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LOCALIZED AND EXPANDING ENTIRE SOLUTIONS OF
REACTION-DIFFUSION EQUATIONS

F. HAMEL AND H. NINOMIYA

Abstract. This paper is concerned with the spatio-temporal dynamics of nonnegative
bounded entire solutions of some reaction-diffusion equations in RN in any space dimen-
sion N . The solutions are assumed to be localized in the past. Under certain conditions on
the reaction term, the solutions are then proved to be time-independent or heteroclinic con-
nections between different steady states. Furthermore, either they are localized uniformly
in time, or they converge to a constant steady state and spread at large time. This result is
then applied to some specific bistable-type reactions.

In memory of Geneviève Raugel, with admiration and respect

Keywords: Reaction-diffusion equations, entire solutions, extinction, propagation

1. Introduction and the main result

In this paper we are concerned with nonnegative bounded entire solutions of the following
reaction-diffusion equation:

(1.1) ut = ∆u+ f(u), t ∈ R, x ∈ RN ,

where f : [0,+∞)→ R is a C1 function such that

(1.2) f(0) = 0 and f ′(0) < 0.

The solutions are always understood in the classical sense C1,2
t,x (R×RN), from the parabolic

regularity theory. Notice immediately that, for a nonnegative bounded solution u of (1.1),
either u(t, x) = 0 for all (t, x) ∈ R × RN , or u(t, x) > 0 for all (t, x) ∈ R × RN , from the
strong parabolic maximum principle and the uniqueness of the bounded solutions for the
associated Cauchy problem.

The solutions u are called entire as they are defined for all t ∈ R and x ∈ RN . The
solution u of (1.1) is called bounded if u is an entire solution of (1.1) and

sup
(t,x)∈RN+1

|u(t, x)| <∞.

We are especially interested in the description of their limit profiles as t → ±∞. If a
solution u converges, in some sense to be made precise, to some limit states φ± as t→ ±∞,
then u is a heteroclinic connection between φ− and φ+ if φ− 6= φ+, while it is homoclinic
to φ± if φ− = φ+ (we will actually prove that the homoclinic connections reduce to time-
independent solutions under the assumptions in this paper). The description and the pro-
perties of the entire solutions of (1.1) are of particular importance such as, for any element ϕ
of the ω-limit set of any nonnegative initial condition of the associated Cauchy problem giving
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2 F. HAMEL AND H. NINOMIYA

rise to a bounded global solution, and for any t0 ∈ R, there is a bounded entire solution u
of (1.1) such that u(t0, ·) = ϕ.

1.1. Localized solutions in the past and localized steady states. We are interested
in solutions that are localized in the past, in the sense that

(1.3) u(t, x)→ 0 as |x| → +∞, uniformly in t ≤ 0.

Throughout the paper, x 7→ |x| denotes the Euclidean norm in RN , (x, y) 7→ x · y denotes
the Euclidean inner product, B(x,R) denotes the open Euclidean ball of center x ∈ RN and
radius R > 0, and BR = B(0, R). Notice that the condition f(0) = 0 is then forced by (1.3).
Furthermore, from standard parabolic estimates and the boundedness of u, condition (1.3)
is equivalent to lim|x|→+∞ u(t, x) = 0 uniformly in t ≤ t0 for some (or equivalently for
all) t0 ∈ R. This, however, does not necessarily mean that lim|x|→+∞ u(t, x) = 0 uniformly
in t ∈ R (such solutions are called uniformly localized), and one of the main features of the
paper is to show a dichotomy between the solutions that are uniformly localized and those
that spread as t→ +∞.

The description of the positive bounded solutions of (1.1) satisfying (1.3) is closely related
to the study of the positive bounded localized steady states φ ∈ C2(RN), solving

(1.4)

{
∆φ+ f(φ) = 0 and φ > 0 in RN ,

φ(x)→ 0 as |x| → +∞.

Under the condition f ′(0) < 0, it is known [27, 38, 39] that any solution φ of (1.4) is radially
symmetric and decreasing with respect to its center, namely there exist a point x0 ∈ RN and
a C2([0,+∞)) function Φ such that Φ′ < 0 in (0,+∞) and

(1.5) φ(x) = Φ(|x− x0|) for all x ∈ RN .

It then follows from the strong maximum principle applied to φ that

(1.6) f(Φ(0)) = f
(

max
RN

φ
)
> 0,

hence, together with (1.2), there is a unique real number mφ such that

(1.7) 0 < mφ < max
RN

φ, f(mφ) = 0 and f > 0 in
(
mφ,max

RN
φ
]
.

Lastly, since

(1.8) Φ′′(r) +
N − 1

r
Φ′(r) + f(Φ(r)) = 0 for all r ∈ (0,+∞)

and Φ′(0) = Φ′(+∞) = 0 (the limit Φ′(+∞) = 0 coming from (1.4)-(1.5) and stan-
dard elliptic estimates), integrating the above equation against Φ′ over (0,+∞) yields
F (maxRNφ) = F (Φ(0)) = 0 if N = 1 and F (maxRNφ) = F (Φ(0)) > 0 if N ≥ 2, where

F (s) =

∫ s

0

f(σ) dσ for s ≥ 0.
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Since f(maxRNφ) > 0, there is then η > 0 such that f > 0 in [maxRNφ − η,maxRNφ + η]
and F > 0 in (maxRNφ,maxRNφ + η] if N = 1 (resp. in [maxRNφ,maxRNφ + η] if N ≥ 2).
In the sequel, we also set

(1.9) Mφ = inf
{
s ≥ max

RN
φ : f(s) = 0

}
∈
(

max
RN

φ,+∞
]
.

Notice that

(1.10) mφ < max
RN

φ < Mφ and f > 0 in (mφ,Mφ),

and that Mφ may be equal to +∞ (we refer to some specific examples in Section 2).
Furthermore, not only the steady states of (1.4) are radially symmetric and decreasing

with respect to some center, but so are the bounded entire solutions of (1.1) which are
localized in the past. Namely, it follows from [54] that, for any positive bounded solution u
of (1.1)-(1.3), there is a point x0 ∈ RN such that{

u(t, x) = u(t, y) for all (t, x, y) ∈ R× RN × RN with |x− x0| = |y − x0|,
∇u(t, x) · (x− x0) < 0 for all (t, x) ∈ R× RN with x 6= x0.

1.2. The main result. In the following theorem, which is the main result of the paper,
we call E the set of C2(RN) solutions of (1.4) and, for any continuous bounded function
ϕ : RN → R and any set A of continuous bounded functions, we denote

dist(ϕ,A) = inf
ψ∈A
‖ϕ− ψ‖L∞(RN ).

Theorem 1.1. Assume that f satisfies (1.2) and

(1.11) F < 0 in (0,mφ] for all φ ∈ E .
If there exists a positive bounded solution u of (1.1) satisfying (1.3), then E 6= ∅ and

(1.12) dist(u(t, ·), E)→ 0 as t→ −∞.
Furthermore,

(i) either u(t, ·)→ 0 uniformly in RN as t→ +∞,
(ii) or there is φ ∈ E such that u(t, ·)→ φ uniformly in RN as t→ +∞,

(iii) or else there is a continuous function ξ : R → R depending on u and some positive
constants M and c only depending on f such that

(1.13)


lim sup
t→+∞

(
max

|x|≤ξ(t)−A
|u(t, x)−M |

)
→ 0

lim sup
t→+∞

(
max

|x|≥ξ(t)+A
u(t, x)

)
→ 0

as A→ +∞

and

(1.14) lim
t→+∞

ξ(t)

t
= c,

with f(M) = 0, f ′(M) ≤ 0 and c characterized by the existence of a function
ϕ ∈ C2(R) solving

(1.15) ϕ′′ + cϕ′ + f(ϕ) = 0 in R, ϕ′ < 0 in R, ϕ(−∞) = M, ϕ(+∞) = 0.
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Property (1.12) means that the α-limit sets, with respect to the uniform convergence
in RN , of the positive bounded solutions u of (1.1) consist of steady states solving (1.4). As
far as the behavior of a solution u as t→ +∞ is concerned, it turns out that, in both cases (i)
and (ii), u(t, x) → 0 as |x| → +∞ uniformly in t ∈ R, namely u is then called uniformly
localized. As a consequence, the conclusion of Theorem 1.1 means there is a dichotomy
between the uniformly localized solutions and the ones which converge locally uniformly to
a positive constant, with a positive spreading rate. Notice that in all cases (i), (ii) and (iii),
the solution u converges locally uniformly in RN as t → +∞ to a steady state (either a
necessarily non-constant solution of (1.4), or the constants 0 or M) and its ω-limit set (with
respect to the uniform convergence in cases (i) and (ii) and to the locally uniform convergence
in case (iii)) is a singleton.

This situation is in contrast with some non-convergence and even non-quasiconvergence
results of some positive bounded solutions of the Cauchy problems of the Fujita equation

(1.16) ut = ∆u+ up,

for which the ω-limit set (with respect to the locally uniform convergence) of some initial con-
ditions may not be reduced to a single steady state (non-convergence) or may even contain
other elements than steady states (non-quasiconvergence). Such results have been proved
in [57, 60, 61] for (1.16) in high dimensions N for some ranges of values of p, even for solutions
which are localized at large time (see also [18, 55, 56] for further non-quasiconvergence results
with non-localized oscillating initial conditions and bistable nonlinearities of the type (1.20)
below). On the other hand, convergence or quasiconvergence hold for all functions f in
dimension N = 1 with compactly supported initial conditions [14] or for generic functions f
in any dimension N ≥ 1 with initial conditions converging to 0 at infinity [42, 43], while
the existence of at least one steady state in bounded trajectories has been shown in dimen-
sions N ≤ 2 [25]. We refer to [47, 48] for further convergence or quasiconvergence results for
some bistable, ignition or monostable nonlinearities f in any dimension N ≥ 1 with radially
decreasing initial conditions, and to [32] for a general overview on convergence results for
gradient-like parabolic or hyperbolic equations.

Remark 1.2. It actually follows from the proof of Theorem 1.1, in particular from Steps 4
and 5 in Section 4.2, that a similar result as (1.13)-(1.14) holds for the spreading solutions
of the associated Cauchy problem with localized initial conditions. More precisely, let 0 <
m < M be given, and let f : [0,M ] → R be a given C1([0,M ]) function such that f(0) =
f(m) = f(M) = 0, f ′(0) < 0, f > 0 in (m,M), F < 0 in (0,m] and F (M) > 0. Let
u0 : RN → [0,M ] be a continuous function such that lim|x|→+∞ u0(x) = 0 and u0 6≡ 0 in RN .
Now, if the bounded solution u of the Cauchy problem associated with (1.1) with initial
condition u0 is assumed to be such that

u(t, ·)→M as t→ +∞ locally uniformly in RN ,

then properties (1.13)-(1.14) still hold for some continuous function ξ : [0,+∞) → R,
where c is characterized by the existence of a solution ϕ ∈ C2(R) of (1.15). Notice that
property (1.13) implies in particular that, for each 0 < ε ≤ M/2 and each unit vector e,
the diameter of the set {r ≥ 0 : ε ≤ u(t, re) ≤ M − ε} is bounded as t → +∞ (see also
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the second paragraph after Remark 1.3). Furthermore, the same conclusion holds if, in-
stead of lim|x|→+∞ u0(x) = 0, one assumes that lim sup|x|→+∞ u0(x) ≤ η, with η > 0 such
that f < 0 in (0, η] (in that case, one has lim sup|x|→+∞ u(t, x)→ 0 as t→ +∞).

1.3. Comments about the assumptions (1.2) and (1.11) on f , and (1.3) on u. Let us
make in the following paragraphs some comments about the role and necessity of the various
assumptions on f and u used in Theorem 1.1.

Let us first discuss the linear stability assumption (1.2) on f . Firstly, as already em-
phasized, the equality f(0) = 0 is necessary for (1.3) to hold. Secondly, if f ′(0) = 0,
then Theorem 1.1 does not hold in general. For instance, in dimensions N ≥ 3 and for
(N + 2)/(N − 2) < p < pL with pL = (N − 4)/(N − 10) if N ≥ 11 and pL = ∞ if N ≤ 10,
the Fujita equation (1.16) admits positive bounded entire solutions u which are uniformly
localized and are homoclinic to 0, in the sense that ‖u(t, ·)‖L∞(RN ) → 0 as t→ ±∞, see [21].
Thirdly, if f ′(0) > 0, then Theorem 1.1 does not make sense in general. Consider for in-
stance a C2 concave function f : [0,+∞) → R such that f(0) = 0, f ′(0) > 0 and f(b) = 0
for some b > 0 (then, f(s) < 0 for all s > b). Any nonnegative bounded entire solution u
of (1.1) and (1.3) necessarily satisfies 0 ≤ u < b in R × RN from the maximum principle.
Furthermore, maxRN u(t, ·) < b for all t negative enough (and then for all t ∈ R), and it then
follows from [33] that u(t, x) is a function of t alone and (1.3) then yields u ≡ 0 in R× RN .

Let us now focus on condition (1.11) on f . Notice first that it implies that the map φ 7→ mφ

is constant in E . Indeed, for any φ, φ′ ∈ E , one has F < 0 in (0,mφ′ ] by (1.11), while
F (maxRNφ) ≥ 0 and f(maxRNφ) > 0. Hence, owing to the definition (1.7) of mφ and
the fact that f(mφ′) = 0, one infers that mφ′ ≤ mφ. Otherwise mφ < maxRNφ < mφ′

and thus F (maxRNφ) < 0, which is a contradiction. Finally mφ = mφ′ since φ and φ′ are
arbitrary in E . As a consequence, one also gets that the function φ 7→ Mφ is constant in E ,
where the quantity Mφ has been defined in (1.9).

Remark 1.3. From the proof of Theorem 1.1, it turns out that, in case (iii) of Theorem 1.1,
one necessarily has Mφ < +∞ for any (and all) φ ∈ E and

(1.17) M = Mφ.

In particular, if the solution u spreads, it can not converge to an intermediate state smaller
than M and the limit state M does not depend on the solution u itself. As a matter of
fact, since F < 0 in (0,mφ], mφ < maxRNφ < Mφ, F (maxRNφ) ≥ 0, f > 0 in (mφ,Mφ)
and f(Mφ) = 0 for all φ ∈ E , one then infers that M = Mφ is the smallest zero of f for
which F (M) > 0, that is,

(1.18) M = min
{
s ≥ 0 : f(s) = 0 and F (s) > 0

}
.

Therefore, M only depends on the function f . Notice that this also implies that case (iii)
is ruled out if f > 0 in (mφ,+∞) for any (and all) φ ∈ E , hence only cases (i) or (ii) may
occur in this case.

Together with (1.2), assumption (1.11) plays a key-role in the dichotomy results between
the uniformly localized solutions and the solutions converging as t → +∞ to a positive
constant with a positive spreading rate. Without the assumption (1.11), the solutions u
of (1.1) may well converge locally uniformly in RN as t → +∞ to a steady state φ such
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that lim|x|→+∞ φ(x) > 0 (such behaviors are known for the solutions of the associated Cauchy
problem with localized initial conditions in dimension N = 1 [42, 43] or with compactly
supported initial conditions in dimensions N ≥ 1 [16]).

The assumption (1.11) is also essential in the proof of formula (1.13) saying that, for
spreading solutions, the transition between M−ε and ε (for any 0 < ε ≤M/2) has bounded
width in any radial direction as t → +∞. This property refers to the notion of transition
fronts (here, as t→ +∞) introduced in [5]. In other words, the assumption (1.11) prevents
the existence of terraces made of stacked propagating fronts between the top value M and the
zero state. The existence and attractivity of radial terraces with radial positions (0 <) ξ1(t) <
· · · < ξm(t) has been proved in [15] under an additional non-degeneracy assumption of all
zeroes of f in [0,M ] (see also [17, 20, 28, 43] for further results on terraces for homogeneous or
spatially periodic equations in dimension N = 1, [62, 63] for the existence of one-dimensional
and radially symmetric terraces for gradient multistable systems, [58, 59] for the existence
of planar terraces for solutions with front-like initial data in RN , and [29] for the existence
of terraces in spatially periodic equations in RN). The limit values of the ratios of ξi(t)/t are
also explicit, see [15]. Here, especially thanks to (1.11), only a single radial layer can exist,
and the asymptotic position ξ(t) of that layer at large times is given in terms of the unique
speed of a traveling front ϕ connecting 0 and M for problem (1.15). We point out that M is
asymptotically stable from below since f is positive in a left neighborhood of M , but M may
not be linearly stable, in the sense that f ′(M) may vanish. Actually, formula (1.14) is proved
even if f ′(M) = 0 (notice in particular that f may not be monotone in a left neighborhood
of M)1 and, as such, up to our knowledge, the spreading properties (1.13)-(1.14) are new even
in dimension N = 1. The exact position of the layer ξ(t) and a quantitative estimate on the
attractivity of the radial front with speed c are not clear without the assumption f ′(M) < 0
(see Remark 1.4 below for the case f ′(M) < 0). However, if x0 denotes the point with respect
to which the considered solution u is radially symmetric and decreasing, and if a is any fixed
real number in (0,M), then one knows from (1.14) that, for all t large enough, there is a
unique ξa(t) ∈ R such that u(t, x0 + ξa(t)e) = a for all unit vectors e, and

lim sup
t→+∞

|ξa(t)− ξ(t)| < +∞.

It is reasonable to conjecture that u(t, x0 +ξa(t)e+x)→ ϕ(x ·e+ϕ−1(a)) as t→ +∞ locally
uniformly in x ∈ RN for any unit vector e, albeit the proof of this property would require
different arguments from the ones used here.

Remark 1.4. In alternative (iii) of Theorem 1.1, if M is further assumed to be nondegen-
erate, meaning here that f ′(M) < 0, then there are x0 ∈ RN and τ ∈ R depending on u,
such that

(1.19) sup
x∈RN

∣∣∣u(t, x)− ϕ
(
|x− x0| − ct+

N − 1

c
ln t+ τ

)∣∣∣→ 0 as t→ +∞.

1On the other hand, if f were assumed to be monotone, namely nonincreasing, in a left neighborhood
of M , then it would follow from [3, 64] that max|x|≤c′t |u(t, x) − M | → 0 and max|x|≥c′′t u(t, x) → 0 as
t → +∞ for every 0 ≤ c′ < c < c′′. This in particular yields (1.14), namely limt→+∞ ξ(t)/t = c, but this
does not show property (1.13) on the boundedness of the radial width of the transition between 0 and M at
large times.
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In particular, property (1.13) then holds with ξ(t) = ct − ((N − 1)/c) ln t (say for t ≥ 1)
if f ′(M) < 0. Property (1.19) makes the position ξ(t) and the limit profile of u in all
directions exactly known up to an o(1) term as t→ +∞. When 0 and M are nondegenerate
and f has a single zero in the interval (0,M), formula (1.19) for the solutions converging
locally to M follows from [68, Corollary 2] (see also [65] for more precise estimates on the
position of the front at large times, and [35] for earlier but less precise estimates). It is easily
seen from [68] that the proof extends to the case when 0 and M are still nondegenerate and f
has more than one zero in (0,M), since the unique profile ϕ given in (1.15), with unique
speed c > 0, still satisfies ϕ′ < 0 in R and converges exponentially to 0 and M at ±∞.

Finally, let us comment the assumption (1.3) on u. It is essential in the derivation of (1.12)
saying that the α-limit set of the considered solutions is included in E . If, instead of (1.3),
one only assumes that u(t, x) → 0 as |x| → +∞ for each t ≤ 0 (and then, equivalently, for
each t ∈ R), but without any uniformity with respect to t ≤ 0, then the conclusion does not
hold in general. For instance, consider any b > 0 and a function f which is of the bistable
type on [0, b], namely there is a ∈ (0, b) such that

(1.20)

{
f(0) = f(a) = f(b) = 0, f ′(0) < 0, f ′(b) < 0, f ′(a) > 0,

f < 0 in (0, a), f > 0 in (a, b).

The equation (1.1) with f satisfying (1.20) was originally proposed in [2, 49] and is ac-
cordingly often called the Allen-Cahn equation or the Nagumo equation. It arises in a wide
variety of contexts such as phase transition, combustion, ecology and many models of biology.
If f satisfies (1.20) and if

(1.21)

∫ b

0

f(s)ds > 0,

then there are entire solutions u : R × R → (0, b) of (1.1) in dimension N = 1 that satisfy
limx→±∞ u(t, x) = 0 for each t ∈ R and behave as two further and further pulses as t→ −∞,
see [41]. Namely, there is a solution φ : R → (0, a′] of (1.4), where a′ ∈ (a, b) is such
that F (a′) = 0 and φ is the unique, up to shifts, solution of (1.4) ranging in [0, b]. The
solutions u constructed in [41] are such that

u(t, x)− φ(−ξ(t))− φ(ξ(t))→ 0 as t→ −∞ uniformly in x ∈ R,

with limt→−∞ ξ(t) = +∞. Therefore, these solutions u do not satisfy (1.12). On the other
hand, if f satisfies (1.20) and

(1.22)

∫ b

0

f(s)ds < 0,

then there are entire solutions u : R×R→ (0, b) of (1.1) that satisfy limx→±∞ u(t, x) = 0 for
each t ∈ R and behave as two far fronts as t→ −∞, see [30]. Namely, under (1.20) and (1.22),
equation (1.1) admits a traveling front ϕ(x − ct) with c < 0 and such that ϕ : R → (0, b)
is decreasing with ϕ(−∞) = b and ϕ(+∞) = 0, that is, ϕ obeys (1.15) with M = b. The
solutions u constructed in [30] satisfy

u(t, x)− ϕ(x− ct)− ϕ(−x− ct) + b→ 0 as t→ −∞ uniformly in x ∈ R,
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and also ‖u(t, ·)‖L∞(R) → 0 as t → +∞. Since in this case there is b′ ∈ (b,+∞) such
that F < 0 in (0, b′], equation (1.4) does not admit any solution φ : R → [0, b′], and the
solutions u then do not satisfy (1.12).

Remark 1.5. In Theorem 1.1, the assumption (1.3) can nevertheless be relaxed, still keeping
the uniformity with respect to t ≤ 0. More precisely, let any η > 0 be such that f < 0 in (0, η].
Notice that such a real number η exists by (1.2). It then turns out that Theorem 1.1 holds
if (1.3) is replaced by the assumption

(1.23) lim sup
|x|→+∞

(
sup
t≤0

u(t, x)
)
≤ η,

or lim sup|x|→+∞
(

supt≤t0 u(t, x)
)
≤ η for some t0 ∈ R. As a matter of fact, (1.23) implies

(and is then equivalent to) (1.3). Indeed, assume by way of contradiction that (1.23) holds,
but not (1.3). Then there is a sequence (tn, xn)n∈N in (−∞, 0]× RN such that

lim
n→+∞

|xn| = +∞ and 0 < lim inf
n→+∞

u(tn, xn) ≤ lim sup
n→+∞

u(tn, xn) ≤ η.

Furthermore, it follows from standard parabolic estimates that, up to extraction of a subse-
quence, the functions un : (t, x) 7→ un(t, x) = u(t+tn, x+xn) converge in C1,2

t,x locally in R×RN

to a nonnegative bounded solution u∞ of (1.1) such that u∞(0, 0) > 0 and 0 ≤ u∞ ≤ η
in (−∞, 0]×RN . Therefore, the maximum principle yields u∞(t, x) ≤ ζ(t+ t0) for all t0 > 0
and (t, x) ∈ [−t0,+∞)×RN , where ζ obeys ζ(0) = η and ζ ′(t) = f(ζ(t)) for all t ≥ 0. In par-
ticular, 0 < u∞(0, 0) ≤ ζ(t0) for all t0 > 0. But ζ(+∞) = 0 since f < 0 in (0, η] and f(0) = 0,
leading to a contradiction. Therefore, (1.3) could equivalently be replaced by (1.23) in Theo-
rem 1.1, but we preferred to state Theorem 1.1 with (1.3) since this assumption is simpler
to write and does not involve the additional introduction of a quantity η.

1.4. Existence of monotone heteroclinic connections. Let us now discuss the existence
of heteroclinic connections between a steady state φ of (1.4) and the constant states 0 or M .
The results described in the following paragraphs are quite standard and inspired by similar
ones in bounded domains [40]. See also [24, Theorem 1.2]. We just sketch here the main
steps of the proof of the existence of heteroclininc connections for the sake of completeness.
So, consider any solution φ of (1.4). Since φ decays exponentially to 0 at infinity (see
also Section 4.1), so do its first- and second-order partial derivatives, from standard elliptic
estimates. In particular, φ ∈ H1(RN) and φxi ∈ H1(RN) for each 1 ≤ i ≤ N . Since each
first-order partial derivative φxi changes sign and satisfies the equation ∆φxi + f ′(φ)φxi = 0
in RN , it follows that φ is a strictly unstable solution of (1.4), in the sense that, for all R > 0
large enough, the principal eigenvalue λR of the operator −∆− f ′(φ) in the open Euclidean
ball BR with center 0 and radius R, with Dirichlet boundary condition on ∂BR, is such
that λR < 0. Let ϕR ∈ C2(BR) be a principal eigenfunction associated to this operator,
namely

(1.24) −∆ϕR − f ′(φ)ϕR = λRϕR in BR, ϕR > 0 in BR, and ϕR = 0 on ∂BR.

Fix any R > 0 large enough such that λR < 0. There exists then ε∗ > 0 such that, for
all ε ∈ (0, ε∗), the C2(BR) function φR,ε := φ − εϕR satisfies 0 < φR,ε ≤ φ in BR, φR,ε = φ
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on ∂BR and

∆φR,ε + f(φR,ε) < 0 in BR.

Denote φ̃R,ε(x) = φR,ε(x) if x ∈ BR and φ̃R,ε(x) = φ(x) if x ∈ RN \BR. Thus, for any

ε ∈ (0, ε∗), the bounded and uniformly continuous function φ̃R,ε is a generalized strict su-
persolution of (1.4), and the solution uε of the Cauchy problem

(1.25)

{
uεt = ∆uε + f(uε) in (0,+∞)× RN ,

uε(0, ·) = φ̃R,ε in RN ,

is strictly decreasing in t. Furthermore, it is truly globally defined (in [0,+∞) × RN) and

satisfies 0 < uε < φ̃R,ε ≤ φ in (0,+∞) × RN from the parabolic maximum principle. The
monotonicity in time and standard parabolic estimates yield the existence of a C2(RN)
solution φ′ of ∆φ′ + f(φ′) = 0 in RN such that 0 ≤ φ′ < φ in RN . Since by [9] any two
solutions of (1.4) can not be ordered, it follows from the strong elliptic maximum principle
that φ′ ≡ 0 in RN . Without loss of generality, one can assume that ε∗ϕR(0) < φ(0)/2.
Hence, for any ε ∈ (0, ε∗), one has uε(0, 0) > φ(0)/2, and there is a time tε > 0 such that

uε(tε, 0) =
φ(0)

2
.

Notice that tε is unique since uε is continuous and decreasing in t. Furthermore, from
the continuous dependence of the solutions of the Cauchy problem associated to (1.1) with
respect to the initial data, and since φ is a steady state, one infers that tε → +∞ as ε→ 0.
Consider now a decreasing sequence (εn)n∈N in (0, ε∗) and converging to 0, and define

un(t, x) = uεn(t+ tεn , x) for (t, x) ∈ [−tεn ,+∞)× RN .

From the previous observations and standard parabolic estimates, the functions un converge
up to extraction of a subsequence in C1,2

t,x locally in R× RN to a solution u∞ of (1.1), such

that 0 ≤ u∞ ≤ φ and (u∞)t ≤ 0 in R× RN , together with u∞(0, 0) = φ(0)/2. Hence,

0 < u∞ < φ in R× RN

from the strong maximum principle, and there are two steady states φ± ∈ C2(RN) such
that u∞(t, ·)→ φ± as t→ ±∞ locally uniformly in RN (and then uniformly since 0 < u∞ < φ
in R×RN and φ(x)→ 0 as |x| → +∞), with 0 ≤ φ+ ≤ φ− ≤ φ and φ+(0) ≤ φ(0)/2 ≤ φ−(0).
The strong maximum principle and the non-existence of ordered solutions of (1.4) imply
that φ− ≡ φ and φ+ ≡ 0 in RN . Lastly, (u∞)t < 0 from the strong parabolic maximum
principle applied to this function. In other words, the solution u∞ of (1.1) is a time-decreasing
heteroclinic connection from φ to 0.

Similarly, the function φ+εϕR ∈ C2(BR) satisfies ∆(φ+εϕR)+f(φ+εϕR) > 0 in BR for all
ε > 0 small enough, with R > 0 fixed large enough as above. Assume here that Mφ, defined
in (1.9), is a real number. Notice that the arguments of [9] based on the maximum principle
and the sliding method imply that, for any classical positive solution φ′ of ∆φ′ + f(φ′) = 0
in RN such that φ′ ≥ φ, one has either φ′ ≡ φ in RN , or φ′ ≥ maxRN φ and then φ′ ≥ Mφ

in RN (remember that f > 0 in [maxRNφ,Mφ)). Therefore, it follows that, for all ε > 0
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small enough, the solutions uε of (1.25), with this time

(1.26) φ̃R,ε =

{
φ+ εϕR in BR,

φ in RN \BR,

are increasing in time in (0,+∞)×RN , and satisfy uε(t, ·)→Mφ as t→ +∞ locally uniformly
in RN . Furthermore, since φ is radially symmetric (with respect to, say, the origin without
loss of generality) and decreasing in |x|, with ∆φ(0) = −f(φ(0)) = −f(maxRNφ) < 0, and
since the principal eigenfunction ϕR of (1.24) is itself radially symmetric by uniqueness, it

follows that the functions φ̃R,ε given in (1.26) are also radially symmetric and decreasing
in |x|, for all ε > 0 small enough. So are the functions uε(t, ·) for all t > 0. With the same
arguments as in the previous paragraph, by defining a time tε > 0 such that

uε(tε, 0) =
φ(0) +Mφ

2
,

one infers the existence of a time-increasing heteroclinic connection between φ and Mφ (the
convergence to Mφ being this time only locally uniform in RN as t→ +∞).

For bistable functions f of the type (1.20)-(1.21), we also refer to [34, 46] for the existence
of other time-increasing heteroclinic connections u(t, x1, x2) = U(x1, x2−γt) of (1.1), for any
γ > 0 large enough, between the extended one-dimensional solution φ(x1, x2) = φ(x1) of (1.4)
and the constant b = Mφ, in the sense that u(t, x1, x2)→ φ(x1) as t→ −∞ uniformly in x1
and locally uniformly in x2, and u(t, x1, x2) → b as t → +∞ locally uniformly in (x1, x2).
These connections are however not localized, that is, they do not satisfy (1.3): as a matter
of fact, one has lim sup|(x1,x2)|→+∞ u(t, x1, x2) = b > 0 for each t ∈ R.

Assume now that Mφ = +∞. In that case, the solutions uε of the previous paragraphs can
not stay bounded and therefore blow up in finite or infinite time, according to the behavior
of f(s) as s → +∞. As above, without loss of generality, for all ε > 0 small enough, the
functions uε(t, ·) are radially symmetric and decreasing in |x| for all t in their interval (0, T ε)
of existence, hence uε(t, 0) → +∞ as t → T ε. For all ε > 0 small enough, there is then a
time tε ∈ (0, T ε) such that

uε(tε, 0) = φ(0) + 1,

and tε → +∞ as ε → 0. Therefore, using again the strong parabolic maximum principle,
there is a time-increasing solution u∞ of (1.1), defined now in (−∞, T ) × RN with T ∈
(0,+∞], such that u∞(0, 0) = φ(0)+1, u∞ is radially symmetric and decreasing with respect
to |x|, u∞(t, ·) → φ uniformly in RN as t → −∞, and u∞(t, 0) → +∞ as t → T . In other
words, u∞ blows up at time T (which may be finite or infinite, according to the function f).

Lastly, we point out that, since any two solutions of (1.4) can not be ordered [9], it follows
that (1.1) can not have any time-monotone heteroclinic connection between two different
solutions φ± of (1.4). However, the existence of non-time-monotone heteroclinic connections
is not a priori ruled out.

Remark 1.6. For any positive bounded solution u of (1.1) satisfying (1.3), the action

E[u(t, ·)] =

∫
RN

( |∇u(t, x)|2

2
− F (u(t, x)

)
dx



POSITIVE ENTIRE SOLUTIONS 11

is well defined and it is a Lyapunov functional, that is, t 7→ E[u(t, ·)] is non-increasing in R
and even decreasing unless u does not depend on t. We refer to Section 4.1 for more details.
Notice that E[φ] > 0 = E[0] for any solution φ of (1.4) (this can be viewed as a consequence
of the aforementioned existence of heteroclinic connections between φ and 0). If Mφ is a real
number and u is a heteroclinic connection between φ and Mφ, or more generally speaking in
case (iii) of Theorem 1.1, then E[u(t, ·)]→ −∞ as t→ +∞. If u is a heteroclinic connection
between two different solutions φ± of (1.4) in the sense that ‖u(t, ·) − φ±‖L∞(RN ) → 0
as t→ ±∞ (this is a particular case of alternative (ii) of Theorem 1.1), then

E[φ−] > E[φ+].

Lastly, if a positive bounded solution u of (1.1) satisfying (1.3) does not converge to a single
solution of (1.4) as t → −∞, in the sense that there are at least two different solutions φ
and φ′ of (1.4) such that

‖u(tn, ·)− φ‖L∞(RN ) → 0 and ‖u(t′n, ·)− φ′‖L∞(RN ) → 0 as n→ +∞
with limn→+∞ tn = limn→+∞ t

′
n = −∞, then E[φ] = E[φ′]. Notice that in that situation, φ

and φ′ are necessarily radially symmetric with respect to the same origin, since so is u, and
by connectedness of the α-limit set of u there is then a continuum of such limit steady states
as t → −∞ in the α-limit set of u, all having the same Lagrangian (we also refer to the
discussion before Corollary 2.3 below). As a consequence, if the Lagrangian E is one-to-one
of the set the solutions of (1.4) which are symmetric with respect to the same point, then
there is a single φ ∈ E such that ‖u(t, ·)− φ‖L∞(RN ) → 0 as t→ −∞.

2. Some corollaries and particular cases

In this section, we list some corollaries of Theorem 1.1 which correspond to further as-
sumptions or to some special cases. In particular, the conclusion (1.12) will be made more
precise under further assumptions.

2.1. Dimension N = 1. The first corollary is concerned with the dimension N = 1. In this
case, the solutions of (1.4) are unique, up to shifts. Indeed, for any such solution φ, it fol-

lows from (1.5) and (1.8) that F < 0 in (0,maxR φ) = (0,Φ(0)) and Φ′(r) = −
√
−2F (Φ(r))

for all r ≥ 0, hence the radial profile Φ is unique from the Cauchy-Lipshitz theorem. Fur-
thermore, F (Φ(0)) = 0 and f(Φ(0)) > 0. One can also infer from (1.8) that, if there
is β ∈ (0,+∞) such that F < 0 in (0, β) with F (β) = 0 and f(β) > 0 (notice that the
hypotheses F < 0 in (0, β) and F (β) = 0 imply that f(β) ≥ 0), then (1.4) has a (unique up
to shifts) solution.

Corollary 2.1. Assume that N = 1, that f satisfies (1.2) and that there is β ∈ (0,+∞)
such that F < 0 in (0, β) with F (β) = 0 and f(β) > 0. Then E 6= ∅ and, for any positive
bounded solution u of (1.1) satisfying (1.3), there is φ ∈ E such that ‖u(t, ·)− φ‖L∞(R) → 0
as t→ −∞. Furthermore, either ‖u(t, ·)‖L∞(R) → 0 as t→ +∞, or u(t, x) ≡ φ(x) in R×R,
or else the alternative (iii) of Theorem 1.1 holds.

Corollary 2.1 easily follows from Theorem 1.1, the previous observations and the fact that
the solutions u are necessarily even in x with respect to some real number. The fact that
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case (ii) reduces to u ≡ φ is a consequence of the existence of a Lyapunov functional and
the uniqueness of the solutions of (1.4) up to shifts. We refer to Section 5 for more details.

2.2. Non-existence of positive bounded solutions. In dimension N = 1, with (1.2),
the existence of a smallest positive root β of F with f(β) > 0 is a necessary and sufficient
condition for the existence of a solution of (1.4). In dimension N ≥ 2, any solution φ of (1.4)
satisfies F (maxRN φ) > 0. Therefore, the next result immediately follows from Theorem 1.1
and the strong maximum principle.

Corollary 2.2. Assume that f satisfies (1.2). In dimension N = 1, if F < 0 in (0,+∞) or
if F < 0 in (0, β) with F (β) = 0 and f(β) = 0, then the only nonnegative bounded solution u
of (1.1) satisfying (1.3) is the trivial solution u ≡ 0 in R×R. In dimension N ≥ 2, if F ≤ 0
in [0,+∞), then the same conclusion holds.

The assumptions of Corollary 2.2 are simple conditions ruling out the existence of solutions
to (1.4). These assumptions are however not optimal in dimensions N ≥ 2. For instance,
if N ≥ 3, for any positive real numbers γ and δ and for any p ≥ (N + 2)/(N − 2), the
equation (1.4) with

(2.1) f(s) = −γs+ δsp

does not admit any solution [36, 52]. The same property holds with

(2.2) f(s) = −γs− δsp + ηsq

with N ≥ 3, γ > 0, δ > 0, η > 0, and 1 < p ≤ (N+2)/(N−2) ≤ q or (N+2)/(N−2) < p < q,
see [36, 50, 52]. In these two examples, Theorem 1.1 implies that the only nonnegative
bounded solution u of (1.1) satisfying (1.3) is then the trivial solution u ≡ 0 in R× RN .

On the other hand, much work has been devoted to the existence of solutions to (1.4)
for some classes of functions f satisfying (1.2), see the book [36]. For instance, if N ≥ 3
and sup[0,+∞) F > 0 together with max(f(s), 0) = o(s(N+2)/(N−2)) as s → +∞, then (1.4)
admits solutions, see [6, 7, 67]. The existence holds in dimension N = 2 if for instance f

satisfies (1.20)-(1.21), see [8], or if sup[0,+∞) F > 0 and max(f(s), 0) = o(eα s
2
) as s → +∞

for all α > 0, see [4].

2.3. Discreteness or uniqueness up to shifts of the localized steady states. In
Theorem 1.1, property (1.12) says that the solution u is close to the family of steady states
of (1.4) as t → −∞, that is, the α-limit set of u (with respect to the uniform convergence
in RN) consists of solutions of (1.4), which turn out to be all symmetric with respect to
a same point in RN , since so is u. Any two different solutions of (1.4) can not be ordered
by [9], but it is not clear in general to know whether u emanates from a single steady state or
from a continuum of them (the possible existence of continua of solutions of (1.4) which are
symmetric with respect to the same point is a difficult issue in general dimensions N ≥ 2).
However, under some further assumptions on the set of steady states, combined with the
connectedness of the α-limit sets of the solutions, one can be sure that a single state is
selected.
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Corollary 2.3. Assume that f satisfies (1.2) and (1.11), and that the set of solutions of (1.4)
which are radially symmetric with respect to the origin is discrete.2 Let u be a positive bounded
solution of (1.1) satisfying (1.3). Then there is φ ∈ E such that ‖u(t, ·) − φ‖L∞(RN ) → 0
as t→ −∞. Furthermore,

(i) either u(t, ·)→ 0 uniformly in RN as t→ +∞,
(ii) or there is φ′ ∈ E such that u(t, ·)→ φ′ uniformly in RN as t→ +∞, and, if φ = φ′,

then u(t, x) ≡ φ(x) ≡ φ′(x) in R× RN ,
(iii) or else the alternative (iii) of Theorem 1.1 holds.

In the particular case when the solutions φ of (1.4) are unique up to shifts, then F ≤ 0
in [0,mφ] since otherwise, by applying the results of [7, 8] to the function f extended by 0
in (mφ,+∞), there would exist other solutions φ′ of (1.4) such that

max
RN

φ′ < mφ < max
RN

φ.

Hence, condition (1.11) is necessarily fulfilled if the solutions of (1.4) are unique up to shifts.
Therefore, since the bounded positive solutions u of (1.1) satisfying (1.3) are necessarily
radially symmetric and decreasing with respect to a single point in RN , the following corollary
immediately holds.

Corollary 2.4. Assume that f satisfies (1.2) and that the solutions of (1.4) exist and are
unique up to shifts. Let u be a positive bounded solution of (1.1) satisfying (1.3). Then there
is φ ∈ E such that ‖u(t, ·)−φ‖L∞(RN ) → 0 as t→ −∞. Moreover, either ‖u(t, ·)‖L∞(RN ) → 0

as t→ +∞, or u(t, x) ≡ φ(x) in R× RN , or else the alternative (iii) of Theorem 1.1 holds.

The existence and uniqueness up to shifts of the solutions of (1.4) is known for some
classes of functions f . For instance, if f satisfies (1.2) and if there are 0 < a < a′ < b ≤ +∞
such that f < 0 in (0, a), f > 0 in (a, b), F (a′) = 0, f ≤ 0 in [b,+∞) and

(2.3) s 7→ f(s)

s− a′
is nonincreasing in (a′, b),

then there exists a unique up to shifts solution φ of (1.4), see [23, 51] (in this case, mφ = a
and Mφ = b). Notice that the monotonicity condition (2.3) is especially fulfilled if f is
nonincreasing in [a′, b). The condition (2.3) is not optimal for the uniqueness, since there are
bistable functions f satisfying the above conditions but (2.3) for which the uniqueness up
to shifts holds for (1.4) in any dimension N ≥ 1 (see especially the cubic functions f of the
type (2.9) below used in Corollary 2.7). The uniqueness up to shifts of the solutions of (1.4)
also holds if f satisfies (1.2) and if there is a ∈ (0,+∞) such that f ≤ 0 in [0, a], f > 0
in (a,+∞) and s 7→ sf ′(s)/f(s) is nonincreasing in (a,+∞), see [1, 66]. An example is the
function f given in (2.1), namely

f(s) = −γs+ δsp,

with γ > 0, δ > 0 and p > 1. As a matter of fact, for that function, the existence and
uniqueness up to shifts of a solution φ of (1.4) holds if and only if N ≤ 2, or N ≥ 3

2This means that, for any radially symmetric solution φ of (1.4), there is ε > 0 such that ‖ψ−φ‖L∞(RN ) ≥ ε
for every radially symmetric solution ψ of (1.4).
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and 1 < p < (N + 2)/(N − 2), see also [6, 7, 8, 10, 11, 12, 36, 37, 44, 45, 52, 69]. In this
case, one has mφ = (γ/δ)1/(p−1) and Mφ = +∞, and it follows from Corollary 2.4 that any
positive bounded solution of (1.1) satisfying (1.3) is either independent of t or converges
to 0 uniformly in RN as t→ +∞. Another important example is that of functions f of the
type (2.2), namely

f(s) = −γs− δsp + ηsq,

with γ > 0, δ > 0, η > 0, p 6= q, and min(p, q) > 1. The uniqueness up to shifts of
the solutions φ of (1.4) holds in that case, and the existence holds if and only if N ≤ 2,
or p < q < (N + 2)/(N − 2) with N ≥ 3 (in this case, Mφ = +∞ and the bounded
solutions of (1.1) satisfying (1.3) are either independent of t or converge to 0 uniformly
in RN as t → +∞), or p > q with N ≥ 3 and β is small enough (in this case, Mφ < +∞),
see [66].

On the other hand, without (2.3) or the aforementioned conditions listed in the previous
paragraph, some examples of non-uniqueness up to shifts in RN with N ≥ 2 are known,
for functions f of the bistable type (1.20) with f < 0 in (b,+∞), see [51], or for some
functions f having one single positive zero, see [53] (notice that conditions (1.2) and (1.11)
are automatically fulfilled for the functions considered in [51, 53]). In [13], for functions f
of the type f(s) = −s + sp + λsq with λ > 0 large, 1 < q < 3 and p < 5 close to 5
(conditions (1.2) and (1.11) then hold), it was shown that (1.4) in dimension N = 3 admits
at least three solutions which are radially symmetric with respect to the origin. Furthermore,
it is reasonable to conjecture from the proof given in [13] that the set of all such solutions is
discrete, in which case Corollary 2.3 can be applied.

2.4. Bistable and cubic functions f . We complete this section by considering the class
of bistable functions f satisfying (1.20) for some 0 < a < b, namely

(2.4)

{
f(0) = f(a) = f(b) = 0, f ′(0) < 0, f ′(b) < 0, f ′(a) > 0,

f < 0 in (0, a), f > 0 in (a, b),

together with

(2.5) f < 0 in (b,+∞).

On the one hand, if

(2.6)

∫ b

0

f(s) ds ≤ 0,

then F < 0 in (0, b) ∪ (b,+∞), hence Corollary 2.2 immediately yields the following result.

Corollary 2.5. If f satisfies (2.4)-(2.6), then, in any dimension N ≥ 1, the only nonnegative
bounded solution u of (1.1) satisfying (1.3) is the trivial solution u ≡ 0 in R× RN .

On the other hand, if

(2.7)

∫ b

0

f(s) ds > 0,
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then there are solutions φ of (1.4) [7, 8], and

a = mφ < max
RN

φ < Mφ = b.

It is also well known [3, 20] that there is a unique c ∈ R, which is positive, and a unique up
to shift function ϕ ∈ C2(R) such that

(2.8) ϕ′′ + cϕ′ + f(ϕ) = 0 in R, ϕ′ < 0 in R, ϕ(−∞) = b, ϕ(+∞) = 0.

An immediate corollary of Corollary 2.4, Theorem 1.1 and property (1.19) in Remark 1.4
is the following result.

Corollary 2.6. Assume that f satisfies (2.4) and (2.7) and that the solutions of (1.4) are
unique up to shifts. Let u be a positive bounded solution of (1.1) satisfying (1.3). Then there
is φ ∈ E such that ‖u(t, ·)−φ‖L∞(RN ) → 0 as t→ −∞. Moreover, either ‖u(t, ·)‖L∞(RN ) → 0

as t→ +∞, or u(t, x) ≡ φ(x) in R× RN , or else there are x0 ∈ RN and τ ∈ R such that

sup
x∈RN

∣∣∣u(t, x)− ϕ
(
|x− x0| − ct+

N − 1

c
ln t+ τ

)∣∣∣→ 0 as t→ +∞,

where c > 0 and ϕ ∈ C2(RN) are given in (2.8).

Consider finally an important example of functions f satisfying (1.20), namely the cubic
nonlinearities

(2.9) f(s) = s(b− s)(s− a)

with 0 < a < b. Notice that (2.7) is fulfilled if and only if a < b/2. Furthermore, in that
case, the solutions of (1.4) exist and are unique up to shifts, by [7, 8, 66]. As a consequence,
the following corollary holds.

Corollary 2.7. Let 0 < a < b and f be of the type (2.9). If a ≥ b/2, then, in any
dimension N ≥ 1, the only nonnegative bounded solution u of (1.1) satisfying (1.3) is the
trivial solution u ≡ 0 in R×RN . If a < b/2, then (1.4) admits solutions and, for any positive
bounded solution u of (1.1) satisfying (1.3), there is φ ∈ E such that ‖u(t, ·)−φ‖L∞(RN ) → 0

as t → −∞, and either ‖u(t, ·)‖L∞(RN ) → 0 as t → +∞, or u(t, x) ≡ φ(x) in R × RN , or

else there are x0 ∈ RN and τ ∈ R such that

sup
x∈RN

∣∣∣u(t, x)− ϕ
(
|x− x0| − ct+

N − 1

c
ln t+ τ

)∣∣∣→ 0 as t→ +∞,

where c > 0 and ϕ ∈ C2(RN) are given in (2.8).

Outline of the paper. Section 3 is concerned with some preliminary results on the existence
of planar traveling fronts connecting 0 and M (these fronts are used in alternative (iii) of
Theorem 1.1) and on the existence of steady states in large balls under some assumptions
on the nonlinearity. Section 4 is devoted to the proof of Theorem 1.1 and Section 5 to the
proof of Corollaries 2.1 and 2.3 (the other corollaries follow from the other results, as already
emphasized).
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3. Some preliminary facts

We start with the existence and uniqueness of traveling fronts (c, ϕ) solving (1.15) and
arising in alternative (iii) of Theorem 1.1.

Lemma 3.1. Let 0 < m < M and f be a C1([0,M ]) function such that f(0) = f(M) = 0,
f ′(0) < 0, f > 0 in (m,M), F < 0 in (0,m] and F (M) > 0. Then there are a unique c ∈ R
and ϕ : R→ (0,M) of class C2(R) solving

(3.1) ϕ′′ + cϕ′ + f(ϕ) = 0 in R, ϕ(−∞) = M, and ϕ(+∞) = 0,

where the uniqueness of ϕ is understood up to shifts. Furthermore, c > 0 and ϕ′ < 0 in R.

The result is expected since it has been well known under some additional assumptions
on f . However we are not aware of a suitable reference for its proof, which is therefore
sketched here for the sake of completeness.

Proof. First of all, the uniqueness of a pair (c, ϕ) is a direct consequence of [20, Corollary 2.3]
and the property ϕ′ < 0 in R follows from [20, Lemma 2.1]. Furthermore, c > 0 by integra-
ting (3.1) against ϕ′ over R and using the assumption F (M) > 0.

Let us now show the existence of a pair (c, ϕ) solving (3.1). From the assumptions made
on f , it is easy to check that there are a decreasing sequence (εn)n∈N in (0,m) converging
to 0, and a sequence (fn)n∈N such that each function

fn : [εn,M + εn]→ R

is of class C1([εn,M + εn]), the sequence (‖fn‖C1([εn,M+εn]))n∈N is bounded, and for each

n ∈ N, there holds: fn(εn) = fn(M + εn) = 0, f
′
n(εn) < 0, f

′
n(M+εn) < 0, the zeroes

of fn are all non-degenerate (that is,
{
s ∈ [εn,M + εn] : fn(s) = f

′
n(s) = 0

}
= ∅), together

with fn ≥ fn′ in [εn,M + εn′ ] if n ≤ n′, fn ≥ f in [εn,M ], and max[εn,M ] |fn − f | → 0
as n → +∞. Furthermore, even if it means considering a subsequence, one can always
assume that, for each n ∈ N,

(3.2) fn > 0 in (m,M + εn),

∫ s

εn

fn(σ) dσ < 0 for all s ∈ (εn,m], and

∫ M+εn

εn

fn(σ) dσ > 0.

For each n ∈ N, it then follows from [20, Theorem 2.8] that there are p ∈ N, some real
numbers εn = a0 < a1 < · · · < ap = M + εn and

(3.3) c1 ≥ · · · ≥ cp

such that, for each j ∈ {1, · · · , p}, there is a C2(R) function ϕj : R→ (aj−1, aj) satisfying

(3.4) ϕ′′j + cjϕ
′
j + fn(ϕj) = 0 in R, ϕ′j < 0 in R, ϕj(−∞) = aj, and ϕj(+∞) = aj−1.

Notice that the quantities p, aj, cj and ϕj actually depend on n, that fn(aj) = 0 for all
0 ≤ j ≤ p, and that the family (cj, ϕj)1≤j≤p is then a stacked combination of traveling fronts

with non-increasing speeds for the reaction term fn. Since ap−1 ≤ m and
∫M+εn
ap−1

fn(σ)dσ > 0

by (3.2), integrating (3.4) with j = p against ϕ′p over R implies that cp > 0. Furthermore,
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if p ≥ 2, one would have a1 ≤ m and then c1 < 0 by using again (3.2) and (3.4) with j = 1,
contradicting (3.3). Therefore, p = 1 and there is then a solution (cn, ϕn) of

ϕ′′n + cnϕ
′
n + fn(ϕn) = 0 in R, ϕ′n < 0 in R, ϕn(−∞) = M + εn, and ϕn(+∞) = εn,

with cn > 0.
Now, if n < n′, then M + εn > M + εn′ > εn > εn′ and, up to shifts, one has ϕn ≥ ϕn′

in R with equality at a point ξ such that ϕn(ξ) = ϕn′(ξ) ∈ (εn,M + εn′). On the other hand,
if cn ≤ cn′ , then one would have

ϕ′′n + cn′ϕ
′
n + fn′(ϕn) ≤ ϕ′′n + cnϕ

′
n + fn(ϕn) = 0 = ϕ′′n′ + cn′ϕ

′
n′ + fn′(ϕn′)

in the open interval I = {x ∈ R : εn < ϕn(x) < M + εn′}. In other words, the functions ϕn
and ϕn′ are respectively a super-solution and a solution of the same elliptic equation in I,
with ϕn ≥ ϕn′ in R ⊃ I. Since ξ ∈ I, it then follows from the strong maximum principle that
ϕn(x) = ϕn′(x) for all x ∈ I. Since I is of the type I = (ζ,+∞) for some ζ ∈ R, one gets
a contradiction by passing to the limit in ϕn(x) = ϕn′(x) as x → +∞. As a consequence,
cn > cn′ and the sequence (cn)n∈N is decreasing, with cn > 0 for every n ∈ N.

Finally, there is c ∈ R such that cn → c ≥ 0 as n → +∞. Let η be any real number
in (0,m) such that f < 0 in (0, η]. Up to shifts, one can assume without loss of generality
that ϕn(0) = η for all n large enough (such that εn < η). From standard elliptic estimates,
the functions ϕn converge in C2

loc(R) to a C2(R) function ϕ such that ϕ(0) = η, 0 ≤ ϕ ≤M
in R, ϕ′ ≤ 0 in R, and

(3.5) ϕ′′ + cϕ′ + f(ϕ) = 0 in R.
From standard elliptic estimates, ϕ′(±∞) = ϕ′′(±∞) = f(ϕ(±∞)) = 0 and the choice of η
yields ϕ(+∞) = 0, hence ϕ′ < 0 in R from the strong maximum principle and 0 < ϕ(−∞) ≤
M . Integrating (3.5) against ϕ′ over R implies that F (ϕ(−∞)) = c

∫
R(ϕ′)2 ≥ 0. Therefore,

the assumptions on f imply that ϕ(−∞) = M . In other words, the pair (c, ϕ) solves (3.1),
and the proof of Lemma 3.1 is thereby complete. �

Remark 3.2. The arguments used in the proof of Lemma 3.1 also lead to the approximation
of the unique speed c from below. Namely, as above, there are a decreasing sequence (εn)n∈N
in (0,m) converging to 0, and a sequence (f

n
)n∈N such that each function

f
n

: [−εn,M − εn]→ R

is of class C1([−εn,M − εn]), the sequence (‖f
n
‖C1([−εn,M−εn]))n∈N is bounded, and for

each n ∈ N, there holds: f
n
(−εn) = f

n
(M − εn) = 0, f ′

n
(−εn) < 0, f ′

n
(M − εn) < 0,

the zeroes of f
n

are all non-degenerate, together with f
n
≤ f

n′
in [−εn′ ,M − εn] if n ≤ n′,

f
n
≤ f in [0,M − εn], and max[0,M−εn] |fn − f | → 0 as n→ +∞. Lastly, after fixing a real

number m′ ∈ (m,M) such that F < 0 in (0,m′], one can assume without loss of generality
that, for each n ∈ N,

f
n
> 0 in [m′,M − εn),

∫ s

−εn
f
n
(σ) dσ < 0 for all s ∈ (−εn,m′], and

∫ M−εn

−εn
f
n
(σ) dσ > 0.

As in the proof of Lemma 3.1, one can then show that, for each n ∈ N, there is a solution
(cn, ϕn) of ϕ′′

n
+ cnϕ

′
n

+ f
n
(ϕ

n
) = 0 in R, ϕ′

n
< 0 in R, ϕ

n
(−∞) = M − εn, ϕ

n
(+∞) = −εn,
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and cn > 0. Furthermore, the sequence (cn)n∈N is increasing, and cn < c for all n ∈ N, with
the same arguments as in the proof of Lemma 3.1. Finally, there is c ≤ c such that cn → c
as n → +∞, and there is a C2(R) solution ϕ of (3.1) with speed c instead of c. The
uniqueness of (c, ϕ) then yields c = c, hence cn → c as n→ +∞.

The second preliminary result is concerned with the existence of solutions of some semi-
linear elliptic equations in large balls.

Lemma 3.3. Let α < β be two real numbers and g : [α, β] → R be a C1([α, β]) function
such that g(α) = g(β) = 0 and

(3.6) G(β) :=

∫ β

α

g(σ)dσ >

∫ s

α

g(σ)dσ =: G(s) for all s ∈ [α, β).

Then, for each ν ∈ (α, β), there are R > 0 and a C2(BR) function ψ such that

(3.7)


∆ψ + g(ψ) = 0 in BR,

α ≤ ψ < β in BR,

ψ = α on ∂BR,

max
BR

ψ = ψ(0) > ν.

Proof. The proof is standard, based on [6], so we just sketch it. Let g : R → R be the
function defined by g(s) = g(s) for s ∈ [α, β], and g(s) = 0 for s ∈ R\[α, β], and let us still
call G the primitive of g vanishing at α. For each r > 0, there is a minimizer ψr ∈ α+H1

0 (Br)
of the Lagrangian Jr defined in α +H1

0 (Br) by

Jr(ϕ) =
1

2

∫
Br

|∇ϕ(x)|2 dx−
∫
Br

G(ϕ(x)) dx, Jr(ψr) = min
ϕ∈α+H1

0 (Br)
Jr(ϕ),

Owing to the definitions of g and G, one can assume without loss of generality that ψr ranges
in [α, β], hence ψr is of class C2(Br) from elliptic estimates and it solves ∆ψr + g(ψr) = 0
in Br with ψr = α on ∂Br. The strong elliptic maximum principle also yields ψr < β in Br

and, either ψr ≡ α in Br, or ψr > α in Br. In both cases, ψr is a radially symmetric and
nonincreasing function of |x| (from [26] in the latter). In particular, maxBr

ψr=ψr(0)∈ [α, β).
Let us now show that

(3.8) max
Br

ψr = ψr(0)→ β as r → +∞,

which will then provide R > 0 and a solution ψ of (3.7), given a fixed real number ν ∈ (α, β).
Assume by way of contradiction that there are θ ∈ (α, β), a sequence (rk)k∈N → +∞ and a
sequence (ψrk)k∈N of C2(Brk) functions such that each ψrk : Brk → [α, β) minimizes Jrk in
α + H1

0 (Brk) and maxBrk
ψrk = ψrk(0) ≤ θ < β. From the assumptions made on g, there

is δ > 0 such that G(s) ≤ G(β) − δ for all s ∈ [α, θ]. Hence, Jrk(ψrk) ≥ (δ − G(β))αNr
N
k

for all k ∈ N, where αN > 0 denotes the Lebesgue measure of the N -dimensional unit
ball B1. On the other hand, after assuming without loss of generality that rk > 1 for
every k ∈ N, consider the function ϕk ∈ α + H1

0 (Brk) defined by ϕk(x) = β for x ∈ Brk−1
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and ϕk(x) = α + (β − α)(rk − |x|) for x ∈ Brk\Brk−1. For each k ∈ N, one has

Jrk(ψrk) ≤ Jrk(ϕk) =
αN
2

(rNk − (rk − 1)N)−G(β)αN (rk − 1)N −
∫
Brk
\Brk−1

G(ϕk(x)) dx

≤ αN

(1

2
+ max

[α,β]
|G|
)

(rNk − (rk − 1)N)−G(β)αN(rk − 1)N .

This implies that

δ rNk ≤
(

1

2
+ max

[α,β]
|G|+G(β)

)
(rNk − (rk − 1)N).

It contradicts limk→+∞ rk = +∞, since δ > 0. As a consequence, (3.8) holds and the proof
of Lemma 3.3 is thereby complete. �

4. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Throughout it, one assumes that f
satisfies (1.2) and (1.11), and u denotes a positive bounded solution of (1.1) satisfying (1.3).
Sections 4.1 and 4.2 are concerned with the behaviors of u as t → −∞ and t → +∞,
respectively.

4.1. The behavior of u as t → −∞. We here establish (1.12) and further integral pro-
perties of the solution u. First of all, it follows from [54, Theorem 1.1] that there is a
point x0 ∈ RN such that

(4.1)

{
u(t, x) = u(t, y) for all (t, x, y) ∈ R× RN × RN with |x− x0| = |y − x0|,
∇u(t, x) · (x− x0) < 0 for all (t, x) ∈ R× RN with x 6= x0.

Furthermore, [54, Corollary 2.5] implies that there are some positive constants C and ν such
that

(4.2) 0 < u(t, x) ≤ C e−ν|x| for all (t, x) ∈ (−∞, 0]× RN .

Denote

M0 = ‖u‖L∞(R×RN ) > 0

and L = ν2 + max[0,M0] |f ′|. For any unit vector e of RN , the function u(t, x) = C e−νx·e+Lt

satisfies ut(t, x)−∆u(t, x)− f(u(t, x)) ≥ 0 for any (t, x) ∈ R× RN such that u(t, x) ≤ M0.
Therefore, the maximum principle implies that u(t, x) ≤ u(t, x) for all (t, x) ∈ [0,+∞)×RN

and for any unit vector e, hence u(t, x) ≤ C e−ν|x|+Lt for all (t, x) ∈ [0,+∞) × RN . By
combining this inequality with (4.2), for every T ∈ R, there is a real number CT > 0 such
that

(4.3) 0 < u(t, x) ≤ CT e
−ν|x| for all (t, x) ∈ (−∞, T ]× RN .

From standard parabolic estimates, one also infers that, for every T ∈ R, there is a real
number C ′T > 0 such that

(4.4) u(t, x)+|ut(t, x)|+|∇u(t, x)|+
∑

1≤i,j≤N

|uxixj(t, x)| ≤ C ′T e
−ν|x| for all (t, x)∈(−∞, T ]×RN .
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In particular, the action

(4.5) E[u(t, ·)] =

∫
RN

( |∇u(t, x)|2

2
− F (u(t, x)

)
dx

is well defined at each time t ∈ R, and Lebesgue’s dominated convergence theorem implies
that the function t 7→ E[u(t, ·)] is of class C1(R) with

(4.6)
d

dt
E[u(t, ·)] = −

∫
RN

(ut(t, x))2 dx ≤ 0

for every t ∈ R. Furthermore, (4.4) yields supt≤T |E[u(t, ·)]| < +∞ for every T ∈ R, and
there is then ` ∈ R such that

(4.7) E[u(t, ·)]→ ` as t→ −∞.
Consider now any sequence (tn)n∈N converging to −∞, and denote

un(t, x) = u(t+ tn, x)

for (t, x) ∈ R×RN . From (4.4) and further standard parabolic estimates, there is a classical
nonnegative bounded solution u∞ of (1.1) such that, up to extraction of a subsequence,
un → u∞ in C1,2

t,x locally in R× RN , together with

‖un(t, ·)− u∞(t, ·)‖L∞(RN ) → 0 and E[un(t, ·)]→ E[u∞(t, ·)] as n→ +∞,
for every t ∈ R. Notice also that u∞ satisfies (4.4) with the constant C ′0 in the whole
set R×RN . Since E[un(t, ·)] = E[u(t + tn, ·)] → ` as n → +∞, for every t ∈ R, one infers
that E[u∞(t, ·)] = ` for every t ∈ R, hence (u∞)t ≡ 0 in R × RN from (4.6) applied to u∞.
As a consequence, u∞ is a bounded nonnegative steady state solving{

∆u∞ + f(u∞) = 0 and u∞ ≥ 0 in RN ,

u∞(x)→ 0 as |x| → +∞.

From the elliptic maximum principle, it follows that either u∞ ≡ 0 in RN , or u∞ > 0
in RN . In the former case, one has u(tn, ·) = un(0, ·) → 0 as n → +∞ uniformly in RN ,
hence 0 < u(tn, ·) ≤ η in RN for all n large enough, where η is a positive real number such
that

(4.8) f < 0 in (0, η].

Thus, for all t ∈ R, one gets that 0 < u(t, ·) = u(t − tn + tn, ·) ≤ ζ(t − tn) in RN for all n
large enough, where ζ obeys ζ(0) = η and ζ ′(t) = f(ζ(t)) for all t ≥ 0. Since ζ(+∞) = 0
and limn→+∞ tn = −∞, it follows that u(t, ·) ≤ 0 in RN for all t ∈ R, a contradiction.
Therefore, u∞ > 0 is a steady state solving (1.4), namely u∞ ∈ E . In particular, E is not
empty.

Since in the previous paragraph the sequence (tn)n∈N converging to −∞ was arbitrary,
one concludes that

inf
φ∈E
‖u(t, ·)− φ‖L∞(RN ) → 0 as t→ −∞,

namely (1.12) has been proven. The observations of the previous paragraph also imply that

(4.9) E[φ] = `
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for every φ ∈ E belonging to the α-limit set of u.

Remark 4.1. Remember that, from assumption (1.11), the map (∅ 6=) E 3 φ 7→ mφ takes a
constant value, that is, there is m > 0 such that

(4.10) m = mφ > 0

for all φ ∈ E . The quantity M ∈ (m,+∞] defined in (1.9) and (1.17)-(1.18) is such that

f > 0 in (m,M)

from (1.10). In the present remark, we claim that

(4.11) 0 < u(t, x) < M for all (t, x) ∈ R× RN .

By assumption, u is positive. So there is nothing to show if M = +∞. Assume now
that M < +∞. From the above proof of (1.12), there is φ ∈ E and a sequence (tn)n∈N
converging to −∞ such that ‖u(tn, ·) − φ‖L∞(RN ) → 0 as n → +∞. Since maxRNφ < M

by (1.9) and (1.17), one has u(tn, ·) < M in RN for all n large enough. Since f(M) = 0, it
then follows from the maximum principle (applied for n large enough) that, for each t ∈ R,
u(t, ·) = u(t− tn + tn, ·) < M in RN , that is, (4.11) holds.

4.2. The behavior of u as t→ +∞. In the section, we consider the behavior of the entire
solution u as t→ +∞. The proof is divided into five main steps.

Step 1: two key-lemmas. The proof of the dichotomy as t → +∞ between the uniformly
localized solutions and the spreading solutions is based on two key-lemmas. The first one
gives a sufficient condition for the finiteness and attractiveness of the quantity M ∈ (m,+∞]
defined in (1.9) and (1.17)-(1.18).

Lemma 4.2. For every ε > 0, there is a real number ρε > 0 such that, if

(4.12) u(t0, ·) ≥ m+ ε in B(y0, ρε)

for some (t0, y0) ∈ R× RN , then
M < +∞

and

(4.13) max
|x|≤γt

|u(t, x)−M | → 0 as t→ +∞

for some γ > 0.3

Remark 4.3. For a function f such that M is a priori assumed to be finite, the conclu-
sion (4.13) can also be viewed as a consequence of [16, Lemma 2.4], which is based on the
existence of approximated planar fronts defined in bounded intervals (see also [20, Theo-
rem 3.2] and [3, Theorem 6.2] for related results with more specific nonlinearities f in the
one- and multi-dimensional cases). We here both show (4.13) and the finiteness of M un-
der assumption (4.12). Moreover, the proof of (4.13) given below differs from that of [16,
Lemma 2.4] as it is based on Lemma 3.3 and on the existence of compactly supported steady
states.

3We point out that, when ε > M0 −m, ρε can be arbitrary because (4.12) is not fulfilled in that case.
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Proof of Lemma 4.2. Let ε > 0 be fixed throughout the proof. Assume first, by way of
contradiction, that M = +∞, and that there exists a sequence (tn, yn)n∈N in R × RN such

that u(tn, ·) ≥ m+ ε in B(yn, n). From (1.10), it then follows that f > 0 in (m,+∞). From
standard parabolic estimates, the functions

un : (t, x) 7→ un(t, x) = u(t+ tn, x+ yn)

converge in C1,2
t,x locally in R × RN , up to extraction of a subsequence, to a nonnegative

bounded solution u∞ of (1.1) such that u∞(0, ·) ≥ m+ε in RN . Hence, u∞(t, ·) ≥ ς(t) in RN

for all t ≥ 0, where ς obeys

(4.14)

{
ς ′(t) = f(ς(t)) for t ≥ 0,

ς(0) = m+ ε.

This is impossible since u∞ is bounded while f > 0 in [m+ ε,+∞). As a consequence, there
is %ε > 0 such that if

u(t0, ·) ≥ m+ ε in B(y0, %ε)

for some (t0, y0) ∈ R× RN , then
M < +∞.

We now claim that there is ρε ∈ [%ε,+∞) such that, if condition (4.12) is fulfilled for
some (t0, y0) ∈ R× RN , then M < +∞ (from the previous paragraph) and

(4.15) u(t, ·)→M as t→ +∞ locally uniformly in RN .

Assume not. Then there is a sequence (τn, zn)n∈N, n≥%ε in R×RN such that u(τn, ·) ≥ m+ ε

in B(zn, n) (hence, M < +∞) and

(4.16) u(t, ·) 6→M as t→ +∞ locally uniformly in RN .

Notice that (4.11) then implies that

m < m+ ε < M.

On the other hand, since F < 0 in (0,m] by (1.11) and (4.10), since F (M) > 0 by (1.17)-
(1.18) and since f > 0 in (m,M) by (1.10), one infers that F (s) < F (M) for all s ∈ [0,M).
Lemma 3.3 applied with α = 0, β = M , γ = m and g = f yields the existence of R > 0 and
a C2(BR) function ψ such that

(4.17)


∆ψ + f(ψ) = 0 in BR,

0 ≤ ψ < M in BR,

ψ = 0 on ∂BR,

M > max
BR

ψ = ψ(0) > m > 0.

Let ς be the solution of (4.14). Since m+ ε < M and f > 0 in (m,M) with f(M) = 0, one
has ς(t)→M as t→ +∞. Hence, there is a positive real number T > 0 such that

(4.18) ς(T ) > ψ(0).

Up to extraction of a subsequence, the functions

vn : (t, x) 7→ vn(t, x) = u(t+ τn, x+ zn)
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converge in C1,2
t,x locally in R×RN to a nonnegative bounded solution v∞ of (1.1) such that

v∞(0, ·) ≥ m + ε in RN . Hence, v∞(T, ·) ≥ ς(T ) > ψ(0). It then follows from the last line
in (4.17) that there is n0 ∈ N (with n0 ≥ %ε) such that

(4.19) u(T + τn0 , ·+ zn0) > ψ in BR.

Let then w be the solution of the equation wt = ∆w + f(w) in (0,+∞)×RN with initial
condition given by

(4.20) w(0, x) =

{
ψ(x) if x ∈ BR,

0 if x ∈ RN \BR.

Since ψ satisfies (4.17) and f(M) = f(0) = 0, the parabolic maximum principle implies
that 0 < w < M in (0,+∞) × RN and w is increasing with respect to t in [0,+∞) × RN .
From standard parabolic estimates and uniqueness of the limit, there is a C2(RN) solution w∞
of ∆w∞ + f(w∞) = 0 in RN with 0 < w∞ ≤ M in RN and w∞ > ψ in BR. Let then e be

any unit vector of RN . By continuity, there is s0 > 0 such that w∞ > ψ(· − se) in B(se, R)
for all s ∈ [0, s0]. Calling

s∗ = sup
{
s > 0 : w∞ > ψ(· − s′e) in B(s′e, R) for all s′ ∈ [0, s]

}
∈ [s0,+∞]

and assuming that s∗ < +∞, one would have w∞ ≥ ψ(· − s∗e) in B(s∗e, R) with equality

somewhere at a point x∗ ∈ B(s∗e, R). Since w∞ > 0 in RN and ψ = 0 on ∂BR, the point x∗

would be an interior point in B(s∗e, R), hence w∞ ≡ ψ(· − s∗e) in B(s∗e, R) from the strong
maximum principle. This is impossible on ∂B(s∗, R). Thus s∗ = +∞ and, since the unit
vector e was arbitrary, one gets that (M ≥)w∞ > ψ(0) > m in RN . The positivity of f in
(m,M) then implies that w∞ ≡M in RN , hence

(4.21) w(t, ·)→M as t→ +∞ locally uniformly in RN .

Together with (4.19)-(4.20) and the maximum principle, one infers that

lim inf
t→+∞

(
min
K

u(t, ·)
)
≥M

for any compact set K ⊂ RN , and finally u(t, ·) → M as t → +∞ locally uniformly in RN

from (4.11). This contradicts (4.16).
As a conclusion of the previous paragraph, there is a positive real number ρε(≥ %ε) such

that if condition (4.12) is fulfilled for some (t0, y0) ∈ R×RN , then M < +∞ and (4.15) holds.
Let us finally show that this implies the stronger property (4.13): max|x|≤γt |u(t, x)−M | → 0
as t → +∞, for some γ > 0. To do so, observe on the one hand that, since w(t, ·) → M
as t→ +∞ locally uniformly in RN by (4.21) and since maxBR

ψ < M , there is a time τ > 0
such that

w(τ, ·) ≥ ψ(· − se) in B(se, R) for every unit vector e and every s ∈ [0, 1].

In other words, w(τ, ·) ≥ w(0, ·− se) in RN for every unit vector e and every s ∈ [0, 1]. From
the maximum principle, one gets that w(2τ, ·) ≥ w(τ, · − se) ≥ w(0, · − 2se) in RN for every
unit vector e and every s ∈ [0, 1]. Hence, by an immediate induction,

w(kτ, ·) ≥ w(0, · − se) in RN for every k ∈ N, every unit vector e, and every s ∈ [0, k].
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On the other hand, (4.15) and (4.17) yield the existence of a time τ∗ > 0 such that

u(τ∗, ·) ≥ ψ in BR,

that is, u(τ∗, ·) ≥ w(0, ·) in RN . Therefore,

u(τ∗ + kτ, ·) ≥ w(0, · − se) in RN

for every k ∈ N, every unit vector e, and every s ∈ [0, k]. In particular,

(4.22) min
Bk

u(τ∗ + kτ, ·) ≥ w(0, 0) = ψ(0) for all k ∈ N.

We finally claim that

(4.23) max
|x|≤t/(2τ)

|u(t, x)−M | → 0 as t→ +∞,

which will give the desired conclusion (4.13) with γ = 1/(2τ). Assume by way of contradic-
tion that (4.23) does not hold. Since 0 < u < M in R× RN by (4.11), there are then a real
number θ ∈ [0,M) and a sequence (sn, ξn)n∈N in (0,+∞)× RN such that

(4.24) lim
n→+∞

sn = +∞, lim
n→+∞

u(sn, ξn) = θ, and |ξn| ≤
sn
2τ

for all n ∈ N.

Consider any integer j ∈ N. For all n large enough, write

(4.25) sn = τ∗ + knτ + s′n, with kn ∈ N and s′n ∈ [jτ, (j + 1)τ)

(the quantities kn and s′n depend on j as well, but this does not matter). Up to extraction of
a subsequence, there is s′∞ ∈ [jτ, (j+ 1)τ ] such that s′n → s′∞ as n→ +∞. Up to extraction
of another subsequence, the functions

Un : (t, x) 7→ Un(t, x) = u(t+ τ∗ + knτ, x+ ξn)

converge in C1,2
t,x locally in R × RN to a solution U∞ of (1.1) such that 0 ≤ U∞ ≤ M in

R×RN . For each x ∈ RN , one has |x+ ξn| ≤ kn for all n large enough, since |ξn| ≤ sn/(2τ)
for all n and sn ∼ knτ as n → +∞ from (4.25) and limn→+∞ sn = +∞. It then follows
from (4.22) that U∞(0, ·) ≥ ψ(0) in RN , hence

U∞(t, ·) ≥ ω(t) in RN for all t ≥ 0,

where ω obeys ω′(t) = f(ω(t)) and ω(0) = ψ(0). Since m < ψ(0) < M and f > 0 in (m,M)
with f(M) = 0, one has ω(t)→M as t→ +∞ (notice that U∞ and s′∞ ∈ [jτ, (j+1)τ ] depend
on j ∈ N, but ψ(0) and ω do not). It also follows from (4.24)-(4.25) that U∞(s′∞, 0) = θ < M ,
hence M > θ ≥ ω(s′∞). Since s′∞ ∈ [jτ, (j + 1)τ ] and ω(+∞) = M , the passage to the limit
as j → +∞ in the inequalityM > θ ≥ ω(s′∞) leads to a contradiction. As a conclusion, (4.23)
has been shown and the proof of Lemma 4.2 is thereby complete. �

The second key-lemma gives a quantitative estimate of the time the solution takes to go
from m+ ε to any value λ less than M in large balls.

Lemma 4.4. Under the notations of Lemma 4.2, for every ε > 0, λ < M and r ≥ 0, there
are some real numbers ρε,λ,r ≥ ρε > 0 and Tε,λ,r > 0 such that, if

u(t0, ·) ≥ m+ ε in B(y0, R)
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for some (t0, y0) ∈ R× RN and R ≥ ρε,λ,r, then

u(t, ·) ≥ λ in B(y0, R + r) for all t ≥ t0 + Tε,λ,r.

Proof. Let us fix ε > 0, λ < M and r ≥ 0, and let ρε > 0 be given by Lemma 4.2.
Assume by way of contradiction that the conclusion of Lemma 4.4 does not hold. Then
there exist two sequences (Rn)n∈N and (Tn)n∈N of positive real numbers converging to +∞,
and a sequence (tn, yn, zn)n∈N in R× RN × RN such that

(4.26) u(tn, ·) ≥ m+ ε in B(yn, Rn), zn ∈ B(yn, Rn + r), and u(tn + Tn, zn) < λ,

for all n ∈ N. Notice that Lemma 4.2 then implies that M < +∞, and that m + ε < M
by (4.11) and (4.26).

Let now R > 0 and ψ ∈ C2(BR) be as in (4.17), let w be the solution of the Cauchy
problem wt = ∆w+ f(w) in (0,+∞)×RN with initial condition w(0, ·) given by (4.20), and
let ς ∈ C1([0,+∞)) and T > 0 be defined as in (4.14) and (4.18). For any % > 0, call v% the
solution of (v%)t = ∆v% + f(v%) in (0,+∞)× RN with initial condition v%(0, ·) defined by:

v%(0, x) =

{
m+ ε if x ∈ B%,

0 if x ∈ RN \B%.

From standard parabolic estimates, there holds v%(T, ·)→ ς(T ) (> ψ(0)) as %→ +∞ locally
uniformly in RN (e.g. see [31, Theorem 4.1]). Hence, there is %0 > 0 such that v%0(T, ·) > ψ(0)
in BR, and then

v%0(T, ·) > w(0, ·) in RN .

Since λ < M by assumption and since w(t, ·) → M as t → +∞ locally uniformly in RN

by (4.21), there is T ′ > 0 such that

(4.27) w(t, ·) ≥ λ in Br+%0 for all t ≥ T ′.

Notice that the parameters and functions introduced in the previous paragraph do not
depend on n. Coming back to (4.26), one can assume without loss of generality that Rn ≥ %0
for all n ∈ N. Hence, by (4.26), for each n ∈ N, there is a point y′n such that

(4.28) |zn − y′n| ≤ r + %0 and B(y′n, %0) ⊂ B(yn, Rn),

and thus u(tn, ·) ≥ v%0(0, · − y′n) in RN . The maximum principle then yields

u(tn + T, ·) ≥ v%0(T, · − y′n) > w(0, · − y′n) in RN

and u(tn + t, ·) > w(t − T, · − y′n) in RN for all t ≥ T . For all n large enough so that
Tn ≥ T + T ′, it then follows that u(tn + Tn, zn) > w(Tn − T, zn − y′n) ≥ λ by (4.27)-(4.28),
contradicting the last property of (4.26).

To sum up, the existence of the sequences (Rn)n∈N, (Tn)n∈N and (tn, yn, zn)n∈N is ruled out
and the proof of Lemma 4.4 is thereby complete. �

Step 2: a dichotomy. Fix a real number η > 0 such that (4.8) holds. Since f(m) = f(mφ) = 0
for all φ ∈ E , with mφ > 0, one has

0 < η < m.

Define g(s) = −f(−s) for all s ∈ [−m, 0]. From assumption (1.11), the C1([−m, 0]) func-
tion g satisfies (3.6) with α = −m and β = 0. Lemma 3.3 applied with ν = −η ∈ (−m, 0)
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then provides the existence of R1 > 0 and of a function ψ ∈ C2(BR1) solving ∆ψ+ g(ψ) = 0
and −m ≤ ψ < 0 in BR1 with ψ = −m on ∂BR1 and maxBR1

ψ = ψ(0) > −η. In other

words, the function ϕ = −ψ ∈ C2(BR1) solves

(4.29)


∆ϕ+ f(ϕ) = 0 in BR1 ,

0 < ϕ ≤ m in BR1 ,

ϕ = m on ∂BR1 ,

min
BR1

ϕ = ϕ(0) < η.

Furthermore, it follows from [26] that ϕ is radially symmetric, namely there is a C2([0, R1])
function ϕ̃ such that

(4.30) ϕ(x) = ϕ̃(|x|) for all x ∈ BR1

and the Hopf lemma (or, here, the Cauchy-Lipschitz theorem) implies that

(4.31) δ := ϕ̃′(R1) > 0.

Since u is bounded by assumption, it follows from standard parabolic estimates that there
is a positive constant M2 such that

(4.32) |uxi,xj(t, x)| ≤M2 for all (t, x) ∈ R× RN and 1 ≤ i, j ≤ N.

From Lemma 4.2 applied with ε = δ2/(4M2) > 0, there is a real number

(4.33) R2 = ρε = ρδ2/(4M2) > 0

such that, if u(t0, ·) ≥ m+ δ2/(4M2) in B(y0, R2) for some (t0, y0) ∈ R×RN , then M < +∞
and max|x|≤γt |u(t, x) −M | → 0 as t → +∞ for some γ > 0. Here, by choosing M2 large if
necessary, we may assume that ε = δ2/(4M2) < M −m.

Remember now that x0 ∈ RN is a center of symmetry given by (4.1) and that u is localized
for t ≤ 0, in the sense of (1.3). There is then a point x1 ∈ RN such that

|x1 − x0| ≥ R2 +
δ

2M2

+R1 and u(t, ·) < ϕ(0) in B(x1, R1) for all t ≤ 0.

We shall then compare u with ϕ(· − x1) in B(x1, R1). First of all, owing to (4.29), one has

u(t, ·) < ϕ(· − x1) in B(x1, R1) for all t ≤ 0. Two cases may then occur:

(4.34) either u(t, ·) < ϕ(· − x1) in B(x1, R1) for all t ∈ R,

(4.35)
or there is t0 ∈ R such that u(t, ·) < ϕ(· − x1) in B(x1, R1) for all t < t0

and u(t0, ·) ≤ ϕ(· − x1) in B(x1, R1) with equality somewhere in B(x1, R1).

It will turn out that (4.34) will lead to the conclusions (i) or (ii) of Theorem 1.1, whereas (4.35)
will lead to the spreading case (iii). We consider in Step 3 the alternative (4.34), while (4.35)
will be dealt with in Steps 4 and 5.

Step 3: convergence at large times if u is uniformly localized. We assume here that (4.34)
holds. Thus, u(t, x1) < ϕ(0) < η for all t ∈ R and property (4.1) implies that u(t, x) <
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ϕ(0) < η for all (t, x) ∈ R×RN with |x−x0| ≥ |x1−x0|. The arguments used in Remark 1.5
then yield

u(t, x)→ 0 as |x| → +∞ uniformly in t ∈ R,
that is, u is uniformly localized. From [9, Theorem 1.1] (see also [22]) and standard parabolic
estimates, it follows that either u(t, ·) → 0 as t → +∞ in H1(RN) ∩ C2(RN) (that is, the
alternative (i) holds in Theorem 1.1), or there is positive steady state φ ∈ E solving (1.4)
such that u(t, ·) → φ as t → +∞ in H1(RN) ∩ C2(RN) (that is, the alternative (ii) holds
in Theorem 1.1). Notice that, in the former case, the action E[u(t, ·)] defined by (4.5)
satisfies E[u(t, ·)]→ E[0] = 0 as t→ +∞, while in the latter case,

(4.36) E[u(t, ·)]→ E[φ] as t→ +∞.
In all cases, the function t 7→ E[u(t, ·)] is then bounded in R.

Step 4: the transition is radially bounded if u spreads, proof of (1.13). We assume in
the sequel that (4.35) holds. We shall see that this case leads to the alternative (iii) of
the conclusion of Theorem 1.1. We prove the property (1.13) in the present Step 4, and
property (1.14) in Step 5. The proof of (1.13) is based on the maximum principle and on
suitable estimates on the oscillations of the radial positions of the level sets of u at large
time, as well as on the key-lemmas of Step 1.

First of all, since ϕ solves (4.29), the alternative (4.35) and the parabolic strong maximum
principle imply that there is a point x2 ∈ ∂B(x1, R1) such that

u(t0, x2) = ϕ(x2 − x1) = m.

Because of (4.1), (4.35) and of the inequality |x1− x0| ≥ R2 + δ/(2M2) +R1 > R1, together
with the fact that ϕ < m in BR1 (from the elliptic strong maximum principle), it turns
out that x2 is the unique point lying at the intersection of the sphere ∂B(x1, R1) and the
segment [x0, x1]. In particular,

|x2 − x0| = |x1 − x0| −R1 ≥ R2 +
δ

2M2

.

Furthermore, from (4.35) and the definitions of ϕ̃ and δ satisfying (4.30)-(4.31), it follows
that

−|∇u(t0, x2)| = ∇u(t0, x2) ·
x2 − x0
|x2 − x0|

≤ −δ < 0.

Together with (4.32) and (4.1) again, one infers that

∇u(t0, x) · x− x0
|x− x0|

≤ −δ
2
< 0 for all x such that |x2 − x0| −

δ

2M2

≤ |x− x0| ≤ |x2 − x0|.

Since u(t0, ·) = m at the point x2 and then on ∂B(x0, |x2 − x0|), it follows that

u(t0, ·) ≥ m+
δ2

4M2

on ∂B
(
x0, |x2 − x0| −

δ

2M2

)
, with |x2 − x0| −

δ

2M2

≥ R2,

hence

(4.37) u(t0, ·) ≥ m+
δ2

4M2

in B(x0, R2)
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by (4.1) again. Lemma 4.2 and the definition (4.33) of R2 then imply that

M < +∞
and

(4.38) max
|x|≤γt

|u(t, x)−M | → 0 as t→ +∞

for some γ > 0.
Secondly, (4.1) together with (4.3) and (4.38) yield the existence of a real number τ1 such

that

(4.39) for each t ≥ τ1,

{
max
RN

u(t, ·) = u(t, x0) > m

there is a unique ξ(t) > 0 such that u(t, ·) = m on ∂B(x0, ξ(t)),

and lim inft→+∞ ξ(t)/t ≥ γ > 0. In particular,

(4.40) lim
t→+∞

ξ(t) = +∞.

The implicit function theorem with (4.1) implies that the function t 7→ ξ(t) is of class
C1([τ1,+∞)). Define also ξ(t) = ξ(τ1) for all t < τ1. The function ξ is then continuous in R.
We shall show in this Step 4 that (1.13) holds with this function ξ. To do so, we first prove
in the following two lemmas some key-properties on the local oscillations of the function ξ.

Lemma 4.5. There is a positive constant τ2 such that ξ(t + s) > ξ(t) for all t ≥ τ1 and
s ≥ τ2.

Proof. By (1.3) and (4.3), there is a real number R3 > 0 such that

(4.41) u(t, x) < ϕ(0) for all t ≤ τ1 and x such that |x− x0| ≥ R3.

With ε = δ2/(4M2) > 0, λ = (m + M)/2 < M and r = δ/(2M2) ≥ 0, denote, using the
notations of Lemma 4.4 and the definition (4.33) of R2,

(4.42) R4 = max
(
ρε,λ,r +

δ

2M2

, R3, ξ(τ1) + 1
)
> 0

and

τ2 = Tε,λ,r > 0.

Let also τ3 ∈ R be such that

ξ(t) ≥ R4 for all t ≥ τ3

(hence, τ3 > τ1, since R4 > ξ(τ1)).
Consider now any t ≥ τ3 and s ≥ τ2 and let us show that ξ(t+ s) > ξ(t). Let x3 ∈ RN be

such that

|x3 − x0| = ξ(t) +R1,

where R1 > 0 is given in (4.29). Thus, |x3−x0| ≥ R4+R1 ≥ R3+R1, hence u(t′, ·) < ϕ(0) ≤
ϕ(· − x3) in B(x3, R1) for all t′ ≤ τ1 by (4.41). Observe that ξ(t′) = ξ(τ1) < R4 ≤ ξ(t) for
all t′ ≤ τ1, and, by continuity of ξ, denote

t∗ = min
{
t′ ∈ (−∞, t] : ξ(t′) = ξ(t)

}
∈ (τ1, t].
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Let x4 be the intersection point of the segment [x0, x3] with ∂B(x3, R1). One has

|x4 − x0| = |x3 − x0| −R1 = ξ(t) = ξ(t∗),

hence u(t∗, x4) = m = ϕ(x4 − x3). Furthermore, u(t′, ·) < ϕ(0) ≤ ϕ(· − x3) in B(x3, R1) for
all t′ ≤ τ1 by (4.29) and (4.41), while

u(t′, ·) ≤ m = ϕ(· − x3) on ∂B(x3, R1) for all t′ ∈ [τ1, t
∗]

by (4.1) and the definition of t∗ (and even u(t′, ·) < m on ∂B(x3, R1) for all t′ ∈ [τ1, t
∗)). It

then follows from the maximum principle that

u(t′, ·) ≤ ϕ(· − x3) in B(x3, R1) for all t′ ∈ [τ1, t
∗]

(actually with strict inequality for t′ ∈ [τ1, t
∗) and even for t′ ∈ (−∞, t∗)). In particular,

u(t∗, ·) ≤ ϕ(·−x3) in B(x3, R1) and since x4 ∈ ∂B(x3, R1) with |x4−x0| = ξ(t∗) and t∗ ≥ τ1,
one has u(t∗, x4) = m = ϕ(x4 − x3). Therefore,

−|∇u(t∗, x4)| = ∇u(t∗, x4) ·
x4 − x0
|x4 − x0|

≤ −δ

owing to the definition of δ in (4.30)-(4.31). Hence, as in the proof of (4.37), one infers that

(4.43) u(t∗, ·) ≥ m+
δ2

4M2

= m+ ε in B
(
x0, |x4 − x0| − δ/(2M2)

)
,

with |x4 − x0| − δ/(2M2) = ξ(t) − δ/(2M2) ≥ R4 − δ/(2M2) ≥ ρε,λ,r by (4.42). Lemma 4.4
then yields

u(t′, ·) ≥ λ =
m+M

2
in B

(
x0, |x4 − x0| − δ/(2M2) + r

)
= B(x0, |x4 − x0|) = B(x0, ξ(t))

for all t′ ≥ t∗ + Tε,λ,r = t∗ + τ2. Since t + s ≥ t∗ + τ2, one has u(t + s, ·) ≥ (m + M)/2 > m

in B(x0, ξ(t)) and the definition of ξ(t + s) together with (4.1) and t + s > t∗ > τ1 finally
yields ξ(t+ s) > ξ(t).

As a consequence, ξ(t + s) > ξ(t) for all t ≥ τ3 and s ≥ τ2. Since ξ is continuous
in R and ξ(t) → +∞ as t → +∞, the conclusion of Lemma 4.5 follows, even if it means
increasing τ2 if necessary. �

Lemma 4.6. For each τ > 0, there is a positive constant Aτ such that ξ(t+ s) ≤ ξ(t) +Aτ
for all t ∈ R and s ∈ [0, τ ].

Proof. Assume that the conclusion does not hold. Then there are τ > 0 and some se-
quences (tn)n∈N in R and (sn)n∈N in [0, τ ] such that ξ(tn+sn) > ξ(tn)+n. Since ξ is continuous
in R and constant in (−∞, τ1], it follows that tn → +∞ as n → +∞, hence ξ(tn) → +∞
as n→ +∞ by (4.40). Without loss of generality, one can assume that, for every n ∈ N,

tn ≥ τ1 + τ2 and ξ(tn) ≥ max(R3, ξ(τ1) + 1),

where τ1 ∈ R and τ2 > 0 are given in (4.39) and in Lemma 4.5, and R3 > 0 is given in (4.41).
Now, for every n ∈ N, Lemma 4.5 yields the existence of t∗n ∈ (tn − τ2, tn] (⊂ (τ1, tn]) such

that ξ(t∗n) = ξ(tn) and ξ(t) < ξ(t∗n) = ξ(tn) for all t < t∗n. Let yn ∈ RN be such that

|yn − x0| = ξ(t∗n) +R1 = ξ(tn) +R1 (≥ R3 +R1).
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Since u(t, ·) < ϕ(0) ≤ ϕ(· − yn) in B(yn, R1) for all t ≤ τ1 by (4.41), and since u(t, ·) <
m = ϕ(· − yn) on ∂B(yn, R1) for all t ∈ [τ1, t

∗
n) by (4.1) and definition of t∗n, the maximum

principle implies that

(4.44) u(t∗n, ·) ≤ ϕ(· − yn) in B(yn, R1).

In particular, u(t∗n, yn) ≤ ϕ(0) and

(4.45) u(t∗n, x) ≤ ϕ(0) for all x such that |x− x0| ≥ |yn − x0| = ξ(tn) +R1,

by (4.1).
On the other hand, for every n ∈ N, one has tn + sn ≥ tn ≥ τ1 + τ2 > τ1, and there

is a point zn such that |zn − x0| = ξ(tn + sn), hence u(tn + sn, zn) = m. Notice also
that tn − t∗n + sn ∈ [0, τ2 + τ) for each n ∈ N. Up to extraction of a subsequence, one can
assume without loss of generality that tn − t∗n + sn → s∞ ∈ [0, τ2 + τ ] as n→ +∞ and that
the functions

un : (t, x) 7→ un(t, x) = u(t+ t∗n, x+ zn)

converge in C1,2
t,x locally in R×RN to a bounded nonnegative solution u∞ of (1.1) such that

u∞(s∞, 0) = m. Furthermore, for each x ∈ RN , there holds

|x+ zn − x0| ≥ |zn − x0| − |x| = ξ(tn + sn)− |x| > ξ(tn) + n− |x|,

hence |x + zn − x0| ≥ ξ(tn) + R1 for all n large enough and un(0, x) = u(t∗n, x + zn) ≤ ϕ(0)
by (4.45). As a consequence, u∞(0, x) ≤ ϕ(0) for all x ∈ RN . Since 0 < ϕ(0) < η by (4.29)
and f < 0 in (0, η] by (4.8), it follows from the maximum principle that u∞ ≤ ϕ(0) < η
in [0,+∞) × RN . In particular, u∞(s∞, 0) < η, which is impossible since u∞(s∞, 0) = m
and m > η (remember that f(m) = 0 and m > 0). One has then reached a contradiction,
and the proof of Lemma 4.6 is thereby complete. �

With Lemmas 4.5 and 4.6 in hand, we can now complete the proof of (1.13). Let us begin
with the first statement in (1.13). Assume by way of contradiction that it does not hold.
Then, thanks to (4.11), there are M ′ ∈ (0,M) and some sequences (tn)n∈N converging to
+∞ and (xn)n∈N in RN such that

(4.46) 0 < u(tn, xn) ≤M ′ < M for all n ∈ N, and |xn| − ξ(tn)→ −∞ as n→ +∞.

Let τ > 0 be an arbitrary positive real number, and let R1 > 0 be given as in (4.29).
Consider in this paragraph the indices n large enough so that tn−τ ≥ τ1+τ2 for every n ∈ N,
where τ1 ∈ R and τ2 > 0 are given in (4.39) and Lemma 4.5, and

ξ(tn − τ) ≥ max
(
R3, ξ(τ1) + 1,

δ

2M2

+ 1
)
,

where R3 > 0 is given in (4.41), δ > 0 in (4.30)-(4.31) and M2 > 0 in (4.32). Notice that
the quantities τ , τ1, τ2, R1, R3, δ and M2 are independent of n. Now, for each n large
enough, Lemma 4.5 yields the existence of t∗n ∈ (tn − τ − τ2, tn − τ ] (⊂ (τ1, tn − τ ]) such
that ξ(t∗n) = ξ(tn − τ) and ξ(t) < ξ(t∗n) = ξ(tn − τ) for all t < t∗n. Let yn ∈ RN be such that

|yn − x0| = ξ(t∗n) +R1 = ξ(tn − τ) +R1 (≥ R3 +R1)
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and zn be the intersection point of [x0, yn] with ∂B(yn, R1) such that

|zn − x0| = |yn − x0| −R1 = ξ(tn − τ) = ξ(t∗n), u(t∗n, zn) = m

by (4.39). As in the proof of (4.44), there holds u(t∗n, ·) ≤ ϕ(· − yn) in B(yn, R1) with
u(t∗n, zn) = m = ϕ(zn − yn). Therefore,

−|∇u(t∗n, zn)| = ∇u(t∗n, zn) · zn − x0
|zn − x0|

≤ −δ,

with δ > 0 given by (4.30)-(4.31). Hence, as in the proof of (4.43), one infers that

(4.47) u(t∗n, ·) ≥ m+
δ2

4M2

in B
(
x0, |zn − x0| − δ/(2M2)

)
= B

(
x0, ξ(tn − τ)− δ/(2M2)

)
,

with |zn − x0| − δ/(2M2) = ξ(tn − τ) − δ/(2M2) > 0. Together with (4.11), this implies
in particular that m < m + δ2/(4M2) < M . Notice also that τ ≤ tn − t∗n < τ + τ2 for
each n (large enough). Up to extraction of a subsequence, one has tn− t∗n → s∞ ∈ [τ, τ + τ2]
as n→ +∞ and the functions

un : (t, x) 7→ un(t, x) = u(t+ t∗n, x+ xn)

converge in C1,2
t,x locally in R×RN to a bounded nonnegative solution u∞ of (1.1) such that

u∞(s∞, 0) ≤M ′ < M

by (4.46). Furthermore, for each x ∈ RN , one has

|x+ xn − x0| ≤ ξ(tn) + |xn| − ξ(tn) + |x− x0| ≤ ξ(tn − τ) + Aτ + |xn| − ξ(tn) + |x− x0|
from Lemma 4.6, where Aτ > 0 is given in Lemma 4.6, hence |x+xn−x0| ≤ ξ(tn−τ)−δ/(2M2)
for all n large enough, from the second statement of (4.46). As a consequence, un(0, x) =
u(t∗n, x+xn) ≥ m+δ2/(4M2) for all n large enough, by (4.47). Thus, u∞(0, ·) ≥ m+δ2/(4M2)
in RN and u∞(t, ·) ≥ $(t) in RN for all t ≥ 0, where $ obeys

$′(t) = f($(t)) for t ≥ 0,

$(0) = m+
δ2

4M2

> m.

Since m < m + δ2/(4M2) < M and f > 0 in (m,M) with f(M) = 0, the function $ is
increasing in [0,+∞) and $(+∞) = M . The inequality u∞(t, ·) ≥ $(t) applied at t = s∞ ≥
τ > 0 and x = 0 yields u∞(s∞, 0) ≥ $(s∞) ≥ $(τ), hence M > M ′ ≥ u∞(s∞, 0) ≥ $(τ).
Since M ′ is given in (4.46) independently of τ > 0 and τ > 0 can be arbitrarily large, one
infers that M > M ′ ≥ $(+∞) = M , a contradiction. As a consequence, the first line
in (1.13) has been proved.

Let us now show the second statement in (1.13). Assume by way of contradiction that
it does not hold. Then, thanks to (4.11), there are κ ∈ (0,M) and some sequences (tn)n∈N
converging to +∞ and (xn)n∈N in RN such that

(4.48) 0 < κ ≤ u(tn, xn) < M for all n ∈ N, and |xn| − ξ(tn)→ +∞ as n→ +∞.
Let σ > 0 be an arbitrary positive real number such that

σ ≥ τ2,
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where τ2 > 0 is given in Lemma 4.5, and let R1 > 0 be given as in (4.29). Consider in this
paragraph the indices n large enough so that tn− σ ≥ τ1 + τ2 for every n ∈ N, where τ1 ∈ R
is given in (4.39), and

ξ(tn − σ) ≥ max(R3, ξ(τ1) + 1),

where R3 > 0 is given in (4.41). For each n large enough, Lemma 4.5 yields the existence
of t∗n ∈ (tn−σ−τ2, tn−σ] (⊂ (τ1, tn−σ]) such that ξ(t∗n) = ξ(tn−σ) and ξ(t) < ξ(t∗n) = ξ(tn−σ)
for all t < t∗n. Let yn ∈ RN satisfy

|yn − x0| = ξ(t∗n) +R1 = ξ(tn − σ) +R1 (≥ R3 +R1).

As for (4.44), one then has u(t∗n, ·) ≤ ϕ(· − yn) in B(yn, R1). In particular, u(t∗n, yn) ≤ ϕ(0)
and, from (4.1),

(4.49) u(t∗n, x) ≤ ϕ(0) for all x such that |x− x0| ≥ |yn − x0| = ξ(tn − σ) +R1.

Notice also that σ ≤ tn − t∗n < σ + τ2 for each n (large enough). Up to extraction of a
subsequence, one has tn − t∗n → t∞ ∈ [σ, σ + τ2] as n→ +∞ and the functions

un : (t, x) 7→ un(t, x) = u(t+ t∗n, x+ xn)

converge in C1,2
t,x locally in R×RN to a bounded nonnegative solution u∞ of (1.1) such that

0 < κ ≤ u∞(t∞, 0)

by (4.48). Furthermore, for each x ∈ RN , one has

|x+ xn − x0| ≥ |xn| − ξ(tn) + ξ(tn)− |x− x0| > |xn| − ξ(tn) + ξ(tn − σ)− |x− x0|
from Lemma 4.5, since tn − σ ≥ τ1 and σ ≥ τ2. Hence |x + xn − x0| ≥ ξ(tn − σ) + R1 for
all n large enough, from (4.48). As a consequence, un(0, x) = u(t∗n, x + xn) ≤ ϕ(0) for all n
large enough, by (4.49). Thus, u∞(0, ·) ≤ ϕ(0) in RN and u∞(t, ·) ≤ ϑ(t) in RN for all t ≥ 0,
where ϑ obeys {

ϑ′(t) = f(ϑ(t)) for t ≥ 0,

ϑ(0) = ϕ(0) ∈ (0, η).

Since f < 0 in (0, η) with f(0) = 0, the function ϑ is decreasing in [0,+∞) and ϑ(+∞) = 0.
The inequality u∞(t, ·) ≤ ϑ(t) applied at t = t∞ ≥ σ > 0 and x = 0 yields u∞(t∞, 0) ≤
ϑ(t∞) ≤ ϑ(σ), hence 0 < κ ≤ ϑ(σ). Since κ is given in (4.48) independently of σ and
since σ ≥ τ2 can be arbitrarily large, one infers that 0 < κ ≤ ϑ(+∞) = 0, a contradiction.
As a conclusion, the proof of (1.13) is thereby complete.

Remark 4.7. The quantities ξ(t) given in (4.39) (for t ≥ τ1) are the radial positions (with
respect to the point x0) of the level sets with level m. Now, for any level λ in (0,M), there
is a unique real number ξλ(t) > 0 such that u(t, x) = λ if and only if |x − x0| = ξλ(t), for
all t large enough. One then infers from (1.13) that

lim sup
t→+∞

|ξλ(t)− ξ(t)| < +∞.

Furthermore, it also follows from (4.1) that, for any unit vector e and any sequence (tn)n∈N
converging to +∞, the functions

un : (t, x) 7→ un(t, x) = u(t+ tn, x+ ξλ(tn)e)
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converge in C1,2
t,x locally in R × RN , up to extraction of a subsequence, to a bounded non-

negative solution u∞ of (1.1) which only depends on t and the variable x · e and is nonin-
creasing in the direction e. Moreover, (1.13) implies that u∞(0, x) → M as x · e → −∞
and u∞(0, x) → 0 as x · e → +∞. In particular, the nonpositive function e · ∇u∞ can not
be identically 0 in (−∞, 0] × RN and the strong parabolic maximum principle then yields
e · ∇u∞(0, 0) < 0. From the arbitrariness of the sequence (tn)n∈N converging to +∞ and
from (4.1), we conclude that

lim inf
t→+∞, u(t,x)=λ

|∇u(t, x)| > 0, that is, lim sup
t→+∞, u(t,x)=λ

∇u(t, x) · x− x0
|x− x0|

< 0,

for any level λ ∈ (0,M). In other words, the radial derivatives of the function u do not
degenerate at large times along any level set of u.

Step 5: asymptotic position of the level sets if u spreads, proof of (1.14). We still assume
that (4.35) holds, hence M < +∞ and (1.13) holds, together with (4.38). We shall show
here that ξ(t)/t has a well determined limit as t → +∞. Such a property has been well
known since the seminal paper [3], under some additional assumptions on the function f .
The proof given in [3] was based on some comparison arguments and on the existence of
approximated fronts defined in bounded intervals or in half-lines. The proof of (1.14) given
here is still based on comparison arguments with suitable sub- and supersolutions, but the
approximated fronts moving at speeds arbitrarily close to c that are here used are defined in
the whole real line and are given in Lemma 3.1.

First of all, as already emphasized, one has 0 < m < M , f(0) = f(M) = 0, f ′(0) < 0,
f > 0 in (m,M), F < 0 in (0,m] and F (M) > 0. Lemma 3.1 then yields the existence and
uniqueness of a pair (c, ϕ) solving (1.15), with c > 0.

Consider now any c′ ∈ (0, c), and let us show that lim inft→+∞ ξ(t)/t ≥ c′. From Re-
mark 3.2, there is a sequence (εn)n∈N in (0,m) converging to 0 such that, for each n ∈ N,
there is a C1([−εn,M − εn]) function f

n
such that f

n
(−εn) = f

n
(M − εn) = 0, f

n
≤ f

in [0,M − εn], and there is a unique pair (cn, ϕn) ∈ R× C2(R) solving

(4.50) ϕ′′n + cnϕ
′
n + f

n
(ϕn) = 0 in R, ϕ′n < 0 in R, ϕn(−∞) = M − εn, ϕn(+∞) = −εn.

Furthermore, cn < c and cn → c as n→ +∞. Fix ε > 0 arbitrary, and then n large enough
such that

0 < εn ≤ ε and c′ < cn < c.

Let then ρ > 0 large enough such that

N − 1

ρ
<
cn − c′

2

and denote c′n = (c′ + cn)/2 ∈ (c′, cn) ⊂ (c′, c). Since u(t, ·) → M as t → +∞ locally
uniformly in RN by (4.38), there is a time T > 0 such that

(4.51) u(t, x) ≥M − εn for all t ≥ T and |x− x0| ≤ ρ.

Let then A > 0 be such that ϕn(r − c′nT + A) < 0 for all r ≥ ρ (that is possible since
ϕn(+∞) = −εn < 0). Let us finally define

u(t, x) := max
(
ϕn(|x− x0| − c′nt+ A), 0

)
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and show that this function is a generalized subsolution of (1.1) for t ≥ T and |x− x0| ≥ ρ.
First of all, at time t = T , for all |x − x0| ≥ ρ, one has ϕn(|x − x0| − c′nT + A) < 0,
hence u(T, x) = 0 < u(T, x). Furthermore, for all t ≥ T and |x − x0| = ρ, one has
u(t, x) < M − εn ≤ u(t, x). Since f(0) = 0, it just remains to show that, for any (t, x) such
that t > T and |x− x0| > ρ with u(t, x) > 0, then ut(t, x) ≤ ∆u(t, x) + f(u(t, x)). Pick any
such (t, x) and notice that u(t, x) = ϕn(|x− x0| − c′nt+A) ∈ (0,M − εn) in a neighborhood
of (t, x). Hence, having (4.50) in mind, it follows that

ut(t, x)−∆u(t, x)− f(u(t, x))

= −c′nϕ′n(|x− x0| − c′nt+ A)− ϕ′′n(|x− x0| − c′nt+ A)

− N − 1

|x− x0|
ϕ′n(|x− x0| − c′nt+ A)− f(ϕn(|x− x0| − c′nt+ A))

≤
(
cn − c′n −

N − 1

|x− x0|

)
ϕ′n(|x− x0| − c′nt+ A)

< 0

since f
n
≤ f in [0,M−εn], (N−1)/|x−x0| ≤ (N−1)/ρ < (cn− c′)/2 = cn− c′n, and ϕ′n < 0

in R. The maximum principle then implies that

u(t, x) ≥ u(t, x) ≥ ϕn(|x− x0| − c′nt+ A) for all t ≥ T and |x− x0| ≥ ρ.

Therefore, together with (4.51), one gets that, for all t ≥ T ,

min
|x−x0|≤c′t

u(t, x) ≥ ϕn(c′t− c′nt+ A)→M − εn as t→ +∞,

since c′ < c′n and ϕn(−∞) = M − εn. Together with the inequality 0 < u < M in R× RN ,
one infers that lim supt→+∞max|x−x0|≤c′t |u(t, x) −M | ≤ εn ≤ ε. Since ε > 0 and c′ ∈ (0, c)
were arbitrary, one concludes from the definition (4.39) of ξ(t) that

(4.52) lim inf
t→+∞

ξ(t)

t
≥ c.

For the converse inequality, consider any c′′>c and let us show that lim supt→+∞ ξ(t)/t≤c′′.
From the proof of Lemma 3.1, there is a sequence (ηk)k∈N in (0,m) converging to 0 such that,
for each k ∈ N, there is a C1([ηk,M + ηk]) function fk such that fk(ηk) = fk(M + ηk) = 0,
fk ≥ f in [ηk,M ], and there is a unique pair (γk, φk) ∈ R× C2(R) solving

(4.53) φ′′k + γkφ
′
k + fk(φk) = 0 in R, φ′k < 0 in R, φk(−∞) = M + ηk, φk(+∞) = ηk.

Furthermore, γk > c and γk → c as k → +∞. Fix ε > 0 arbitrary, and then k large enough
such that

0 < ηk ≤ ε and c < γk < c′′.

Since 0 < u < M in R × RN and u(0, x) → 0 as |x| → +∞ by (1.3), and since φk(−∞) =
M + ηk > M and φk > φk(+∞) = ηk > 0, there is A′ > 0 such that φk(1 − A′) > M
and u(0, x) < φk(|x− x0| − A′) for all x ∈ RN . Let us finally define

u(t, x) := min
(
φk(|x− x0| − γkt− A′),M

)
and show that this function is a generalized supersolution of (1.1) for t ≥ 0 and |x−x0| ≥ 1.
First of all, at time t = 0, one has u(0, x) < u(0, x) for all |x − x0| ≥ 1 (and even for
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all x ∈ RN , by construction). Furthermore, for all t ≥ 0 and |x − x0| = 1, one has γkt ≥ 0
and φk(|x − x0| − γkt − A′) ≥ φk(1 − A′) > M , hence u(t, x) = M > u(t, x). Since
f(M) = 0, it just remains to show that, for any (t, x) such that t > 0 and |x − x0| > 1
with u(t, x) < M , then ut(t, x) ≥ ∆u(t, x) + f(u(t, x)). Pick any such (t, x) and notice that
u(t, x) = φk(|x− x0| − γkt−A′) ∈ (ηk,M) in a neighborhood of (t, x). Hence, having (4.53)
in mind, it follows that

ut(t, x)−∆u(t, x)− f(u(t, x))

= −γkφ′k(|x− x0| − γkt− A′)− φ′′k(|x− x0| − γkt− A′)

− N − 1

|x− x0|
φ′k(|x− x0| − γkt− A′)− f(φk(|x− x0| − γkt− A′))

≥ − N − 1

|x− x0|
φ′k(|x− x0| − γkt− A′)

≥ 0

since fk ≥ f in [ηk,M ] and φ′k < 0 in R. The maximum principle then implies that

u(t, x) ≤ u(t, x) ≤ φk(|x− x0| − γkt− A′) for all t ≥ 0 and |x− x0| ≥ 1.

Therefore, for all t ≥ 1/c′′, one has max|x−x0|≥c′′t u(t, x) ≤ φk(c
′′t−γkt−A′)→ ηk as t→ +∞,

since c′′ > γk and φk(+∞) = ηk. One then infers that

lim sup
t→+∞

max
|x−x0|≥c′′t

u(t, x) ≤ ηk ≤ ε.

Since ε > 0 and c′′ > c were arbitrary, one concludes from the definition (4.39) of ξ(t) that
lim supt→+∞ ξ(t)/t ≤ c. Together with (4.52), the inequality (1.14) follows. The proof of
Theorem 1.1 is thereby complete. �

5. Proof of Corollaries 2.1 and 2.3

As already emphasized in Section 2, Corollary 2.2 follows directly from Theorem 1.1, while
Corollaries 2.4-2.7 follow from Corollaries 2.2 and 2.3 and the results of Section 1. It just
remains to complete the proof of Corollaries 2.1 and 2.3.

Proof of Corollary 2.1. From the observations in the paragraph before Corollary 2.1 and
from the assumptions made in Corollary 2.1, there is a unique solution φ0 of (1.4) such that
maxR φ0 = φ0(0) = β (and φ0 is then even and decreasing in |x|). Furthermore, 0 < mφ0 < β
and F < 0 in (0,mφ0 ]. All conditions of Theorem 1.1 are then fulfilled.

Let now u be a positive bounded solution of (1.1) satisfying (1.3). As in (4.1), there
is x0 ∈ R such that, for every t ∈ R, the function x 7→ u(t, x+x0) is even in x and decreasing
in |x|. Since φ := φ0(· − x0) is the only solution of (1.4) which is symmetric with respect
to x0, it follows from property (1.12) of Theorem 1.1 that

‖u(t, ·)− φ‖L∞(R) → 0 as t→ −∞.
Lastly, if alternative (ii) holds in the conclusion of Theorem 1.1, then again by the uniqueness
of the symmetric (with respect to x0) solution φ of (1.4), one has ‖u(t, ·) − φ‖L∞(R) → 0
as t → +∞. It then follows from (4.7), (4.9) and (4.36) that the action E[u(t, ·)] defined
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by (4.5) has the same limit E[φ] as t→ ±∞. From (4.6), one concludes that ut ≡ 0 in R×R,
that is, u(t, x) ≡ φ(x) in R× R. The proof of Corollary 2.1 is thereby complete. �

Proof of Corollary 2.3. As in (4.1), there is a point x0 ∈ RN such that, for every t ∈ R, the
function x 7→ u(t, x+x0) is radially symmetric, and decreasing in |x|. From the assumptions
made in Corollary 2.3, the set of solutions of (1.4) which are radially symmetric with respect
to the point x0 is discrete. Since the α-limit set of u is non-empty, connected and made of
solutions of (1.4) which are radially symmetric with respect to x0 (from the proof of (1.12)
in Section 4.1), it follows that there is φ ∈ E such that

‖u(t, ·)− φ‖L∞(RN ) → 0 as t→ −∞.

In case alternative (ii) of the conclusion of Theorem 1.1 occurs, then there is φ′ ∈ E such
that ‖u(t, ·) − φ′‖L∞(RN ) → 0 as t → +∞. Furthermore, if φ = φ′, then, as in the above
proof of Corollary 2.1, one has E[u(t, ·)] → E[φ] = E[φ′] as t → ±∞, hence ut ≡ 0
and u(t, x) ≡ φ(x) ≡ φ′(x) in R× RN . �
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[61] P. Poláčik and E. Yanagida, Localized solutions of a semilinear parabolic equation with a recurrent
nonstationary asymptotics, SIAM J. Math. Anal. 46 (2014), 3481–3496.

[62] E. Risler, Global behaviour of bistable solutions for gradient systems in one unbounded spatial dimen-
sion, https://arxiv.org/pdf/1604.02002.pdf.

[63] E. Risler, Global behaviour of radially symmetric solutions stable at infinity for gradient systems,
https://arxiv.org/pdf/1703.02134.pdf.
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