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Abstract. The interaction of a beam propagating in a inhomogeneous solar wind plasma is considered. The properties of the
plasma waves are described by the one dimensional Zakharov’s equation, the beam is modelled by means of particles moving
in the electric fields of the Langmuir waves. We take into account the presence of high level density fluctuations that are known
to be present in the solar wind. It is shown that when the level of density fluctuations is low, δn/n0 � 3k2λ 2

d , the regime
of beam relaxation is very similar to that occurring in a homogeneous plasma and can be described by the quasilinear (QL)
equations. In this case, the relaxation length is very short and corresponds to that obtained using the QL approximation. On
the contrary, when the level of density fluctuations overcomes some limit, i.e. δn/n0 ≥ 3k2λ 2

d , where δn/n0 � 1, the plasma
inhomogeneities crucially influence the process of relaxation. First, the linear wave growth becomes localized and clearly
identifiable wave packets/clumps dominate the wave spectrum; this is associated with the kinematic properties of the waves’
propagation and the wave-particle resonant interactions. Most of the wave packets grow in the regions of density gradients.
The second important feature revealed by the beam relaxation consists in the generation of a tail of accelerated electrons with
velocities V > Vb exceeding the beam drift. The beam widens in both directions, toward lower velocities as well as higher
velocities; the density of the accelerated electrons can reach more than 10÷ 20 % of the beam density and the energy flux
carried by this population can become as large as 40% of the initial energy flux of the beam.
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MOTIVATION

Since the beginning of space research, Langmuir waves
have been the subject of intensive studies in the solar
wind and, in particular, in the regions of the electron fore-
shock of the Earth and of other planets. These waves are
generated during the beam-plasma interaction. Initially,
experimental studies of such processes were carried out
in the source regions of the type III solar radio bursts.
Direct in situ measurements at 1 AU have shown the si-
multaneous occurrence of bump on tail electron distri-
butions and plasma wave energy growth above the back-
ground thermal noise [1]. No any plateau-type particle
distributions as predicted by the quasilinear theory were
observed. It was also pointed out that plasma waves were
clumped into spikes with peak amplitudes typically three
orders of magnitude above the mean [2]. Some authors
[3], analyzing Langmuir waves in type III solar radio
bursts sources, came to the conclusion that no evidence
exists in the experimental data of any strong nonlinear
phenomena such as soliton formation or collapse. They
proposed an explanation of the clumping phenomenon
based on the idea that the plasma is inhomogeneous, and
that in most of the regions where the beam could ex-

cite the waves the characteristic scale of the inhomogene-
ity was comparable with the spatial growth rate, thereby
resulting in the suppression of the instability. They ar-
gued that sufficient amplification occurs only along cer-
tain paths where, by chance, successive inhomogeneities
are sufficiently similar not to interfere with the amplifica-
tion process leading to the observed spikes. This idea was
further developed by [4]-[5] and [6]-[7]. A very similar
problem of beam-plasma interaction was studied in lab-
oratory plasmas. The effects of density fluctuations were
found to be important for the development of the insta-
bility. Assuming the amplitude of density fluctuations to
be sufficiently large, some authors [8]-[9] have described
the evolution of the beam in the quasilinear one dimen-
sional approximation and noticed two important effects
that are distinct from the case of beam-plasma evolution
in a homogeneous plasma. The first consists in the lock-
ing of the instability even when the beam velocity distri-
bution still presents a positive slope, and the second in
the formation of a tail of energetic electrons due to the
variations of the phase velocities of waves moving along
the inhomogeneous density profile.

The observations of large scale electron density fluc-
tuations in the solar wind gave strong arguments in fa-
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vor of such an interpretation. In situ measurements of
the density fluctuations’ spectrum by ISEE 1 and 2 satel-
lites [10] revealed that characteristic density fluctuations
as large as δn/n> 10−2 may exist on a scale of the order
of 100 km, while interplanetary scintillation measure-
ments from extragalactic radio sources give an average
value around δn/n ∼ 10−3 [11]. Some authors [10] also
argued that the corresponding power index for high fre-
quencies is variable, while for low frequencies it is ap-
proximately constant, and the absolute value of density
fluctuations is proportional to the mean plasma density.
The main contribution to the fluctuations’ level comes
from the high frequencies, and in the range 4-16 Hz the
mean relative fluctuation can be as large as 0.04. In addi-
tion, no evidence was found [12] of a strong anisotropy
of density fluctuations. More recently, density fluctua-
tions’ spectra have been deduced from the EFW probe
potential variations measured onboard the Cluster space-
craft in the free solar wind [13]. Recently, simulations
of the beam-plasma interaction in the presence of den-
sity fluctuations and monotonously decreasing density
profiles similar to heliospheric conditions have been car-
ried out [14]. They have confirmed that the beams can
indeed propagate over quite long distances in the solar
wind and they clearly showed the formation of tails of
energetic electrons. Recently, some authors [15]-[16] re-
ported simulation results on the beam plasma instability
for several pre-selected density profiles, illustrating the
effects of wave clumping and trapping.

Hereafter we describe the model that we developed
to study the beam-plasma interaction in inhomogeneous
plasmas with quasi-random density fluctuations. Some
relevant simulation results are also shown.

1D MATHEMATICAL MODEL

In order to describe the Langmuir turbulence and the
beam interaction with a plasma presenting background
density fluctuations we use the 1D Zakharov’s equations{
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where the electric field is E = Re(Ee−iωpt) =
1
2E (z, t)e

−iωpt + c.c., with the field envelope E (z, t) =
∑k Ekeikz; Φ is the ion velocity potential, vi = ∂

∂ zΦ; ωp is
the plasma frequency, Te and Ti are the electron and ion
temperatures; lD is the electron Debye length.

The above equations have a Hamiltonian structure
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and conserve the total number of quanta of the high-

frequency (HF) field, i.e. I1 =
∫
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where L is the size of the system. The longitudinal mo-
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Note that Ee−iωpt and E∗eiωpt/4πωp are other canonical
variables.

The Hamiltonian description is suitable and allows one
to describe the interaction of beam electrons with Lang-
muir waves by the total Hamiltonian of the Langmuir
waves-electron beam-ion sound waves’ system Htotal =
H+Hp, where Hp is the Hamiltonian of the particles de-
scribing the 1D motion of the electrons in the potential
field of the waves
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=−eE, E =−∇ϕ =Re(−ikϕkeikzp−iωkt).
(6)

with ϕk (t) = ϕke−iωkt . The model is applicable in the
case of a tenuous beam (with density much smaller than
the background density, nb � n0), when the interaction
of the beam electrons with the Langmuir waves is essen-
tial only at the Landau resonances. At the same time it
is supposed that the bulk nonresonant plasma electrons
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define the linear properties of the waves. Thus the full
Hamiltonian of the system is

Htotal = H+Hp = H+∑
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where Jk = 1
N ∑p eiωpt−ikzp ; N is the number of parti-

cles; one can write for a moment that L = 1 to avoid
uninteresting details in calculations. Then, calculating
∂
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, we obtain the equation

of evolution of the HF electric field
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where ν is a damping factor. Of course the set of above
equations can be obtained by another way, without using
Hamiltonians.

In our simulations we impose periodic boundary con-
ditions. To avoid pitfalls related to such assumption we
consider a rather long system (L≥ 5000ld); thus the time
necessary for beam electrons to cross the simulation box
is smaller or comparable to the simulation time. Rewrit-
ing the equations in the k-space we get the set of ordinary
differential equations (ρ = δn/n)
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which, together with the equations describing the motion
of beam electrons, forms the complete set of equations

of our model. Here the terms with γk = γ(i)k + γ(e)k give
the possibility to include damping of Langmuir and ion
sound waves due to Landau resonance with thermal ions
and electrons.

For numerical solution, we rewrite the equations in
dimensionless form introducing the new variables τ =
ωpt, z → z/ld and vp = vp/vTe (or ωp → 1, ld → 1,
vTe → 1)
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where the electric field is normalized according to
eEk/mevTeωp = Ek/E∗ → Ek. In the absence of density
fluctuations we have
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We use a leap frog scheme for solving the Newton equa-
tions and discrete time approximations for the differ-
ential equations describing the evolution of the electric
fields, the plasma density ρ and velocity v (with Fourier
component uk)
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where βk and wk are depending on the waves’
properties; cs is the ion sound velocity, c2s =
((Te+3Ti)/mi)(1/vTe)

2 = (me/mi)(1+3Ti/Te) �
me/mi; we suppose that Ti/Te = 0. Typical initial
conditions are : the HF electric fields are presented
as a set of waves with small amplitudes and random
phases (thermal noise); the electron beam is described
by a maxwellian drifting with velocity Vb and is
supposed to be uniformly distributed in space with
nb ≤ 10−4 ÷ 10−5n0; the initial background density
fluctuations verify δn/n0 ≤ 3 ÷ 5% and present non
regular profiles with typical scales λ ∼ 300÷2000ld .

SIMULATION RESULTS AND
CONCLUSIONS

The simulation results are presented below in the form
of animations (see files online), where all physical
quantities are shown using the dimensionless parame-
ters presented above. The first animation (see Anima-
tion_r23_1.gif online) shows the development of the
beam instability in a system with a single density hole
of regular shape at t = 0. The upper panel presents the
time evolution of the profiles of wave energy and plasma
densities (blue and black lines, respectively). The mid-
dle panel shows the wave form of the Langmuir waves
(in blue) together with the density variations (in black).
On the left bottom panel one can see the evolution of
the Langmuir waves’ spectrum, whereas the middle bot-
tom panel shows the dynamics of the beam distribution
f (vz) as a function of the electron velocity vz (with the
waves’ amplitudes in arbitrary units represented by ar-
rows as a function of the phase velocities). On the right
bottom panel the evolution of the total energy carried by
the Langmuir waves as a function of time is shown.
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FIGURE 1. Beam instability in a plasma with one density
well : profiles of wave energy, electric field and density at
ωpt = 4500.

One can see how wave packets are formed as a result
of wave growth due to beam-plasma instability as well
as to wave propagation over the density hole. The sim-
ulation demonstrates that only a small part of the wave
energy becomes trapped inside the density well, other
waves leaving the well and forming narrow packets. A
strong relaxation of the beam occurs and a plateau-like
velocity distribution of electrons is formed. Because the
beam density is rather large (nb/n0 = 0.0002), the wave
energy grows up to high values at the late stage of the
simulation, some modulation instability starts and some
solitons are formed. Fig. 1 shows the system’s evolution
at one moment of time (ωpt = 4500). The profiles of the
wave field amplitudes obtained can be compared with
typical waveforms observed by the WIND experiment.

In the second animation (see Animation_r10080_1.gif
online), the simulation has been carried out for a long
system with quasi-random density fluctuations present-
ing several wells. The panels represent the variations of
the same physical quantities as in the first animation. The
only difference is an additional bottom panel showing the
growth of the number of electrons accelerated above the
velocity vacc > Vb. This long time simulation in a long
system is performed up to the full relaxation of the beam
and allows to conclude that in a plasma with density fluc-
tuations the beam instability of Langmuir waves leads to
the following results (see also Animation_r10122_1.gif
online) : (1) localized wave packets are formed due to the
combination of both effects of wave instability and wave
propagation in plasma inhomogeneities, (2) the relaxed
beam velocity distribution shows a significantly smaller
positive slope which remains positive even at the end of
the relaxation whereas the instability is locked, and (3)
the relaxation process widens the velocity distribution in
the range V < Vb and, when the level of density fluctua-

tions becomes sufficiently high, i.e.√√√√〈(δn
n0

)2
〉

	 α
(
vTe
Vb

)2

,

an efficient particle acceleration by waves leads to the
formation of a tail in the distribution. High level density
fluctuations in the solar wind can be responsible for
very long relaxation lengths of beams interacting with
Langmuir waves.
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