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With 15% of severe cases among hospitalized patients1, the SARS-COV-2 pandemic           
has put tremendous pressure on Intensive Care Units, and made the identification of             
early predictors of future severity a public health priority. We collected clinical and             
biological data, as well as CT scan images and radiology reports from 1,003             
coronavirus-infected patients from two French hospitals. Radiologists' manual CT         
annotations were also available. We first identified 11 clinical variables and 3 types of              
radiologist-reported features significantly associated with prognosis. Next, focusing        
on the CT images, we trained deep learning models to automatically segment the             
scans and reproduce radiologists' annotations. We also built CT image-based deep           
learning models that predicted future severity better than models based on the            
radiologists' scan reports. Finally, we showed that including CT scan features           
alongside the clinical and biological data yielded more accurate predictions than           
using clinical and biological data alone. These findings show that CT scans provide             
insightful early predictors of future severity. 
 
 
Previous studies have demonstrated that risk factors for severe evolution include           
demographic variables such as age, comorbidities, and biological variables measured within           
2 days of patient admission2–4. Beyond clinical and biological variables, computerized           
tomography (CT) scans are also potential sources of information: the degree of pulmonary             
inflammation is associated with clinical symptoms and severity5,6, and the extent of lung             
abnormality is predictive of severe disease evolution7,8. Here we evaluated to what extent             
visual or AI-based analysis of CT scans at patient admission added information about future              
severe disease evolution once clinical and biological data had been taken into account.  
 
A total of 1,003 patients from Kremlin-Bicêtre (KB, Paris, France) and Gustave Roussy             
(IGR, Villejuif, France) were enrolled in the study. Clinical, biological, and CT scan images              
and reports were collected at hospital admission. Additionally, 292 CT scans were later             
annotated manually by radiologists (see supplementary materials). Summary statistics for          
the clinical, biological, and CT scan data are provided in Figure 1.  
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Figure 1: Population description for the KB and IGR hospitals. Among the 1,003 patients of the                
study, biological and clinical variables were available for 989 individuals. Categorical variables are             
expressed as percentages [available]. Continuous variables are shown as median (IQR) [available].            
Association with severity are reported with p-values for each center and the pooled p-value has been                
obtained with Stouffer's method to combine p-values. p-values that are shown are not adjusted for               
multiplicity. Variables and pooled p-values are in bold when the variable is significant after Bonferroni               
adjustment to account for multiple testing across the 63 variables. For continuous variables, odds              
ratios are computed for an increase of one standard deviation of the continuous variable. KB odds                
ratios are in blue, IGR in red. 
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Figure 2: Axial chest CT scans and segmentation results COVID-19 radiology patterns, as provided by               
AI-segment, for 3 patients with COVID-19. Green/transparent: sane lung; blue: GGO; yellow : crazy paving; red:                
consolidation. (Top) 67-year-old woman with diffuse distribution, and multiple large regions of subpleural GGO              
with consolidation to the right and left lower lobe. Estimated disease extent by AI: 69%/47% (right/left).                
Radiologist report: critical stage of COVID-19 (stage 5). (Middle) 56-year-old man, with diffuse distribution and               
multiple large regions of subpleural GGO with superimposed intralobular and interlobular septal thickening (crazy              
paving). Estimated disease extent by AI: 51%/68% (right/left). Radiologist report: severe stage of COVID-19              
(stage 4). (Bottom) 70-year-old woman, with minimal impairment, and multiple small regions of subpleural GGO               
with consolidation to the right lower lobe. Estimated disease extent 13%/7% (left/right). Radiologist report:              
moderate stage of COVID-19 (stage 2). 
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Coronavirus progression is evaluated by the World Health Organization on a 1 to 10 scale,               
severe scores of 5 or more corresponding to an oxygen flow rate of 15 L/min or higher, or                  
the need for mechanical ventilation, or patient death9. We first evaluated how clinical and              
biological variables measured at admission were associated with future severe progression           
(score of 5 or more). These variables were available for 989 individuals, and we computed               
the severity odds ratios for each individual variable, and at each hospital center (Figure 1).               
When combining association results from the two centers, we found 11 variables significantly             
associated with severity (P <0.05/63 to account for testing 63 variables, Figure 1): age              
(Odds Ratio [OR] KB 1.66 (1.41-1.96), OR IGR 1.04 (0.50-2.15), OR IGR 1.32 (0.90-1.93),              
PStouffer = 5.75e-10), sex (OR KB 1.95 (1.41-2.69), OR IGR 1.04 (0.50-2.15), PStouffer =              
6.10e-05), hypertension (OR KB 1.84 (1.35-2.51), OR IGR 1.09 (0.50-2.36), PStouffer =            
1.15e-04), chronic kidney disease (OR KB 2.51 (1.62-3.69), OR IGR 16.29 (1.89-140.12),            
PStouffer = 6.66e-06), respiratory rate (OR KB 1.34 (1.13-1.59), OR IGR 3.37 (1.28-8.86),             
PStouffer = 2.10e-04), oxygen saturation (OR KB 0.38 (0.31-0.47), OR IGR 0.35 (0.20-0.63),             
PStouffer = 2.79e-21), diastolic pressure (OR KB 0.70 (0.53-0.83), OR IGR 0.76 (0.51-1.11),             
PStouffer = 1.35e-05), CRP (OR KB 1.47 (1.25-1.72), OR IGR 1.50 (1.04-2.16), PStouffer =              
4.13e-07), LDH (OR KB 2.05 (1.65-2.54), OR IGR 2.53 (1.42-4.53), PStouffer = 4.38e-12),             
polynuclear neutrophil (OR KB 1.36 (1.13-1.60), OR IGR 1.15 (0.81-1.64), PStouffer =            
1.25e-04), and urea (OR KB 1.70 (1.43-2.01), OR IGR 2.13 (1.33-2.42), PStouffer = 9.49e-11).              
This confirms the literature reported prognostic value of these 11 clinical and biological             
markers.2,4,10–14 
 
We then assessed the predictive value of features from admission radiology reports, and             
found three significant features: (i) extent of disease (OR KB 2.37 (1.97-2.86), OR IGR 1.64               
(1.12-2.38), PStouffer = 8.50e-21) and (ii) crazy paving (OR KB 2.50 (1.82-3.44), OR IGR 2.28               
(1.07-4.88), PStouffer = 3.10e-09), associated with greater severity, and (iii) peripheral           
topography, associated with lesser severity (OR KB 0.54 (0.39-0.74), OR IGR 0.61            
(0.26-1.42), PStouffer = 9.47e-05). This confirms the reported negative impact of disease            
extent7,15,16. We hypothesize that peripheral topography has a positive impact on prognosis            
because peripheral lesions could be less extended.  
 
We next trained a deep neural network called AI-segment (Supp Figure 1) to segment              
radiological patterns and provide automatic quantification 18,19 of their volume, expressed as            
a percentage of the full lung volume. These patterns included the three distinguishable             
features that appear as disease severity progresses17: ground glass opacity or GGO, crazy             
paving, and finally consolidation. AI-segment was trained on 161 patients from KB and             
evaluated on 132 patients from IGR, of which 14 fully annotated, and 118 partially              
annotated. The mean absolute error in volume prediction for the fully annotated scans was              
6.94% for GGO, 1.01% for consolidation, and 7.21% for sane lung (no crazy paving was               
present in these scans). On the larger cohort of partially annotated scans, the accuracy with               
respect to the radiologist score was 78% for GGO, 67% for crazy paving, and 74% for                
consolidation (for a 1% detection threshold on the AI-segment result, Supp Table 1).             
AI-segment also accurately quantified the disease extent (Supp Figure 3). AI-segment visual            
results were also consistent with radiologist observations (See Figure 2 for three            
representative cases). We lastly evaluated to what extent the AI-segment trained on CT             
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scans provided finer information about future severity compared to radiologists' scan reports.            
Using predicted volumes from AI-segment, we found that GGO (OR KB 1.8 (1.5-2.16), OR              
1.7(1.18-2.43), PStouffer = 3.45e-11), crazy paving (OR KB 1.57 (1.26-1.97), OR IGR 1.38             
(0.95-1.99), PStouffer = 7.27e-05) consolidation (OR KB 1.86 (1.53-2.25), OR IGR 1.87            
(1.26-2.77), PStouffer = 1.43e-11) and extent of disease (OR KB 2.14 (1.77-2.6), OR IGR 1.87               
(1.28-2.73), PStouffer = 3.13e-16) were all associated with severity (accounting for multiple            
testing). This confirms that automatic estimation of lesion volumes can add more precise             
measures of future severity to the radiologists' scan reports (Supp Table 2) 8 .  

We next evaluated the prognostic value of CT scans alone through three different models.              
The first model called report included variables from the radiological report only. The second              
was based on the automatic lesion volumes measured by AI-segment. The third called             
AI-severity used a weakly supervised approach with no radiologist-provided annotations          
(Supp Figure 2)20. All three models were trained on 646 KB patients, tested on 150 KB                
validation patients, and validated on the independent IGR dataset of 137 patients (Figure 3).              
On the validation set from KB hospital, report was outperformed by AI-severity but not by               
AI-segment (AUCAI-severity = 0.76, AUCAI-segment = 0.68, AUCreport = 0.72). On the independent             
IGR validation set, both AI-segment and AI-severity outperformed the model report           
(AUCAI-severity = 0.70, AUCAI-segment =0.68, AUCreport =0.66). Our follow up analyses revealed that             
the predictive performance of AI-severity was strong in part because the internal            
representation of the neural network captures clinical features from the lung CTs, such as              
age, on top of the known COVID-19 radiology features (see interpretability of AI-severity in              
Supp Material). 

Lastly, we evaluated whether CT scans have prognostic value beyond what can be inferred              
from clinical and biological characteristics alone. We therefore compared the performance of            
trimodal CT scan / clinical / biological models to bimodal clinical / biological models. We               
compared model performances for three outcomes: our initial WHO-defined high severity  

outcome of "oxygen flow rate of 15 L/min or higher, or need for mechanical ventilation, or                
death", as well as two other outcomes studied in the literature, "death or ICU admission",               
and "death". We built a trimodal version of report, AI-segment, and AI-severity, adding             
clinical and biological information to the original CT scan-based models by implementing a             
greedy search approach to include optimal variables (Supp Figure 4). All three trimodal             
models performed consistently better than the bimodal biological/clinical model (Figure 3 and            
Supp Table 3), whether it be trimodal report, AI-segment, or AI-severity (mean AUC increase              
of 0.02-0.03). They also outperformed clinical/biological models from literature (Colombi at al            
model 7 and MIT COVID analytics model). Of note, the fact that the models trained with                
patients from the KB hospital had good performances when evaluated on IGR hospital is              
evidence of their robustness, especially since these two hospitals receive patients with very             
different comorbidities (85% of cancer patients at IGR and 7% at KB). Taken together, these               
consistent results confirm the added prognostic value of CT scans. Importantly, while            
trimodal AI-severity generally outperformed trimodal report across all outcomes, and trimodal           
AI-segment sometimes outperformed report, the AUC difference was always modest (max           
increase of 0.03 for AI-severity vs report, and max increase of 0.02 for AI-segment vs               
report), showing that the incorporation of CT-scan analyses, no matter what the method, is              
the strongest performance booster. Therefore beyond AI modeling, our study shows that a             
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composite scoring system integrating selected radiological measurements with key clinical          
and biological variables provides accurate predictions and can rapidly become a reference            
scoring approach for severity prediction. 

Our retrospective study conducted on two French hospitals shows that future disease            
severity markers are present within routine CT scans performed at admission, and these can              
be identified and quantified via AI-based scoring, providing useful and interpretable elements            
for prognosis. 
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Figure 3: Receiver operating characteristic (ROC) curves of the models that predict            
severity. Models were evaluated on two distinct validation sets consisting of 150 patients from              
KB (left panels) and 137 patients from IGR (right panels). 
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Supplementary material of “AI-based 
multi-modal integration of clinical 

characteristics, lab tests and chest 
CTs improves COVID-19 outcome 
prediction of hospitalized patients” 

 
 

Description of the retrospective study 

Data were collected at two French hospitals (Kremlin Bicêtre Hospital (KB), APHP, Paris, and              
Gustave Roussy Hospital (GR), Villejuif). CT scans, clinical, and biological data were collected in              
the first 2 days after hospital admission. 

This study has received the approval of both hospitals ethic committees and we submit a               
declaration to the National Commission of Data Processing and Liberties (N° INDS            
MR5413020420, CNIL) in order to get registered in the medical studies database and respect the               
General Regulation on Data Protection (RGPD) requirements. Also an information letter was sent             
to all patients included in the study.  

Inclusion criteria were (1) date of admission at hospital (from the 12th of February to the 20th of                  
March at Kremin Bicêtre and from the 2nd of March to the 24th of April at Institut Gustave                  
Roussy) and (2) a positive diagnosis of COVID-19. Patients were considered positive either             
because of a positive RT-PCR (real-time fluorescence polymerase chain reaction) based on            
nasal or lower respiratory tract specimens or a CT scan with a typical appearance of COVID-19                
as defined by the ACR criteria for negative RT-PCR patients1. Children and pregnant women              
were excluded from the study. 

 
The clinical and laboratory data were obtained from detailed medical records, cleaned and             
formatted retrospectively by 10 radiologists with 3 to 20 years of experience (5 radiologists at GR                
and 5 at KB). Data from the clinical examination include: sex, age, body weight and height, body                 
mass index, heart rate, body temperature, oxygen saturation, blood pressure, respiratory rate,            
and a list of symptoms including cough, sputum, chest pain, muscle pain, abdominal pain or               
diarrhoea, and dyspnea. Health and medical history data include presence or absence of             
comorbidities (systemic hypertension, diabetes mellitus, asthma, heart disease, emphysema,         
immunodeficiency) and smoker status. Laboratory data include conjugated alanine, bilirubin, total           
bilirubin, creatine kinase, CRP, ferritin, haemoglobin, LDH, leucocytes, lymphocyte, monocyte,          
platelet, polynuclear neutrophil, and urea.  
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Chest Thoracic (CT) imaging 

CT scan acquisition 

Three different models of CT scanners were used : two General Electric CT scanners (Discovery               
CT750 HD and Optima 660 GE Medical Systems, Milwaukee, USA) and a Siemens CT              
scanner (Somatom Drive; Siemens Medical Solutions, Forchheim). All the patients were           
scanned in a supine position during breath-holding at full inspiration. The acquisition and             
reconstruction parameters were of 120kV tube voltage with automatic tube current           
modulation (100-350 mAs), 1mm slice thickness without interslice gap, using          
filtered-back-projection (FBP) reconstruction (SOMATOM Drive) or blended FBP/iterative        
reconstruction (Discovery or Optima). Axial images with slice thickness of 1 mm were used for               
coronal and sagittal reconstructions. 

The scans performed were independently examined by experienced radiologists using a           
standard workstation in the clinical image archiving and transmission system. All radiologists            
were informed of patients clinical status (suspicion of COVID-19, clinical signs of severity). 

Definition of CT Features  

COVID-19 associated CT imaging features identified by radiologists were defined following           
ACR recommendation1. The term parenchymal opacification is applied to any homogeneous           
increase in lung density on chest CT. When this parenchymal opacification is dense enough              
to obscure the vessels margins and airway walls and other parenchymal structures, it is              
called consolidation. Ground-glass attenuation is defined as an increase in lung density not             
sufficient to obscure vessels or preservation of bronchial and vascular margins crazy-paving            
pattern was defined as ground-glass opacification with associated interlobular septal          
thickening2 . 

For 959 patients, CT imaging characteristics were evaluated and the following findings were             
reported: ground glass opacity (rounded / non rounded / absent), consolidation (rounded /             
non rounded / absent) interlobular septal thickening or “crazy paving” (present / absent),             
subpleural line, lymph node enlargement, pleural effusion, and pericardial effusion,          
according to morphological descriptors based on recommendations of the Fleischner          
Nomenclature Committee2. 

The results of the CT were examined in terms of location, distribution, size and type. The                
location refers to the different lobes and segments involved (lower or medium or upper). The               
distribution was described as peripheral (1/3 external of the lung), central (2/3 internal), or              
both central and peripheral. 

The assessment of the size and extent of lung involvement was based on a visual               
classification of lung anatomy according to the evaluation criteria established by the French             
Society of Radiology (SFR)3. The size of the lesion was assessed; the volume of the lung                
affected absent / minimal (<10%) / moderate (10-25%) / extensive (25-50%) / severe (>50%)              
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/ critical >75%. The coding absent / minimal / moderate extensive / severe / critical was                
based on a quantitative variable with values of 0 / 1 / 2 / 3 / 4 / 5. 

Automatic extraction from radiological report  

Radiological features from radiological reports were automatically extracted using Optical          
Character Recognition and regular expression functions. 

Annotation scenario of CT scans by radiologists in order to train the AI-Volumetry model 

Two radiologists (4 and 9 years of experience) examined and annotated 292 anonymized             
chest scans independently and without access to the patient's clinic or COVID-19 PCR             
results. All CT images were viewed with lung window parameters (width, 1500 HU; level,              
-550 HU) using the SPYD software developed by Owkin. Regions of interest were annotated              
by the radiologists in four distinct classes : healthy pulmonary parenchyma, ground glass             
opacity, consolidation, crazy-paving. One AI and imaging PhD student provided full 3D            
annotation of the four classes on 22 anonymized chest scans using the 3D Slicer software. 

The presence of organomegaly was also notified when present, as a binary class. When              
multiple CT images were available for a single patient, the scan to analyze was selected               
using the SPYD software. 

Machine learning models 

Models for segmentation of CT scans (AI-segment) 

 
In the proposed pipeline called AI-segment for lesion segmentation from CT scans, we             
deployed 3 segmentation networks: 3D Resnet504 , 2.5D U-Net, and 2D U-Net 5. These are               
three powerful convolutional neural networks that have achieved state of the art performance             
in numerous medical image segmentation tasks. U-Net consists of convolution, max pooling,            
ReLU activations, concatenation and up-sampling layers with sections: contraction,         
bottleneck, and expansion. ResNet contains convolutions, max pooling, batch normalization,          
and ReLU layers that are grouped in multiple bottleneck blocks.  
 
All models were trained on CT scans provided by Kremlin-Bicêtre (KB) and evaluated on              
annotated CT scans Institut Gustave Roussy (IGR). The dataset was divided into two             
categories: Fully Annotated Scans (FAS) composed of 22 scans (8 from KB and 14 from               
IGR) and Partially Annotated Scans (PAS) composed of 292 scans (153 from KB and 118               
from IGR) 
 
2D U-Net was trained for left/right lung segmentation while 3D ResNet and 2.5D U-Net were               
used for lesion segmentation. 3D ResNet50 was trained on 8 KB FAS. We used Stochastic               
Gradient Descent for parameter optimization and a learning rate starting of 0.1 with a decay               
factor of 0.1 every 20 epochs. The network was trained for a total of 100 epochs. As for 2.5D                   
U-Net, Adam optimization algorithm was used with learning rate, weight decay, gradient            
clipping and learning rate decay parameters set respectively to 1e-3, 1e-8, 1e-1, and 0.1              
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(applied at epochs 90 and 150) for 300 epochs. While the validation set remains the same                
as 3D resnet50, 153 KB PAS scans were added to the 8 KB FAS, in the training set. PAS                   
were only added to the 2.5D U-Net training set due to the incompleteness of the annotated                
volume (on average 16 slices are annotated per PAS) in the scans which would not satisfy                
the volumetric requirements of the 3D ResNet50 input. Finally, for the left/right lung             
segmentation, the 2DU-Net was trained on the 8 KB FAS. Similarly to 2.5D U-Net, Adam               
optimization algorithm was used with learning rate, weight decay, gradient clipping and            
learning rate decay parameters set respectively to 1e-3, 1e-8, 1e-1, and 0.1 at epoch 70               
over 104 epochs. Both 2.5D U-Net and 2D U-Net use affine transformation and contrast              
change for data augmentation while 3D resnet50 uses affine transformation, contrast           
change, thin plate splines, and flipping. 3D ResNet and 2.5D U-Net are trained through the               
minimization of the cross entropy loss and 2D U-Net minimizes the binary cross entropy loss.               
All training was performed on NVIDIA Tesla V100 GPUs and Pytorch is the used framework.               
During the validation phase, ensemble inference6 is performed on all the available scans. 

Models for severity classification based of CT scans (AI-severity) 

 
The AI-severity model is defined as an ensemble of four sub-models, as illustrated in Supp               
Fig 2. Each of these sub-models is designed to predict the disease severity from CT scans.                
Since they do not require expert annotations at the slice level, these sub-models fall in the                
scope of weakly supervised learning. The preprocessing of the data consisted in resizing the              
CT scans to 10mm pixel spacing along the vertical axis and obtaining a segmentation of the                
lungs using a pre-trained U-Net algorithm7. Each sub-model is composed of two blocks: a              
deep neural network called feature extractor and a logistic regression. CT scans may contain              
biases such as catheters (EKG monitoring, oxygenation tubing...) that are easily detectable            
in a CT and can bias the prediction of severity (i.e. predict the presence of a technical device                  
associated with severity instead of predicting the radiological features associated with           
severity). In order to ensure that these biases do not affect the features, the lung               
segmentation mask was applied before the features were extracted. As a result, only the              
lungs were visible to the feature extractor. 
 
Two of the sub-models used an EfficientNet-B08 pre-trained on the ImageNet public            
database as feature extractor while the other two used a ResNet509 pre-trained with MoCo              
v210 on one million CT scan slices from both Deep Lesion11 and LIDC12. Each of these                
networks provide an embedding of the slices of the input CT scans into a lower-dimensional               
(1280 for EfficientNet-B0 and 2048 for ResNet50 with MoCo v2) feature space. A windowing              
used for selecting specific ranges of intensities was also applied on the CT scans before the                
features extraction. For the two sub-models based on the EfficientNet-B0, the image            
intensities were respectively clipped in the (-1000 HU, 200 HU) and (-1000 HU, 600 HU)               
range. For one of the remaining two sub-models (based on ResNet50 with MoCo v2), the               
(-1350 HU, 150 HU) range was used whereas for the last one, a combination of the following                 
ranges was used: (-1000 HU, 0 HU), (0 HU, 1000 HU) and (-1000 HU, 4000 HU). Finally, for                  
each of these sub-model, a Logistic Regression (with ridge penalty) was used to predict the               
disease severity from the averaged features. For the ResNet50-based sub-models, a           
Principal Component Analysis (PCA) with 40 components was used to reduce the            
dimensionality of the feature space before the Logistic Regression was applied. All the             
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sub-models were equally weighted in the ensemble and the disease severity predictions of             
the AI-severity model were obtained by averaging the prediction of the models in the              
ensemble.  
 

Interpretability of AI-severity 

 
An interpretability study was conducted on AI-severity to get a better understanding of its              
performances. The correlation between the internal representation of the sub-models (i.e.           
the input of the logistic regression),radiological and clinical variables were analyzed. By            
replacing the output of the logistic regression by variables from the radiology reports, AUC              
on the KB validation set of 150 patients were 94.1% for disease extent (threshold >2), 71.4%                
for crazy paving, 67.1% for condensation and 74.8% for GGO, showing that the feature              
extractors correctly captured part of the radiology signal. More interestingly, it was also             
possible to correlate internal representations with clinical variables such as age (AUC 85.1%             
with a threshold of 60 years old), sex (AUC 85.2%) or oxygen saturation (AUC 76.2%,               
threshold 90%). As a comparison, a logistic regression trained on the radiology report             
variables only gets respectively AUC scores of 70.0%, 59.9% and 67.8%. This gap shows              
that the AI-severity internal representations present within the neural network capture           
clinical information directly from CT scans. 

Models for multimodal integration 

 
The models used to predict the outcome from multiple modalities are logistic regressions,             
trained by cross validation with 5 folds on the training dataset of 646 patients from KB,                
stratified by age and outcome. Variables that were filled for less than 300 patients              
(conjugated bilirubin and alanine) were not used. For the remaining variables, missing            
values were simply replaced by the average over patients of the training set. L2              
regularization was applied to the weights of the models. The regularization coefficient value             
was chosen by comparing the results obtained in cross validation with different values,             
ranging from 0.01 to 100. The value maximizing the average AUC over the 5 folds was                
selected. We use pandas and scikit-learn to manipulate data and perform machine learning             
algorithms 13. 
 

Selection of clinical and biological variables added to the models based on CT scan              
variables 

 
Clinical and biological variables were selected through a forward feature selection technique            
(Supp Fig 4). At baseline (left of the figure), a model was trained in cross-validation using                
only a fixed set of variables. Three initial sets were considered here: radiologist report, AI               
Lungs and AI volumetry. The variables encoded in the radiologist report includes a             
presence/absence coding of Ground Glass opacity (GGO), rounded GGO, Crazy paving,           
Consolidation, Consolidation rounded, Topography peripheral, and Predominance inferior,        
as well as disease extent, which is a semi automatic assessment of the amount of lesions in                 
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the lung. The AI-Lung model includes the one variable output of the neural network model to                
predict severity and the AI volumetry model includes the automatic quantification of the             
ground glass, consolidation and crazy paving pattern, and the automatic quantification of            
disease extent. For comparison, the procedure was also performed starting from an empty             
set of variables (clinical only). 
The added prognosis value of every clinical or biological variable was then assessed             
separately, by training a new model using this variable in addition to the previous set. The                
variable resulting in the largest AUC score was added to the selection. This procedure was               
repeated for 20 iterations. For every initial selection, performances of the models increased             
quickly at first (left part of Supp Fig 4), then reached a plateau (right half of the figure),                  
indicating that the variables added after the tenth iteration did not significantly increase the              
predictive power of the models. Thus, for every case, only the ten best clinical and biological                
variables were selected.  

Training and evaluation of models 

To predict severity, models were trained on 646 patients from KB, which included the              
training set of AI-segment, and evaluated on two distinct evaluation sets, with 150 patients              
from KB and 137 patients from IGR. The prediction is performed using the logistic regression               
approach.  

We evaluated models that predict severity using the Area Under the Curve (AUC) and              
differences between AUC values were tested using DeLong test 14.  
 
We evaluated the segmentation model AI-segment using mean absolute error that is defined             
as the average, over the available fully annotated CT scans in the validation set, of the                
absolute value of the difference between the ground truth percentage of each lesion type              
(deduced from annotations) and the estimated ones. We also evaluated the detection            
accuracy per lesion with respect to the reported radiologist scores, defined as the             
percentage of correctly predicted classes by AI-segment (GGO ; CP ; Consolidation) among             
the validation set. A given lesion type, in the AI-segment result, is considered as present               
when the estimated volumetry of the lesion type, averaged over both lungs, is above a               
certain threshold (here, we reported results for threshold 1% and 2%).  
 

Benchmark models 

We use the clinical and biological variables previously proposed in a multivariate risk score              
for severity, which is defined as admission to ICU or death, and we retrain a logistic                
regression model using these variables 15. We also considered the MIT Covid Analytics             
calculator as a risk score for mortality (https://www.covidanalytics.io/mortality_calculator). 
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Supplementary Figures and Tables 
 

 
Supp Fig. 1: AI-segment architecture. Proposed pipeline to generate lesion volumetry estimates            
from patient CT scans employing ensemble of segmentation networks. Normalized patient scans are             
provided to our trained 2.5D U-Net and 3D ResNet50. The masks predicted from both models are                
then merged by geometric mean. In parallel, we segment left-right lungs from the patient scans using                
a dedicated U-Net. Finally, the left-right lung mask is used to mask-out lesions in left and right lungs                  
from the ensemble output. This pipeline utilizes the complementary features learned by a weak model               
(2.5D U-Net) and a strong one (3D ResNet50). 
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Supp Fig. 2: AI-severity model to predict severity from 3D chest CT scans. Two different               
pipelines were used: one using Resnet50 (trained with MocoV2 on 1 million public CT scan slices) as                 
encoder (models 1 & 2) and one using EfficientNet B0 as encoder (models 3 & 4).  
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Supp Fig. 3: Boxplot of the automatic quantification of disease extent by AI-segment versus              
disease extent as estimated by a radiologist. The coding of the report is as follows: 0 (0% of                  
lesions), 1 (<10% of lesions), 2 (between 10 and 25% of lesions), 3 (between 25 and 50% of lesions),                   
4 (between 50 and 75% of lesions), 5 (more than 75% of lesions). 
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Supp Fig. 4: AUC curve as a function of the number of clinical and biological information                
added to the multimodal model. Variables included in the models consist of CT scan variables only                
and then a greedy algorithm adds clinical or biological variables iteratively. At each step of the                
algorithm, the variable that results in the largest increase of AUC score is added.  
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 GGO Crazy paving Consolidation 

Accuracy (1% 
threshold) 

0.7829 0.6712 0.7419 

Accuracy (2% 
threshold) 

0.7679 0.6712 0.7558 

 
Supp Table 1: Detection accuracy computed for the binary decision the “presence or not of a                
lesion type” for AI-segment. Results of automatic segmentation was compared to standardized            
radiologist report, on the IGR cohort. The threshold of the predicted disease extent is obtained by                
computing the maximum of both lungs. 
 

Variable Center Odds ratio 
(95%lower - 95% 
upper) 

P-value P-value Stouffer 

GGO AI KB 1.8 (1.5-2.16) 2.86e-10  
3.45e-11 

GGO AI IGR 1.7(1.18-2.43) 0.00424 

Crazy Paving AI KB 1.57 (1.26-1.97) 6.37e-05  
7.27e-05 

Crazy Paving AI IGR 1.38 (0.95-1.99) 0.08712 

Consolidation AI KB 1.86 (1.53-2.25) 2.49e-10  
1.43e-11 

Consolidation AI IGR 1.87 (1.26-2.77) 0.00196 

Disease extent AI KB 2.14 (1.77-2.6) 7.11e-15  
3.13e-16 

Disease extent AI IGR 1.87 (1.28-2.73) 0.00109 

 
Supp Table 2: Association of lesion volumes inferred by AI-segment and severity. 
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Supp Table 3: AUC values for the different models on KB and IGR data sets. Each model was                  
trained on 646 patients from KB. Results are reported on the validation set from KB (150 patients) and                  
the external validation set from IGR (137 patients), as well as on the training set using 5 fold cross                   
validation stratified by outcome and age (CV KB). 
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