of Proposition 5 .
Turn turn to R3. We prove that the class of functions q∗αθ indexed by θ satisfies the
three following properties: (i)It is indexed by θ in Θ, a compact subset of Rd.(ii)
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Secondly it is continuous in θ for all x in K. (iii) Thirdly the function F defined
on K by F (x) := supθ∈Θ |q∗αθ (x)| is such that∫

F (x)dP0(x) <∞.

Whenever these three facts hold, then

R3 =

(
1 +

1

α

)
sup
θ∈Θ

∣∣∣∣∫ q∗αθ (x)d(Pn − P0)

∣∣∣∣
tends to 0 in Probability since {q∗αθ }θ is G.C , making use of Lemma 1.1 in

Empirical Processes:Glivenko-Cantelli Theorems by Moulinath Banerjee (see also J
Wellner, Chapter 1.6, Notes on Empirical Processes, Torgnon Conference).

We now prove the second condition in Lemma 1. �

Lemma 5. For any ε > 0, inf |θ−θ0|>εM(θ) > M(θ0). where M(θ) = Rα(q∗θ , P0) =∫
q∗α+1
θ (x)dx−

(
1 + 1

α

) ∫
q∗αθ (x)dP0(x)

Proof. Denote q∗θ0 the projection of P0 onME, thus θ0 := arg infθ∈ΘRα(q∗θ , P0) .For
any θ ∈ Θ, let .q∗θ be the projection of P0 onMθE ; hence

Rα(q∗θ , P0) ≥ Rα(q∗θ0 , P0)

We prove that equality cannot hold in the above display. Let |θ− θ0| > ε . Assume
that there exists some θ1 with

d(q∗θ1 , q
∗
θ0

) > δ

such that
Rα(q∗θ1 , P0) = Rα(q∗θ0 , P0) (6.10)

we can not have equality above because θ∗0 achieves the minimum of Rα(q∗θ , P0) on
θ, and q −→ Rα(q, P0) is strictly convex. So (6.10) cannot hold. �

We also prove the third condition in Lemma 1.

Lemma 6. Mn(θ) ≤M(θ) + op(1).

Proof. Define by Mn(θ) = Rα(qn(θ), Pn) and M(θ) = Rα(q∗θ , P0) .Hence Mn(θ) <
Rα(q∗θ , Pn) by definition.

Since Rα(q∗θ , Pn)−Rα(q∗θ , P0)
P−→0 by Glivenko Cantelli Theorem, it follows that

Mn(θ) ≤ Rα(q∗θ , P0) + ηn

for n large enough,where ηn
P−→0. �

As a consequence of the above arguments, the following convergence result for
the minimization of power type divergences on semiparametric models defined by
moment conditions holds.
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Theorem 6. Under all the above conditions, it holds, whenever P0 belongs toM or
P0 belongs toME, with corresponding θ0,

lim
n→∞

Dα(M, Pn)→ 0

and
lim
n→∞

θ̂n = θ0

Also we get
lim
n→∞

d
(
qθ̂, pθ0

)
= 0

and all convergences above hold in probability.
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