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Abstract This paper aims at providing statistical guarantees for a kernel-based

estimation of time-varying parameters driving the dynamic of infinite memory
processes introduced by Doukhan and Wintenberger [1]. We then extend the
results of Dahlhaus et al. [2] on local stationary Markov processes to other
important models such as the GARCH model. The estimators are computed as
localized M-estimators of any contrast satisfying appropriate regularity condi-
tions. We prove the uniform consistency and the pointwise asymptotic normality
of such kernel-based estimators. We apply our results to usual contrasts such
as least-square, least absolute value, or quasi-maximum likelihood contrasts.
Various time-varying models such as AR(∞), ARCH(∞) and LARCH(∞) are
considered. We discuss their approximation of locally stationary ARMA and
GARCH models under contraction conditions. Numerical experiments demon-
strate the efficiency of the estimators on both simulated and real data sets.

Keywords: [class=MSC2010] [Primary] 62G05 62G20 [secondary] 62M05

1. Introduction

Following the seminal paper of Dahlhaus [3] local-stationarity is considered as
a natural set of conditions for introducing non-stationarity in times series. The
chapter [4] of Dahlhaus is an exhaustive survey for new results between 1992
and 2012 on this topic. Dahlhaus and its co-authors have developed a consistent
framework studying definitions and properties of local stationary models (See
[5], [6] and [7] for instance) as well as related statistical issues such as identi-
fication and estimation (see [8], [9], [5], [6], [10] and [7]). Note that, except in
Dahlhaus and Subba-Rao [5], the estimators introduced in the previous papers
are based on a spectral approximation of the Gaussian likelihood, i.e. Whittle
type estimators. Moreover, models considered in this early literature are lin-
ear filters of independent inputs. More recently a general approach based on
derivative processes has been developed in an important paper by Dahlhaus et
al. [2]. It allows to get rid off the linearity condition on the models. Time
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non-homogeneous Markovian observations are the considered non-linear time-
varying models. Under an adequate contraction condition on the kernel, the
observations forget their past exponentially fast and the efficiency of kernel-
based estimators is proven. Anyway, many important models like GARCH-type
models are not taken into consideration in the above considered literature. The
reason is that the Markov representation, adjoining the volatility process, is not
observed and, like Hidden Markov Models, does not fall into the setting consid-
ered by Dahlhaus et al. [2]. Indeed such models may be considered as infinite
memory processes, a general class that also models longer memories than the
exponential decaying ones.
The current paper aims at extending the work of Dahlhaus et al. [2] to such an
infinite memory setting. We extend the concept of local stationarity beyond the
Markovian case. More precisely, the stationary models introduced by Doukhan
and Wintenberger in [1] are extended to time-varying infinite memory causal

processes defined as (X
(n)
t )1≤t≤n a recursive solution to the equation

X
(n)
t = F

θ
(n)
t

(
(X

(n)
t−k)k∈N∗ ; ξt

)
, 1 ≤ t ≤ n, n ∈ N∗ = N \ {0}. (1)

where (θ
(n)
t )0≤t≤n, n∈N∗ is a deterministic family with θ

(n)
t ∈ Θ ⊂ Rd for any

0 ≤ t ≤ n and n ∈ N∗, Fθ is a known real-valued function and the innovations ξt
constitute an independent and identically distributed (i.i.d.) sequence. For ease

of writing, we will consider X
(n)
t = 0 for t ≤ 0, but the arbitrary choice of any

deterministic initial values does not change the asymptotic behavior. To make
it tractable, a secondary aim of the paper is to keep the conditions as simple as
possible. For instance, in our setting time-variation consists in the existence of

a Hölder-continuous function θ∗ over u ∈ (0, 1) such that θ
(n)
t = θ∗(t/n), see

Assumption (H(ρ)). Under this assumption, we define a kernel-based estimator

θ̂(u) of θ∗(u) obtained by the minimization of a localized sum of contrast Φ
(see its definition in (12)). We then establish the uniform consistency and the
asymptotic normality of this estimator, which is minimax rate optimal, under
sharp and general conditions.
The generality of the setting and the relative simplicity of the conditions allow us
to recover existing results on several classes of examples and extend them to in-
finite memory processes. Clearly, any Markov process with a contractive kernel
is an infinite memory model (with memory one if the observations are Marko-
vian, with exponential decaying memory if there is a hidden state). The infinite
memory representation for GARCH processes is quite appealing since it holds
on the observations whereas the Markovian representation holds by adjoining
the volatility process. As any contrast is a function of the observations only, the
contrast itself has infinite memory but is not Markovian (see Bardet and Win-
tenberger [11] for a detailed discussion in the stationary setting). Considering
quasi log-likelihood contrast offers consistent and efficient estimation for time-
varying infinite memory processes: we obtain the uniform consistency and the
asymptotic normality for time-varying AR(∞) and ARCH(∞). For finite mem-
ory time-varying ARMA(p, q) or ARCH(p), our results recover previous ones
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of Dahlhaus and co-authors [8], [5] and [2], and extend them to the important
GARCH model class. We also consider least squares and least absolute values
contrasts for time-varying LARCH(∞) processes and we notably obtained an
efficient asymptotic estimation for these infinite memory processes.
Dahlhaus et al. [2] used functional dependence conditions. For time-varying
infinite memory processes satisfying (1), we introduce the tangent process, a
process that respects the infinite memory in (1) and ”stationarizes” its future.
The approach is appealing for its simplicity and generality. It is doable since

in Eqn. (1) the time variation of the auto-regressive coefficient θ
(n)
t is indepen-

dent of the lag k. The model (1) is slightly different than the usual markovian

local stationary setting where some auto-regressive coefficients θ
(n)
t in the infi-

nite memory representation may depend on the lag k. However, our approach
coincides with the usual one for local stationary finite memory processes under
additional contraction conditions. We apply our strategy to prove estimation
convergence for local stationary ARMA and GARCH processes.
Numerical studies are also proposed. Firstly, Monte-Carlo experiments show
the accuracy of the estimator in several cases of time-varying processes. How-
ever, these simulations also exhibit that such a kernel-based estimate requires
sufficient large sample sizes (at least one thousand in many cases). Secondly, an
application to financial data (the S&P500 data from October 1990 to October
2020) demonstrates the evolution of the parameters in case a GARCH(1, 1)-
model is used.

The forthcoming Section 2 is devoted to the definition and existence of new
non-stationary models. In Section 3, the definition of the kernel-based estima-
tor as well as its uniform consistency and asymptotic normality are stated, while
Section 4 reviews several important cases. Numerical experiments are proposed
in Section 5 and proofs are postponed in Sections 6 and 7.

2. Preliminaries

2.1. Notation

Some standard notation is used:

• The symbol 0 denotes any null vector in any vector space;

• If S is an arbitrary space S∞ = {(xn)n∈N ∈ SN;∃N ∈ N, xk = 0, for all k >
N};

• The symbol ‖ · ‖ denotes the usual Euclidean norm of a vector or the
associated norm of a matrix;

• For p ≥ 1 and Z a random vector in Rm, denote: ‖Z‖p =
[
E(‖Z‖p)

]1/p
.

• For the measurable vector- or matrix-valued function g defined on some
set U , ‖g‖U = supu∈U ‖g(u)‖.
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• From now on Θ denotes a subset of Rd, and
◦
Θ is the interior of Θ. If

V is a Banach space then C(Θ, V ) denotes the Banach space of V -valued
continuous functions on Θ equipped with the uniform norm ‖ · ‖Θ and
Lp(C(Θ, V )) (p ≥ 1) denotes the Banach space of random a.e. continuous
functions f such that E

[
‖f‖pΘ

]
<∞.

• For θ ∈ Θ and Ψθ : R∞ → V a Borel function with values in a finite
dimensional vector space V , ∂kθΨθ(x) denotes respectively for k = 0, 1, 2,
in case they exist, Ψθ(x), ∂Ψθ(x)/∂θ and ∂2Ψθ(x)/∂θ2 for x ∈ R∞.

2.2. Stationary infinite memory processes

In all the sequel, we will consider a given real number p ≥ 1.

Set θ ∈ Rd and let a function Fθ be defined as follows

Fθ : (x, y) ∈ R∞ × R 7→ Fθ(x, y) ∈ R. (2)

Doukhan and Wintenberger proved in [1] the existence and the uniqueness of
the stationary solution of the recurrence equation

Xt = Fθ
(
(Xt−k)k∈N∗ , ξt

)
, for all t ∈ Z, (3)

where (Xt) is a process with values in R and where (ξt)t∈Z is a sequence of i.i.d.
random variables (r.v.). This framework provides a parametric representation
of models such as nonlinear autoregressive or conditionally heteroskedastic time
series for instance.

The existence of a stationary solution in Lp of the above equation relies on
a contraction argument on the function Fθ. As a consequence, we define the
following family of assumptions (Ak(Θ)) for k = 0, 1, 2 and some compact
subset Θ of Rd:

(Ak(Θ)) For θ ∈ Θ, we assume that the functions ∂kθFθ exist on R∞ × R for

k = 0, 1, 2. Moreover, for any θ ∈ Θ, there exists a sequence
(
b
(k)
j (θ)

)
j

of

nonnegative numbers such that for all x, y ∈ R∞

• Ck(Θ) = sup
θ∈Θ

∥∥∂kθFθ(0, ξ0)
∥∥
p
<∞ (4)

•
∥∥∥∂kθFθ(x, ξ0)− ∂kθFθ(y, ξ0)

∥∥∥
p
≤
∞∑
j=1

b
(k)
j (θ) ‖xj − yj‖p, (5)

with Bk(Θ) =
∥∥∥ ∞∑
j=1

b
(k)
j

∥∥∥
Θ
<∞.

Thus, from [1], under the uniform contraction conditions (A0(Θ)) with B0(Θ) <
1, there exists a unique stationary solution of (3) in Lp (defined almost surely).
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2.3. Time-varying infinite memory process

If we replace now θ by the time-varying θ
(n)
t such that θ

(n)
t ∈ Θ, then the

uniform contraction conditions (A0(Θ)) with B0(Θ) < 1 ensure the existence
of a non-stationary Lp-process. More precisely, from a recursion we define the

triangular array (X
(n)
t )1≤t≤n, n∈N∗ :

X
(n)
t = F

θ
(n)
t

(
(X

(n)
t−k)k∈N∗ ; ξt

)
, 1 ≤ t ≤ n, n ∈ N∗ , (6)

where (θ
(n)
t )0≤t≤n, n∈N∗ is a family of real numbers θ

(n)
t ∈ Θ ⊂ Rd for any

0 ≤ t ≤ n and n ∈ N∗. To make this recursion possible we also need initial
conditions :

X
(n)
t = 0, for t ≤ 0. (7)

The solution of the above equations is no longer stationary. However, we can
establish the following result (its proof as well as all the other ones are postponed
in the Sections 6 and 7):

Lemma 2.1. Let Θ ⊂ Rd such that (A0(Θ)) holds with B0(Θ) < 1. Then,

under the assumption (7), the nonstationary triangular array (X
(n)
t )0≤t≤n, n∈N∗ ,

solution of (6), remains in Lp and it satisfies

sup
n∈N∗, 0≤s≤n

‖X(n)
s ‖p ≤

C0(Θ)

1−B0(Θ)
.

2.4. The stationary approximation

We introduce a function u 7→ θ∗(u) on [0, 1]; this is a continuous time approx-

imation of the triangular array of parameters (θ
(n)
t )0≤t≤n, n∈N∗ . We consider

ρ ∈ (0, 1] and will assume the following assumption:

Assumption (H(ρ)): There exist Kθ > 0 and a Hölder continuous function
θ∗ : [0, 1]→ Rd, such as∥∥θ(n)

t − θ∗(u)
∥∥ ≤ Kθ ∣∣∣u− t

n

∣∣∣ρ, for any n ∈ N∗ and 1 ≤ t ≤ n. (8)

This condition imposes an Hölder type behavior for θ
(n)
t = θ∗(t/n), 0 ≤ t/n ≤ 1.

Definition 2.1. If it exists, we define (X̃t(u))t∈Z as any solution of the recur-
sion

X̃t(u) = Fθ∗(u)

(
(X̃t−k(u))k≥1, ξt

)
, t ∈ Z , (9)

and we call it the stationary version of (X
(n)
t ) at u ∈ [0, 1].

Note that from [1] the existence of the stationary version is infered from the
contraction assumptions. Namely, if the function θ∗ satisfies θ∗(u) ∈ Θ ⊂ Rd
for each u ∈ [0, 1] and if it is such that (A0(Θ)) holds with B0(Θ) < 1, then

there exists a.s. a unique stationary stationary version (X̃t(u))t∈Z satisfying (9)
and

sup
t∈Z
‖X̃t(u)‖p ≤

C0(Θ)

1−B0(Θ)
, u ∈ [0, 1] .
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3. M-estimation for infinite memory processes

3.1. The stationary case

We recall the framework of contrast estimation for infinite memory chain as in
Bardet and Wintenberger [11]. Let (Xt) be a stationary solution of the infinite
memory model (3) with parameter θ∗ ∈ Θ ⊂ Rd such that (A0(Θ)) holds with
B0(Θ) < 1. We estimate θ∗ using an M-estimator based on an observed path
(X1, . . . , Xn).

We define a contrast function Φ(x,θ) that satisfies a set of regularity assump-
tions combined in the definition of the space Lip p(Θ) for Θ ⊂ Rd (always with
1 ≤ p):

Space Lip p(Θ): A Borel function h : R∞×Θ→ R belongs to Lip p(Θ) if there
exists a sequence of non-negative numbers (αi(h,Θ))i∈N where

∑∞
s=1 αs(h,Θ) <

∞ and a function g : [0,∞)2 → [0,∞) such as for any sequences U = (Ui)i∈N∗ ∈
(Lp)∞ and V = (Vi)i∈N∗ ∈ (Lp)∞ satisfying sups≥1{‖Us‖p ∨ ‖Vs‖p} < ∞, one
obtains:

E
[

supθ∈Θ

∣∣h(0,θ)
∣∣] <∞;

E
[

sup
θ∈Θ

∣∣h(U,θ)− h(V,θ)
∣∣] ≤ g( sup

s≥1

{
‖Us‖p∨ ‖Vs‖p

}) ∞∑
s=1

αs(h,Θ) ‖Us − Vs‖p.

(10)

Note that if h ∈ Lip p′(Θ) then h ∈ Lip p(Θ) when p ≤ p′ thanks to Jensen’s
inequality. It is possible (see below the general case for non-stationary models)
to prove that if Φ ∈ Lip p(Θ) and if the stationary solution (Xt) admits finite p
moments, then Φ

(
(X−t)t∈N,θ

)
exists in L1 for any θ ∈ Θ. The existence of first

order moments is crucial for ensuring that Φ is a proper score function which is
implied by the following condition:

Assumption (Co(Φ,Θ)): The function Φ ∈ Lip p(Θ) for p ≥ 1 is such that

for (Xt)t∈Z satisfying the infinite memory model (3) with parameter θ∗ ∈
◦
Θ and

with F0 = σ
(
(X−k)k∈N

)
,

θ∗ is the unique minimum of the function

θ ∈ Θ 7→ E
[
Φ
(
(X1−k)k∈N,θ

)
|F0

]
in

◦
Θ . (11)

As a consequence, this condition is depending on the function θ ∈ Θ 7→ Fθ(·)
driving the infinite memory model (3). Therefore the contrast function Φ will
be chosen with respect to this function Fθ. This is thus natural to define the
M-estimator of θ by

θ̂n = Argmin
θ∈Θ

1

n

n∑
t=1

Φ
(
(Xt−i)i∈N,θ

)
.
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Note that the factor 1/n aims at establishing a Law of Large Numbers. Indeed,
if the almost sure convergence holds, i.e.

sup
θ∈Θ

∣∣∣ 1
n

n∑
t=1

Φ((Xt−i)i∈N,θ)− E
[
Φ((X−i)i∈N,θ)

]∣∣∣ a.s.−→
n→+∞

0,

then usual arguments imply θ̂n
a.s.−→

n→+∞
θ∗.

3.2. The time-varying case

We extend the notion of contrast function Φ to the non-stationary process(
X

(n)
t

)
t∈Z

for time-varying parameters θ
(n)
t . The first step below is to prove

the integrability.

Lemma 3.1. Let (X
(n)
t )t∈Z satisfy the non-stationary infinite memory model

(6) under condition (A0(Θ)) with B0(Θ) < 1 and let Φ ∈ Lip p(Θ) with p ≥ 1.

Then for any θ ∈ Θ, the sequence of contrasts
(
Φ
(
(X

(n)
t−k)k∈N,θ

))
t∈Z exists in

L1. Moreover, under Assumption (H(ρ)), and with (X̃t(u))t∈Z the stationary

version defined in (9),
(
Φ
(
(X̃t−k(u))k∈N,θ

))
t∈Z is a stationary ergodic process.

Under the Hölder assumption (H(ρ)), we can expect estimating θ∗(u) with
0 < u < 1 defined in (8) thanks to a M-estimator based on the observations

X
(n)
t for t/n ' u. The previous M-estimator has to be localized around t such

as t ' nu using a convolution kernel K with a compact support (for simplicity):

Definition 3.1. Let a kernel function K : R→ R be such as:

• K has a compact support, i.e. there exists c > 0 such as K(x) = 0 for
|x| ≥ c;

• K : R→ R is piecewise differentiable with∫
R
K(x)dx = 1, CK = sup

x∈R
|K(x)| <∞.

Then, with a bandwidth sequence (hn)n∈N of positive numbers, we define the
kernel-based estimator of θ∗(u) as

θ̂(u) = argmin
θ∈Θ

1

nhn

n∑
j=1

Φ
(
(X

(n)
j−i)i∈N,θ

)
K
( j
n − u
hn

)
, u ∈ (0, 1). (12)

Under weak conditions, this estimator is consistent. For the uniform consis-
tency, we require a stronger assumption:

(Ãk(Θ)) For θ ∈ Θ, we assume that the functions ∂kθFθ exist on R∞ × R
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for k = 0, 1. Moreover, for any θ ∈ Θ, there exists a sequence
(
b
(k)
j (θ)

)
j

of

nonnegative numbers such that for all x, y ∈ R∞

• C̃k(Θ) =
∥∥∥∥∥∂kθFθ(0, ξ0)

∥∥
Θ

∥∥∥
p
<∞ (13)

•
∥∥∥∥∥∂kθFθ(x, ξ0)− ∂kθFθ(y, ξ0)

∥∥
Θ

∥∥∥
p
≤
∞∑
j=1

b
(k)
j (Θ) ‖xj − yj‖p, (14)

with B̃k(Θ) =
∑∞
j=1 b

(k)
j (Θ) <∞.

Note that the assumptions (Ãk(Θ)) are stronger versions of the assumptions
on the uniform condition (Ak(Θ)). Indeed we can consider without loss of

much generality that Bk(Θ) = ‖
∑∞
j=1 b

(k)
j ‖Θ whereas B̃k(Θ) =

∑∞
j=1 ‖b

(k)
j ‖Θ.

In many examples of applications Assumptions (A0(Θ)) and (Ã0(Θ)) are both
likely to hold together with the uniform contraction condition B0(Θ) < 1. How-

ever the strong uniform contraction condition B̃0(Θ) < 1 is rather restrictive
but is required only to derive uniform consistency.

Theorem 3.1. Let (X
(n)
t )t∈N be the solution of the non-stationary infinite

memory model (6) which satisfies Assumption (A0(Θ)) with B0(Θ) < 1 and
Assumption (A1(Θ)) for p ≥ 1, with also Assumption (H(ρ)). For the same
p ≥ 1 assume Φ ∈ Lip p(Θ) with

∑
s≥0 s αs(Φ,Θ) < ∞ satisfying together the

Assumption (Co(Φ,Θ)) and ‖
∑∞
t=1 t log(t)b

(0)
t ‖Θ <∞ then, for any u ∈ (0, 1),

θ̂(u) consistently estimates θ∗(u):

θ̂(u)
P−→

n→+∞
θ∗(u), if hn −→

n→+∞
0 and nhn −→

n→+∞
∞.

Moreover, if p > 1, Assumption (Ã0(Θ)) with B̃0(Θ) < 1, Assumption (Ã1(Θ)),∑∞
t=1 t log(t)b

(0)
t (Θ) < ∞ and n1−1/phn −→

n→+∞
∞ hold then θ̂ uniformly con-

sistently estimates θ∗

sup
u∈[ε,1−ε]

∥∥θ̂(u)− θ∗(u)
∥∥ P−→
n→+∞

0 , ε > 0 . (15)

Remark 3.1. The uniform consistency of the kernel estimator was already
obtained for Markov processes by Dahlhaus et al. in [2] under a different set of
assumptions. Our extra condition on the bandwidth n1−1/phn → ∞, n → ∞,
corresponds to the extra condition in (ii) of Theorem 5.2 of [2] with M = 0.

Remark 3.2. Consistency of θ̂(u) for any u ∈ (0, 1) can be achieved relaxing
the uniform contraction condition B0(Θ) < 1 of Theorem 3.1. Instead assume
B0(Θ) <∞ and the pointwise contraction

B0({θ∗(u)}) < 1 , u ∈ (0, 1) . (16)
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Then, dominated convergence argument and (A0(Θ)) yield, for any u ∈ (0, 1),
the existence of ε > 0 such that

B0({θ ∈ Θ : ‖θ − θ∗(u)‖ ≤ ε}) < 1 .

The M-estimator defined in (12) with {θ ∈ Θ : ‖θ − θ∗(u)‖ ≤ ε} in place
of Θ consistently estimates θ∗(u) by an application of Theorem 3.1. That this

M-estimator coincides with θ̂(u) for n sufficiently large follows by a compact-
ness argument of Pfanzagl [12]; The compact set Θ is covered by finitely many
compact sets of diameter ε among which only one contains θ∗(u). Applying the
SLLN of Lemma 7.1 1., the uniqueness in Condition (Co(Φ,Θ)) implies that
the minimizer of (12) belongs to the unique compact set containing θ∗(u) for n
large enough. See [11] for details.

Remark 3.3. We were not able to extend the uniform consistency of θ̂ under
B0(Θ) < 1, which is consistent with [2] that also worked under strong uniform
contraction of the Markov kernel. The strong uniform contraction condition
B̃0(Θ) < 1 is restrictive but it seems necessary to prove the finiteness of uniform

moments
∥∥∥ supu∈[0,1] |X̃t(u)|

∥∥∥
p
<∞ as in Lemma 6.1.

For establishing the asymptotic normality of θ̂(u), we analogously need extra
assumptions on the differentiability of the contrast Φ and the integrability of
its derivatives. We have:

Theorem 3.2. Let (X
(n)
t )t∈N be the solution of the non-stationary infinite

memory model (6) which satisfies Assumption (A0(Θ)) with B0(Θ) < 1 and
Assumption (A1(Θ)), p ≥ 1, with also Assumption (H(ρ)). For the same
p ≥ 1 assume Φ ∈ Lip p(Θ) with

∑
s≥0 s αs(Φ,Θ) < ∞ satisfying Assump-

tion (Co(Φ,Θ)) and ‖
∑∞
t=1 t log(t)b

(0)
t ‖Θ < ∞. Assume that for any x ∈

R∞, θ ∈ Θ 7→ Φ(x,θ) is a C2(Θ) function such as ∂θΦ ∈ Lip p(Θ) with∑∞
s=1 s αs(∂θΦ,Θ) < ∞. For any u ∈ (0, 1), with ρ ∈ (0, 1] defined in As-

sumption (H(ρ)), assume that

• E
[∥∥∂θΦ

(
(X̃k(u))k≤0,θ

∗(u)
)∥∥2]

< ∞ and Σ
(
θ∗(u)

)
is a definite positive

matrix with

Σ
(
θ∗(u)

)
=∫

R
K2(x)dx E

[
∂θΦ

(
(X̃−k(u))k∈N,θ

∗(u)
) (
∂θΦ

(
(X̃−k(u))k∈N,θ

∗(u)
))>]

;

• Γ(θ∗(u)) = E
[
∂2
θ2Φ

(
(X̃−k(u))k∈N,θ

∗(u)
)]

is a positive definite matrix.

If (hn)n is a sequence of positive numbers such that

nhn −→
n→+∞

∞ and nh1+2ρ
n −→

n→+∞
0, (17)

then, for any u ∈ (0, 1),√
nhn

(
θ̂(u)− θ∗(u)

) L−→
n→+∞

Nd
(

0 , Γ−1(θ∗(u))Σ
(
θ∗(u)

)
Γ−1(θ∗(u))

)
. (18)
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Remark 3.4. A first consequence of this result is that the convergence rate of
θ̂(u) is o(n−ρ/(2ρ+1)), which is just below the classical minimax convergence rate
in a non parametric framework for any regularity ρ ∈ (0, 1]. Then the optimal
choice of the bandwidth satisfies hn = o(n−1/(2ρ+1)) and the estimator is also
uniformly consistent whenever p > (2ρ+ 1)/(2ρ). Under additional conditions,
Rosenblatt [13] and Dahlhaus et al. [2] derive expressions for an equivalent
of the bias; in this case i.e. nh1+2ρ

n −→
n→+∞

` 6= 0, one may use the classical

minimax bandwidth and, then, a non-centred Gaussian limit theorem occurs.

Remark 3.5. A precise inspection of the proof of Theorem 3.2 shows that only
the consistency of θ̂(u), u ∈ (0, 1), is used. Thus the asymptotic normality (18)
can be extending under the pointwise contraction (16).

Remark 3.6. Considering (u1, . . . , um) instead of u, a multidimensional central
limit theorem could also be obtained extending (18). Such a result could be
interesting for testing the goodness-of-fit (H0 : θ∗ = θ0) or the stationarity
(H0 : θ∗ = C0 ∈ Rd) of the process. This will be the subject of a forthcoming
paper.

4. Examples

Here we develop several examples oftime-varying infinite memory models with
contrast functions Φ ∈ Lip p(Θ) for which the Assumption (Co(Φ,Θ)) is satis-
fied. We also check the conditions of Theorems 3.1 and 3.2 in order to assert the
uniform consistency and the asymptotic normality of the localized M-estimator.

4.1. Time-varying AR(1) processes

In the case of time-varying AR(1) (denoted further as tv-AR(1)) processes de-
fined by

X
(n)
t = θ

(n)
t X

(n)
t−1 + ξt, for 1 ≤ t ≤ n, n ∈ N∗, (19)

with X
(n)
t = 0 for any t ≤ 0, θ

(n)
t = θ∗(t/n) and Θ = [−r, r] with 0 < r < 1.

Least Square contrast.
When ΦLS is the Least Square (LS) contrast defined as

ΦLS(x, θ) = (x1 − θ x2)2 , (20)

we obtain the usual Yule-Walker (or Least Square) estimator of θ∗(u) if the

stationary version (X̃t(u)) were observed. Clearly Assumption (Co(Φ,Θ)) holds
and using Hölder Inequality, we obtain that ΦLS ∈ Lip p(Θ) with p = 2,

E
[
| sup
θ∈Θ

∣∣ΦLS(U, θ)− ΦLS(V, θ)
∣∣]

≤ (1 + r) max
1≤s≤2

{∥∥Ui‖2 ∨ ∥∥Vi‖2}(‖U1−V1‖2 + r‖U2−V2‖2
)
,
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and therefore α1(ΦLS ,Θ) = 1, α2(ΦLS ,Θ) = r and αj(ΦLS ,Θ) = 0 for j ≥ 3.
From basic calculation we also have

∂θΦLS(x, θ) = 2x2(θx2 − x1) and ∂2
θ2ΦLS(x, θ) = 2x2

2.

After elementary algebra, we obtain:

E
[

sup
θ∈[−r,r]

∣∣∂θΦLS(U, θ)− ∂θΦLS(U, θ)
∣∣]

≤ 4
(
‖U1 − V1‖2 + ‖U2 − V2‖2

) (
‖U1‖2 + ‖V1‖2 + ‖U2‖2 + ‖V2‖2

)
from Hölder’s inequality. Analogously,

E
[

sup
θ∈[−r,r]

∣∣∂2
θ2ΦLS(U, θ)− ∂2

θ2ΦLS(V, θ)
∣∣] ≤ 2

(
‖U2 − V2‖2

) (
‖U2‖2 + ‖V2‖2

)
,

ensuring that ∂θΦLS and ∂2
θ2ΦLS are included in Lip 2

(
[−r, r]

)
. If E[ξ2

0 ] < ∞,

both the matrix Σ
(
θ∗(u)

)
= 4

( ∫
RK

2(x)dx
)
σ4
ξ (1 − θ∗(u)2)−1 and Γ(θ∗(u)) =

2σ2
ξ (1− θ∗(u)2)−1 are positive definite. Then, by an application of Theorem 3.2

we obtain:

Corollary 4.1. If E[ξ2
0 ] < ∞ and if θ

(n)
t ∈ Θ = [−r, r] satisfies Assumption

(H(ρ)), the localized least square estimator is asymptotically normal when the
sequence (hn)n satisfies (17) and we obtain for any u ∈ (0, 1)√

nhn
(
θ̂(u)− θ∗(u)

) L−→
n→+∞

N
(

0 ,
(
1− θ∗(u)2

) ∫
R
K2(x)dx

)
.

Here, we recover for 0 < ρ ≤ 1 the results on tv-AR(1) models obtained by

Bardet and Doukhan in [14], which are also valid for functions u ∈ (0, 1)→ θ̂(u)
with Hölderian derivatives.

Least Absolute Value contrast.
In the framework of tv-AR(1) processes (19) a classical alternative of the LS
contrast, known for its robustness, is the Least Absolute Values (LAV) contrast
defined as follows on θ ∈ Θ = [−r, r] with 0 < r < 1,

ΦLAV (x, θ) =
∣∣x1 − θ x2

∣∣. (21)

If the stationary version (X̃t(u)) were observed, we obtain the usual estimator
of θ and Assumption (Co(ΦLAV ,Θ)) holds. In such a case, ΦLAV ∈ Lip p(Θ)
for any 1 ≤ p, and we obtain

E
[

sup
θ∈Θ

∣∣ΦLAV (U, θ)− ΦLAV (V, θ)
∣∣] ≤ ‖U1 − V1‖p + r ‖U2 − V2‖p.

implying α1(ΦLAV ,Θ) = 1 and α2(ΦLAV ,Θ) = r and αj(ΦLAV ,Θ) = 0 for
j ≥ 3. Since ΦLAV is not a differentiable function, we will restrict our purpose
to the uniform consistency of θ̂(u). We obtain the following result from Theorem
3.1:

Corollary 4.2. If ‖ξ0‖1 < ∞ and if (θ
(n)
t ) ∈ Θ = [−r, r] satisfies Assumption

(H(ρ)), then the localized LAV estimators θ̂n satisfies (15).
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4.2. Causal affine processes and Gaussian QMLE

We consider the general class of causal affine processes (Xt) defined by Bardet
and Wintenberger in [11] as

Xt = Mθ

(
(Xt−i)i≥1

)
ξt + fθ

(
(Xt−i)i≥1

)
, for any t ∈ Z,θ ∈ Θ (22)

with Θ a compact subset of Rd. We assume the existence of Lipschitz coefficient
sequences

(
βi(f,Θ)

)
i∈N and

(
βi(M,Θ)

)
i∈N such as for Kθ = fθ or Mθ,

sup
θ∈Θ

∣∣Kθ(x)−Kθ(y)
∣∣ ≤ ∞∑

i=1

βi(K,Θ)
∣∣xi − yi∣∣, (23)

for any x, y ∈ R∞. Then, (Xt) satisfies the infinite memory model (3) with
Fθ(x, ξ0) = fθ(x) + ξ0Mθ(x) and (A0(Θ)) holds when

∑
j βj(f,Θ) < ∞ and∑

j βj(M,Θ) <∞ since we have

b
(0)
j (Θ) ≤ βj(f,Θ) + ‖ξ0‖p βj(M,Θ) for any j ∈ N∗. (24)

Therefore, (Xt) is a stationary and Lp solution of the causal affine model (22)
when

∞∑
j=1

βj(f, {θ}) + ‖ξ0‖p βj(M, {θ}) < 1. (25)

In such a case this is interesting to consider Φ as (−2) times the Gaussian
conditional log-density, inducing

ΦG(x,θ) = log
(
M2
θ

(
(xi)i≥2

))
+

(
x1 − fθ

(
(xi)i≥2

))2
M2
θ

(
(xi)i≥2

) . (26)

The M-estimator resulting from this contrast is the Gaussian Quasi-Maximum
Likelihood estimator (QMLE), notably used for estimating the parameters of
GARCH processes, but also for ARMA, APARCH, ARMA-GARCH processes. . .
As this was already done in [11] (proof of Theorem 1), under identifiability con-
ditions on fθ and Mθ (see below), Assumption (Co(ΦG,Θ)) holds. Moreover,
using Bardet et al. [15] (proof of Lemma 6.3), we obtain with p = 3 assuming
the existence of M > 0 such as Mθ ≥M and with C a constant real number

sup
θ∈Θ

∣∣ΦG(U,θ)− ΦG(V,θ)
∣∣ ≤

C
(
1 + |U1|2 + |V1|2 + f2

θ

(
(Ui)i≥2

)
+ f2

θ

(
(Vi)i≥2

))
×
(
|U1 − V1|+

∣∣fθ((Ui)i≥2

)
− fθ

(
(Vi)i≥2

)∣∣+ ∣∣Mθ

(
(Ui)i≥2

)
−Mθ

(
(Vi)i≥2

)∣∣)
hence, there exists a function g such that

E
[

sup
θ∈Θ

∣∣ΦG(U,θ)− ΦG(V,θ)
∣∣]

≤ g
(

sup
i≥1

{∥∥Ui‖3 ∨ ∥∥Vi‖3}) (‖U1 − V1‖3 +

∞∑
i=2

b
(0)
k (Θ) ‖Ui − Vi‖3

)
, (27)
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using Hölder inequality and with b
(0)
k (Θ) = βk(fθ,Θ) + ‖ξ0‖p βk(Mθ,Θ) the

Lipschitz coefficients of the function Fθ given in (Ã0(Θ)). Therefore, according

to (10) with αk(ΦG,Θ) = b
(0)
k (Θ) for k ≥ 2 and α1(ΦG,Θ) = 1, we check that

ΦG ∈ Lip 3(Θ) since (A0(Θ)) holds and B̃0(Θ) =
∑
k b

(0)
k (Θ) <∞.

Now we consider a time-varying causal affine processes, that is the local sta-
tionary extension of causal affine processes defined in (22), i.e.

X
(n)
t = M

θ
(n)
t

(
(X

(n)
t−i)1≤i

)
ξt + f

θ
(n)
t

(
(X

(n)
t−i)1≤i

)
, for any t ∈ Z, (28)

with θ
(n)
t ∈ Θ a compact set of Rd and X

(n)
t = 0 for t ≤ 0.

In the sequel, we will provide general sufficient conditions for the asymptotic
normality of θ̂(u) in terms of the functions fθ and Mθ and of their derivatives.

Proposition 4.1. Let (X
(n)
t ) satisfy (28) where fθ, Mθ, ∂θfθ, ∂θMθ, ∂2

θ2fθ
and ∂2

θ2Mθ satisfy Lipschitz inequalities (23) and under Assumption (H(ρ)).
Assume also:

1. ‖ξ0‖4 <∞ where the probability distribution of ξ0 is absolutely continuous
with respect to the Lebesgue measure and Θ is a bounded set included in{

θ ∈ Rd,
∞∑
j=1

(
βj(fθ, {θ}) + ‖ξ0‖4 βj(Mθ, {θ})

)
< 1
}

;

2. There exists M > 0 such as Mθ ≥M for any θ ∈ Θ;
3. For all θ, θ′ ∈ Θ,(

fθ = fθ′ and Mθ = Mθ′
)

=⇒ θ = θ′; (29)

4. We have( d∑
j=1

µj
∂

∂θj
fθ∗(u)

(
(X̃−k(u))k∈N

)
= 0 a.s. =⇒ µj = 0, j = 1, . . . , d

)
,

or
( d∑
j=1

µj
∂

∂θj
Mθ∗(u)

(
(X̃−k(u))k∈N

)
= 0 a.s. =⇒ µj = 0, j = 1, . . . , d

)
.

(30)

Consider Φ = ΦG as (−2) times the Gaussian conditional log-density (26).
Then, if

∞∑
j=1

j
(
log j

(
βj(f,Θ) + βj(M,Θ)

)
+ j

(
βj(∂θf,Θ)

)
+

∞∑
j=1

(
βj(∂θM,Θ)

)
+ βj(∂

2
θ2f,Θ) + βj(∂

2
θ2M,Θ)

)
<∞, (31)

with βj(·,Θ) defined in (23), the localized QMLE θ̂(u) satisfies the central limit
theorem (18).
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Note that the QML contrast Φ depends on fθ and Mθ. This explains why the
asymptotic normality can be obtained from conditions on fθ and Mθ and their
derivatives. Note also that the conditions required in Proposition 4.1 are es-
sentially the same than those requested in Theorem 2 of [11] in the stationary
framework. The asymptotic normality of the (localized) QMLE holds under
natural conditions, the main difference here is the convergence rates which is√
n in the stationary case but

√
nhn in the non-stationary one, which follows

from localisation. The minimax rate is o(n1/3) is obtained for ρ = 1 for local
stationary causal affine models; it is smaller than the usual parametric rate
O(
√
n) achieved by the QMLE in the stationary case.

In the sequel we will state with details the assumptions for three important spe-
cific models, tv-AR(∞), tv-ARCH(∞) and tv-ARMA-GARCH models, which
will imply for instance asymptotic normality of the contrast estimator in cases
of locally stationary ARMA(p, q) or GARCH(p, q) processes.

Time-varying AR(∞) and locally-stationary ARMA(p, q) processes.
In the case of time-varying AR(∞) (or tv-AR(∞)), we directly have Mθ =
σ(θ) > σ > 0 and fθ((xi)i≥1) =

∑∞
j=1 dj(θ)xj , where (dj(θ))j≥1 is a sequence

of real numbers, implying

X
(n)
t = σ(θ

(n)
t ) ξt +

∞∑
j=1

dj(θ
(n)
t )X

(n)
t−j , for 1 ≤ t ≤ n, n ∈ N∗, (32)

with X
(n)
t = 0 for any t ≤ 0.

Then we obtain the asymptotic normality of θ̂(u) from crude conditions on
functions dj and σ by an application of Proposition 4.1 since βj(f,θ) = dj(θ)
and βj(M,θ) = 0:

Corollary 4.3. Let (X
(n)
t ) be a tv-AR(∞) process defined in (32). If ‖ξ0‖4 <

∞, let Θ be a bounded subset of Rd included in
{
θ ∈ Rd,

∑∞
j=1 dj(θ) < 1

}
. If

for each j ∈ N∗ the functions θ ∈ Θ 7→ dj(θ) ∈ R and θ ∈ Θ 7→ σ(θ) ∈ [σ,∞)
are C2(Θ) functions such as

(
dj(θ) = dj(θ

′), ∀j ∈ N∗ and σ(θ) = σ(θ′)
)

imply

(θ = θ′), if θ
(n)
t satisfies the assumption of local stationarity (H(ρ)), and if

∞∑
j=1

{
j log j

∥∥dj∥∥Θ
+ j

∥∥∂θdj∥∥Θ
+
∥∥∂2
θ2dj

∥∥
Θ

}
<∞,

then the central limit (18) holds for any u ∈ (0, 1) under condition (17).

This result is new, essentially because it deals with two difficulties: an infinite
memory and also with a non exponential decrease memory. As an illustra-
tive example consider θ = (µ, κ, σ)′ and aj(θ) = µ j−κ for any j ≥ 1, with
κ ≥ κ > 2, µ ≤ (

∑∞
j=1 j

−κ)−1 and σ ≥ σ > 0. Then the previous corollary

implies the asymptotic normality (18) of
(
µ̂(u), κ̂(u), σ̂(u)

)
under condition (17)
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when
(
µ

(n)
t , κ

(n)
t , σ

(n)
t

)
satisfies Assumption (H(ρ)).

An important subclass of tv-AR(∞) models is the one of an invertible locally-
stationary ARMA(p, q) models defined as

X
(n)
t + φ

(n)
1,t X

(n)
t−1 + · · ·+ φ

(n)
p,t X

(n)
t−p = σ

(n)
t ξt + ψ

(n)
1,t ξt−1 + · · ·+ ψ

(n)
q,t ξt−q (33)

(for 1 ≤ t ≤ n, n ∈ N∗), with X
(n)
t = 0 for any t ≤ 0, as it was introduced in [3].

More generally, using B the usual backward operator such as for x = (xi)i∈Z,
B x = y with y = (yi)i∈Z and yi = xi−1 for any i ∈ Z, the following Lemma
details the link between usual representation of ARMA(∞,∞) process and its
affine causal one:

Lemma 4.1. For θ ∈ Θ ⊂ Rd, consider (ai(θ))i∈N∗ and (bi(θ))i∈N∗ two se-
quences of Θ→ R functions and both the following power series

Pθ(x) = 1 +

∞∑
i=1

ai(θ)xi and Qθ(x) = 1 +

∞∑
j=1

bj(θ)xj .

Assume that
∑∞
i=1

∣∣ai(θ)
∣∣ < 1 and

∑∞
j=1

∣∣bj(θ)
∣∣ < 1. Then if ξ = (ξt)t∈Z is a

white noise, σ(θ) > 0, we can define the stationary linear process X = (Xt)t∈Z
such as

Pθ(B)X = Qθ(B)
(
σ(θ) ξ

)
⇐⇒ Xt +

∞∑
i=1

ai(θ)Xt−i = σ(θ) ξt +

∞∑
j=1

bj(θ)σ(θ) ξt−j , (34)

for any t ∈ Z. Then there exists a power series Q−1
θ (x) = 1 +

∑∞
j=1 cj(θ)xj

with
∑∞
j=1

∣∣cj(θ)
∣∣ <∞ such as X admits an affine causal representation

X = σ(θ)ξ +
(
I −Q−1

θ (B)Pθ(B)
)
X

⇐⇒ Xt = σ(θ)ξt +

∞∑
j=1

dj(θ)Xt−j ,∀t ∈ Z, (35)

where I is the identity operator and with dj(θ) = −
∑j
i=0 ai(θ) cj−i(θ), where

a0(θ) = c0(θ) = 1 implying

∞∑
j=1

|dj(θ)| ≤
∑∞
j=1 |aj(θ)|+

∑∞
j=1 |bj(θ)|

1−
∑∞
j=1 |bj(θ)|

. (36)

Thus, the Lipschitz coefficients satisfy βj(f, {θ}) = dj(θ) and βj(M, {θ}) =
0. Note also that for a usual stationary ARMA(p, q) process, the condition∑p
i=1 |ai| < 1 implies that the roots of P are outside the unit disc, and the

condition
∑q
i=1 |bi| < 1 implies the invertibility of the process.
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However, in the case of locally-stationary ARMA(p, q) or of locally-stationary
ARMA(∞,∞) processes (say LS-ARMA(p, q) or LS-ARMA(∞,∞)), a straight-
forward extension of the stationary affine causal representation to a local sta-
tionary affine causal one does not exactly provide the expression of a tv-AR(∞)
process. For instance, the affine causal representation of the invertible MA(1)
process Xt = εt + b1 εt−1 where Var (ε0) = σ2 and |b1| < 1 is:

Xt = σ ξt −
∞∑
k=1

(−b1)kXt−k, t ∈ Z, so that its tv-representation is

=⇒ X
(n)
t = σ(n)(t) ξt −

∞∑
k=1

(
− b(n)

1 (t)
)k
X

(n)
t−k, if 1 ≤ t ≤ n, n ∈ N∗, (37)

with X
(n)
t = 0 for any t ≤ 0.

But if we write the ”usual” local-stationary (LS) definition X
(n)

t = σ(n)(t)ξt +

b
(n)
1 (t)σ(n)(t − 1) ξt−1 for 1 ≤ t ≤ n, n ∈ N∗, we obtain the following LS affine

causal representation

X
(n)

t = σ(n)(t) ξt −
∞∑
k=1

(−1)k
( k∏
j=1

b
(n)
1 (t− j)

)
Xt−k (38)

as soon as sup0≤t≤n, n∈N |b
(n)
1 (t)| < 1. Then (38) is slightly different to (37).

Fortunately under Assumption (H(ρ)), the difference
∥∥X(n)

t − X(n)

t

∥∥
p

can be

bounded as a negligible term. This is done in the following property for general
LS-ARMA(∞,∞) processes:

Proposition 4.2. Let (θ
(n)
t ) be a family of Rd vectors satisfying Assumption

(H(ρ)) with 0 < ρ ≤ 1. Consider also (ai(θ))i∈N∗ and (bi(θ))i∈N∗ two sequences
of Θ→ R differentiable functions, as well as the positive function σ(θ), such as

a =
∥∥∥ ∞∑
j=1

|aj |
∥∥∥

Θ
< 1, b =

∥∥∥ ∞∑
j=1

|bj |
∥∥∥

Θ
< 1,

∥∥∥ ∞∑
j=1

∥∥∂θaj∥∥∥∥∥
Θ
<∞, and

∥∥∥ ∞∑
j=1

∥∥∂θbj∥∥∥∥∥
Θ
<∞. (39)

Define the usual LS-ARMA(∞,∞) process by

X
(n)

t +

∞∑
i=1

ai(θ
(n)
t )X

(n)

t−i = σ(θ
(n)
t ) ξt +

∞∑
j=1

bj(θ
(n)
t )σ(θ

(n)
t ) ξt−j (40)

for 1 ≤ t ≤ n, n ∈ N∗ and X
(n)

t = 0 for t ≤ 0. Consider also the tv-
ARMA(∞,∞) process induced by the affine causal representations (35) with
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d =
∥∥∥ ∞∑
j=1

|dj |
∥∥∥

Θ
< 1,

X
(n)
t = σ(θ

(n)
t ) ξt +

∞∑
j=1

dj(θ
(n)
t )X

(n)
t−j , (41)

for 1 ≤ t ≤ n, n ∈ N∗ and X
(n)
t = 0 for t ≤ 0. Then there exists C > 0 such as

for any n ∈ N∗,
sup

1≤t≤n

∥∥X(n)

t −X(n)
t

∥∥
p
≤ C n−ρ. (42)

Now consider the particular case of tv-ARMA(p, q) defined in (33) as a particular
case of (40). For obtaining the tv-AR(∞) representation (35) of this process, de-

fine the triangular arrys of parameters θ
(n)
t =

(
φ

(n)
1,t , . . . , φ

(n)
p,t , ψ

(n)
1,t , . . . , ψ

(n)
q,t , σ

(n)
t

)′
and the subset Θ

(p,q)
ARMA of Rd with d = p+ q + 1 defined by:

Θ
(p,q)
ARMA =

{
(φ1, . . . , φp, ψ1, . . . , ψq, σ) ∈ (−1, 1)p+q × (0,∞),

p∑
i=1

|φi|+ 2

q∑
j=1

|ψj | < 1
}
.

Note that the definition of Θ
(p,q)
ARMA is an immediate application of (36) and is

clearly not optimal.

Then if θ
(n)
t ∈ Θ for any 1 ≤ t ≤ n, n ∈ N∗ and Θ a compact subset of

Θ
(p,q)
ARMA, we know that supn,t ‖X

(n)

t ‖p < ∞ for any p ≥ 1 when ‖ξ0‖p < ∞
since (X

(n)

t ) satisfies (32) with a sum of absolute values of Lipschitz coefficients
smaller than 1. Moreover, from classical analytic arguments it is well known that
the corresponding Lipschitz coefficients βj(f,Θ), βj(∂θf,Θ) and βj(∂

2
θ2f,Θ)

decrease exponentially fast so that the condition (31) is automatically satisfied.

Finally, as a consequence of Proposition 4.1 applied on (X
(n)

t ), using the bound
(42) and

√
nhn n

−ρ −→
n→+∞

0, because nh1+2ρ
n −→

n→+∞
0, we obtain:

Corollary 4.4. If (X
(n)

t ) is a LS-ARMA(p, q) process defined in (33), Θ is

a bounded subset of Θ
(p,q)
ARMA, if ‖ξ0‖4 < ∞ and θ

(n)
t satisfies the assump-

tion (H(ρ)), which is implied by the Holder assumption (H(ρ)) on all func-

tions φ
(n)
1,t , . . . , φ

(n)
p,t , ψ

(n)
1,t , . . . , ψ

(n)
q,t , σ

(n)
t , then the central limit (18) holds for

any u ∈ (0, 1) under condition (17).

This result is a QMLE version of the results obtained in full generality by
Dahlhaus in [9] for Gaussian LS-ARMA processes (using Whittle likelihood
approximation) and by Azrak and Mélard in [16].
More generally, we also have:
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Corollary 4.5. If (X
(n)

t ) is a LS-ARMA(∞,∞) process defined in (33) and
satisfying the assumptions of Proposition 4.2. Then the central limit (18) holds
for any u ∈ (0, 1) under condition (17).

This result, which is a new estimation result satisfied by LS-ARMA(∞,∞) and
therefore LS-AR(∞) and LS-MA(∞) processes, exhibits how our techniques and
results are derived for general infinite memory processes.

Time-varying ARCH(∞) and locally-stationary GARCH(p, q) processes.
Time-varying ARCH(∞) (tv-ARCH(∞)) processes correspond to fθ((xi)i≥1) =

0 and Mθ((xi)i≥1) =
(
d0(θ)+

∑∞
j=1 dj(θ)x2

j

)1/2
, where (dj(θ))j≥0 is a sequence

of non negative real numbers and d0(·) ≥ d > 0 implying

X
(n)
t = ξt

(
d0(θ

(n)
t ) +

∑
i≥1

di(θ
(n)
t )
(
X

(n)
t−i
)2)1/2

for 1 ≤ t ≤ n, n ∈ N∗, (43)

with X
(n)
t = 0 for any t ≤ 0, θ

(n)
t ∈ Rd for any 1 ≤ t ≤ n, n ∈ N∗ sat-

isfying Assumption (H(ρ)). For more details about stationary ARCH(∞) or
GARCH(p, q) processes, or for the transition from GARCH(p, q) to ARCH(∞),
see [17]. We are going to specify again the conditions of Proposition 4.1 in

such a case. Firstly, we consider Lipschitz properties on
(
(X

(n)
t )2

)
t

rather than

(X
(n)
t )t as in [11] in order to recover natural constraint on the parameters set

Θ (similar as the moments condition of [18]) we consider Lipschitz properties of(
(X

(n)
t )2

)
t

inducing b
(0)
j (θ) = dj(θ) and ξ′t = ξ2

t and therefore for p = 2 in this
framework

Θ is a compact subset of ΘARCH(∞) =
{
θ ∈ Rd, ‖ξ0‖24

∞∑
j=1

dj(θ) < 1
}
. (44)

Secondly, the Lipschitz coefficients of Φ, ∂θΦ and ∂2
θ2Φ can be expressed in

terms of |U2
i − V 2

i | following the same computations than in (27) and in the
proof of Proposition 4.1. But since |U2

i −V 2
i | = |Ui−Vi| |Ui+Vi| and each time(

Mθ((Ui)i≥1) ×Mθ((Vi)i≥1)
)−1

appears in the function g, we deduce that Φ,
∂θΦ and ∂2

θ2Φ are respectively included in Lip 3(Θ), Lip 4(Θ) and Lip 4(Θ) with
coefficients αs(·,Θ) defined in (10) satisfying for s ≥ 2,

αs(Φ,Θ) =
∥∥ds∥∥Θ

,

αs(∂θΦ,Θ) =
∥∥∥ds +

∥∥∂θds∥∥∥∥∥
Θ
,

αs(∂
2
θ2Φ,Θ) =

∥∥∥ds +
∥∥∂θds∥∥+

∥∥∂2
θ2ds

∥∥∥∥∥
Θ
.

.

From an application of Proposition 4.1 we obtain the asymptotic normality of
θ̂(u) from primitive conditions on functions dj :

Corollary 4.6. Let (X
(n)
t ) be a tv-ARCH(∞) process defined in (43). We

assume that ‖ξ0‖4 < ∞ and we consider Θ a compact subset of ΘARCH(∞). If
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for j ∈ N∗ the functions θ ∈ Θ 7→ dj(θ) ∈ [0,∞) and θ ∈ Θ 7→ d0(θ) ∈ [d,∞)

are C2(Θ) functions such that
(
dj(θ) = dj(θ

′), ∀j ∈ N
)

implies (θ = θ′), if θ
(n)
t

satisfies the assumption of local stationarity (H(ρ)), and if

∞∑
j=1

j log j
∥∥dj∥∥Θ

+ j
∥∥∂θdj∥∥Θ

+
∥∥∂2
θ2dj

∥∥
Θ
<∞,

then the localized QMLE θ̂(u) is asymptotically normal and (18) holds for any
u ∈ (0, 1) and for any sequence (hn) satisfying (17).

To the best of our knowledge, this result is new. In [5] the existence of tv-
ARCH(∞) processes has been studied and the asymptotic normality has been
obtained in the case of the tv-ARCH(p) processes.

We used the previous result to the cases where (X
(n)

t ) is a LS-GARCH(∞,∞)
process and more particularly a LS-GARCH(p, q) process. We assume that
‖ξ0‖4 <∞ and we consider a LS-GARCH(∞,∞) process defined by{

X
(n)

t = σ
(n)
t ξt(

σ
(n)
t

)2
= a0(θ

(n)
t ) +

∑∞
j=1 aj(θ

(n)
t )

(
X

(n)

t−j
)2

+
∑∞
j=1 bj(θ

(n)
t )

(
σ

(n)
t−j
)2
(45)

where (aj(·))j≥0 and (bj(·))j≥1 are two sequences of non negative functions

and with X
(n)

t = 0 for any t ≤ 0. As for LS-ARMA processes, consider
Pθ(B) =

∑∞
j=1 aj(θ)Bj−1 and Qθ(B) =

∑∞
j=1 bj(θ)Bj−1 and the correspond-

ing tv-GARCH(∞,∞) process induced by the affine causal representation of

X
(n)

t and defined by

X
(n)
t = ξt

√√√√a0(θ
(n)
t )

(
1−Q

θ
(n)
t

(1)
)−1

+ P
θ
(n)
t

(B)

∞∑
k=0

Qk
θ
(n)
t

(B)
(
X

(n)
t−k−1

)2
,

(46)

for 1 ≤ t ≤ n, n ∈ N∗ and X
(n)
t = 0 for t ≤ 0.

As a particular case, we also define the LS-GARCH(p, q) (see for instance [19]){
X

(n)

t = σ
(n)
t ξt(

σ
(n)
t

)2
= ω

(n)
t +

∑p
j=1 α

(n)
j,t

(
X

(n)

t−j
)2

+
∑q
j=1 β

(n)
j,t

(
σ

(n)
t−j
)2 (47)

where θ
(n)
t =

(
ω

(n)
t , α

(n)
1,t , . . . , α

(n)
p,t , β

(n)
1,t , . . . , β

(n)
q,t

)′
is a vector of non-positive

real numbers for any 1 ≤ t ≤ n, n ∈ N∗ and ω
(n)
t ≥ ω > 0. As for ARMA

processes, the local stationarity version of the ARCH(∞) representation of the

stationary GARCH(∞,∞) with parameter θ
(n)
t is not exactly the same as the

tv-ARCH(∞) representation deduced from (47). As a consequence, we first
prove the following proposition:
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Proposition 4.3. Let (θ
(n)
t ) be a family of Rd vectors satisfying Assumption

(H(ρ)) with 0 < ρ ≤ 1. Consider also (ai(θ))i∈N∗ and (bi(θ))i∈N∗ two sequences
of Θ→ R differentiable functions, as well as the positive function σ(θ), such as

a =
∥∥∥ ∞∑
j=1

|aj |
∥∥∥

Θ
< 1, b =

∥∥∥ ∞∑
j=1

|bj |
∥∥∥

Θ
< 1,

∥∥∥ ∞∑
j=1

∥∥∂θaj∥∥∥∥∥
Θ
<∞ and

∥∥∥ ∞∑
j=1

∥∥∂θbj∥∥∥∥∥
Θ
<∞.

Let (X
(n)

t ) be defined following (45) where θ
(n)
t is a family of Rd vectors sat-

isfying Assumption (H(ρ)) with 0 < ρ ≤ 1 together with
∥∥∥ ∞∑
j=1

aj

∥∥∥
Θ
< 1 and

∥∥∥ ∞∑
j=1

bj

∥∥∥
Θ
< 1. Consider also (X

(n)
t )t,n the tv-GARCH(∞,∞) process induced

by the affine causal representation (46). Then if Assumption (44) holds for any
p ≥ 2 there exists C > 0 such as for any n ∈ N∗,

sup
1≤t≤n

∥∥X(n)

t −X(n)
t

∥∥
4
≤ C n−ρ and sup

1≤t≤n

∥∥(X(n)

t

)2 − (X(n)
t

)2∥∥
2
≤ C n−ρ.

(48)

Now since (X
(n)
t ) follows (45), ‖ξ0‖24

∑∞
j=1 dj(θ) < 1 is implied by

‖ξ0‖24

∑∞
j=1 aj(θ)

1−
∑∞
j=1 bj(θ)

< 1.

Now in the special case of LS-GARCH(p, q) process, define the subset Θ
(p,q)
GARCH

of Rp+q+1 defined by:

Θ
(p,q)
GARCH =

{
(ω, α1, . . . , αp, β1, . . . , βq) ∈ (0,∞)× [0,∞)p+q,

q∑
j=1

βj + ‖ξ0‖24
p∑
i=1

αi < 1
}
.

If θ
(n)
t ∈ Θ for any 1 ≤ t ≤ n, n ∈ N∗ with Θ a bounded set included in

Θ
(p,q)
GARCH then we have supt,n ‖X

(n)

t ‖4 <∞ and the coefficients ai(θ
(n)
t ) in its tv-

ARCH(∞) representation decrease exponentially fast. As αs(Φ,Θ), αs(∂θΦ,Θ)
and αs(∂

2
θ2Φ,Θ) can be expressed from as(·) and their derivatives, which are

also exponentially decreasing. Finally, using the bound (48), and with again√
nhn n

−ρ −→
n→+∞

0 implying nh1+2ρ
n −→

n→+∞
0, we can replace the asymptotic

behavior of (X
(n)

t ) by the one of the corresponding tv-GARCH(p, q):
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Corollary 4.7. Let (X
(n)

t ) be a LS-GARCH(p, q) process defined in (47) and

Θ be a bounded set included in Θ
(p,q)
GARCH where ‖ξ0‖4 <∞.

If θ
(n)
t =

(
ω

(n)
t , α

(n)
1,t , . . . , α

(n)
p,t , β

(n)
1,t , . . . , β

(n)
q,t

)′
satisfies the assumption of local

stationarity (H(ρ)), which is implied by the local stationarity (H(ρ)) on all

functions ω
(n)
t , α

(n)
1,t , . . . , α

(n)
p,t , β

(n)
1,t , . . . , β

(n)
q,t , then the central limit result (18)

holds for any u ∈ (0, 1) under condition (17).

This result can be compared for instance with those of [5] for tv-ARCH(p), which
are obtained under the same procedure but under the condition ‖ξ0‖4(1+δ) <∞,
or those of [19] for LS-GARCH(p, q), which are obtained from a local polyno-
mial estimation and under the condition ‖ξ0‖8 < ∞. Note that [20] also ob-
tained asymptotic normality under very sharp conditions in a special case of
tv-ARCH(p) process.
More generally, we also have:

Corollary 4.8. If (X
(n)

t ) is a LS-GARCH(∞,∞) process defined in (45) and
satisfying the assumptions of Proposition 4.3. Then the central limit (18) holds
for any u ∈ (0, 1) under condition (17).

4.3. Time-varying LARCH(∞) processes and LS-contrast

Here we consider a LARCH(∞) process introduced by Robinson in [21] and
studied intensively by Giraitis et al. in [22]. The model is defined as

Xt = ξt

(
a0(θ) +

∞∑
j=1

aj(θ)Xt−j

)
for any t ∈ Z, (49)

where θ ∈ Rd and assume ‖ξ0‖2 = 1. Assume also that j ∈ N, θ ∈ Rd 7→ aj(θ) ∈
R are continuous functions and without lose of generality assume a0(θ) > 0 for
any θ ∈ Rd. Moreover, for ensuring the stationarity of (Xt) and the existence
of ‖Xt‖r with r ≥ 1, assume that for any θ ∈ Θ,

‖ξ0‖r
∞∑
j=1

|aj(θ)| < 1, (50)

since b
(0)
j (θ) = |aj(θ)|. Even if a LARCH(∞) process is an affine causal process,

the Gaussian QML contrast can not be used for estimating θ. Indeed, the
conditional variance of Xt can not be bounded around 0 and this does not allow
asymptotic results for such contrasts (see more details in Francq and Zaköıan
[23]). Even if the weighted least square estimators can also be defined (see
[23]), we consider here the following ordinary LS contrast of square values: for
x ∈ R∞, define

ΦLARCH(x,θ) =
(
x2

1 −
(
a0(θ) +

∞∑
j=1

aj(θ)xj+1

)2)2

. (51)
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If the stationary version (X̃t(u)) were observed, for any θ ∈ Θ the score associ-
ated to the LS-contrast is

E
[
ΦLARCH((X̃1−k(u))k≥0,θ) | F0

]
= E

[
|ξ1|4 − 1

] (
a0(θ∗) +

∞∑
j=1

aj(θ
∗(u)) X̃1−j(u)

)4

+
((
a0(θ∗(u)) +

∞∑
j=1

aj(θ
∗(u)) X̃1−j(u)

)2 − (a0(θ) +

∞∑
j=1

aj(θ) X̃1−j(u)
)2)2

.

We notice that the first term at the right side of the last equality does not
depend on θ. Then since a0(·) is supposed to be non negative, if we assume(

a0(θ) +

∞∑
j=1

aj(θ)X1−j = a0(θ′) +

∞∑
j=1

aj(θ)X1−j a.s.
)

=⇒ θ = θ′, (52)

then E
[
ΦLARCH((X1−k)k≥0,θ) | F0

]
has a unique minimum that is θ∗ and

Assumption (Co(ΦLARCH ,Θ)) holds. Moreover, after computations and use of
Hölder Inequalities, if r = 4,

sup
θ∈Θ

∣∣ΦLARCH(U,θ)− ΦLARCH(V,θ)
∣∣

≤
(
U2

1 + V 2
1 +

(
a0(θ) +

∞∑
j=1

aj(θ)Uj+1

)2
+
(
a0(θ) +

∞∑
j=1

aj(θ)Vj+1

)2)
×
(
|U1+V1| |U1−V1|+

∣∣∣2a0(θ)+

∞∑
j=1

aj(θ) (Uj+1+Vj+1)
∣∣∣ ∞∑
j=1

|aj(θ)| |Uj+1−Vj+1|
)

Hence

E
[

sup
θ∈Θ

∣∣ΦL(U,θ)− ΦL(V,θ)
∣∣] ≤ g( sup

i≥1

{∥∥Ui‖4 ∨ ∥∥Vi‖4})
×
(
‖U1 − V1‖4 +

∞∑
j=2

sup
θ∈Θ
|aj−1(θ)| ‖Uj − Vj‖4

)
,

and therefore ΦLARCH ∈ Lip 4(Θ) with α1(ΦLARCH ,Θ) = 1 , and αk(ΦLARCH ,Θ) =
supθ∈Θ |ak−1(θ)|, for k ≥ 2 and

∑
k αk(ΦLARCH ,Θ) <∞, from (50).

We consider now the time-varying LARCH(∞) process defined by:

X
(n)
t = ξt

(
a0(θ

(n)
t ) +

∞∑
i=1

ai(θ
(n)
t )X

(n)
t−i

)
, for any t ∈ Z, (53)

with θ
(n)
t ∈ Θ a compact set of Rd and X

(n)
t = 0 for t ≤ 0. We also assume

that a0(·) is a non negative function. An application of Theorem 3.1 implies
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that the localized LS estimator is uniformly consistent when r = 4.
To assert the asymptotic normality, we assume ‖ξ0‖8 <∞ and Θ is a bounded
subset of the set

ΘLARCH =
{
θ ∈ Rd, ‖ξ0‖8

∞∑
i=1

|ai(θ)| <∞
}
. (54)

Then, using classical computations and Hausdorff Inequalities (see the proof),
we obtain the asymptotic behavior of the estimator:

Proposition 4.4. Assume that θ ∈ Rd 7→ aj(θ) ∈ R are C2 functions for any
j ∈ R, a0(·) ≥ 0 and

1. ‖ξ0‖8 <∞ where the probability distribution of ξ0 is absolutely continuous
with respect to the Lebesgue measure and Θ is a bounded set included in
ΘLARCH .

2. For all θ, θ′ ∈ Θ,

(ai(θ) = ai(θ
′), for all i ∈ N) =⇒ (θ = θ′); (55)

3. For all θ, θ′ ∈ Θ,

(∂θai(θ) = ∂θai(θ
′), for all i ∈ N) =⇒ (θ = θ′). (56)

Let (X
(n)
t ) be a tv-LARCH process defined following (53) where θ

(n)
t satisfies

Assumption (H(ρ)). Consider Φ = ΦLARCH as in (51). If

∞∑
j=1

j log j sup
θ∈Θ
|aj(θ|+ j sup

θ∈Θ
‖∂θaj(θ‖+ sup

θ∈Θ
‖∂2
θ2aj(θ‖ <∞, (57)

then θ̂(u) is asymptotically normal as in (18) for any u ∈ (0, 1) and (hn) satis-
fying (17).

To our knowledge, this result is new, even in its stationary θ
(n)
t = θ∗ ∈ Rd ver-

sion. The particular case of locally-stationary GLARCH(p, q) (LS-GLARCH(p, q))
processes, natural extension of stationary GLARCH(p, q) processes (see for in-
stance [22]) is also interesting and straightforward:

Corollary 4.9. If ‖ξ0‖8 < ∞ and the probability distribution of ξ0 is abso-

lutely continuous with respect to the Lebesgue measure and if (X
(n)
t ) is a LS-

GLARCH(p, q) process defined by

X
(n)
t = ξt σ

(n)
t , with σ

(n)
t = c

(n)
0,t +

p∑
i=1

c
(n)
i,t X

(n)
t−i+

q∑
j=1

d
(n)
j,t σ

(n)
t−j , for any t ∈ N∗,

with X
(n)
t = 0 for t ≤ 0 and where θ

(n)
t = (c

(n)
0,t , . . . , c

(n)
i,t , d

(n)
j,t , . . . , d

(n)
j,t ) ∈ Θ,

with Θ a compact set in{
(c0, c1, . . . , cp, d1, . . . , dq) ∈ (0,∞)× Rp+q,

q∑
i=1

|di|+ ‖ξ0‖8
p∑
i=1

|ci| < 1
}
,
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which satisfies the assumption of local stationarity (H(ρ)). Then the central
limit (18) holds for any u ∈ (0, 1) under condition (17).

As for the case of LS-GARCH(p, q) processes, this result is obtaining by consid-

ering the local stationary LARCH(∞) process (X
(n)

t )t of the LS-GLARCH(p, q)

process (X
(n)
t )t and exactly as in Proposition 4.3 by establishing

sup
1≤t≤n

∥∥X(n)

t −X(n)
t

∥∥
8
≤ C n−ρ.

Then the asymptotic behavior of the estimator θ̂(u) can be applied to (X
(n)

t )t
instead of (X

(n)
t )t and is also obtained from the exponential decay of the se-

quences (αs(ΦLARCH ,Θ))s and (αs(∂θΦLARCH ,Θ))s in such as case (see [22]).

5. Numerical experiments

In the sequel we are going to apply our kernel-based estimator in several differ-
ent cases of local stationary processes.

The window bandwidth hn is a tuning parameter that requires to be cho-
sen. In order to neglect the bias we chose hn = n−λ with λ = 0.35, inducing
nh3

n −→
n→+∞

0, which is the uniform consistency and the asymptotic normality

condition required for Lipp-contrast and Cρ functions when p > 3/2 and ρ = 1.

5.1. Monte Carlo simulations

Here we will consider three cases:

1. An example of tv-GARCH(1, 1). Here, with the notation of equation (47),
assume:

ω
(n)
t = 1+0.5 sin

(
5
t

n

)
, α

(n)
1,t = 0.1+0.4 cos2

(
4
t

n

)
and β

(n)
1,t = 0.1+0.4

t

n
,

for any 1 ≤ t ≤ n and n ∈ N∗. Clearly, ω∗(u) = 1 + 0.5 sin(5u), α∗1(u) =
0.1 + 0.4 cos2(4u) and β∗1(u) = 0.1 + 0.4u. Moreover, we assume that (ξt)
is a sequence of i.i.d. N (0, 1) random variables.
We independently replicated 1000 trajectories of this process, for n =
2000, 5000 and 10000 and we computed the Gaussian QMLE estimators
ω̂(u), α̂1(u) and β̂1(u) for u = k/50 with k = 1, . . . , 49. Finally, we used
the two well known kernels, the uniform kernel U(x) = 1

2 I1x∈[−1,1] and

the Epanechnikov one E(x) = 3
4 (1− x2) I1x∈[−1,1] and denote respectively

θ̂U (u) and θ̂E(u).

Table 1 contains the results of these Monte-Carlo experiments where we
computed the square root of the mean integrated squared error (RSMISE).
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ω α1 β1

n ω̂U ω̂E α̂U1 α̂E1 β̂U1 β̂E1
1000 0.493 0.455 0.126 0.122 0.230 0.208
3000 0.363 0.323 0.081 0.077 0.167 0.146
10000 0.259 0.224 0.052 0.048 0.118 0.101

Table 1: Square root of the MISE for tv-GARCH(1, 1) processes for n = 1000, 3000 and 10000
computed from 1000 independent replications.
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Figure 1: Paths of functions ω, α1, β1 (in black), and a path of ω̂E , α̂E
1 and β̂E

1 (in red) for
n = 10000

In Figure 1 exhibits an example of particular trajectories of these estima-
tors for n = 10000, while Figure 2 we also present the average trajectories
of ω̂E(u), α̂E1 (u) and β̂E1 (u) when n = 5000.

2. A tv-ARCH(∞) example. With the notation of equation (43), assume:

θ =
(
c0, c1, p

)
, d0(θ) = c0 and dj(θ) = c1 j

−p for j ∈ N∗

with c
(n)
0,t = 1+0.5 sin

(
5
t

n

)
, c

(n)
1,t = 0.1+0.5 cos2

(
4
j

n

)
and p

(n)
t = 2.1+

j

n
.

for any 1 ≤ t ≤ n and n ∈ N∗. Therefore c∗0(u) = 1 + 0.5 sin(5u), c∗1(u) =
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Figure 2: Paths of functions ω, α1, β1 (in black), and the mean trajectories over 1000 repli-

cations of ĉE0 , α̂E
1 and β̂E

1 (in red) for n = 5000
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Figure 3: On trajectory of a tv-ARCH(∞)-process for n = 2000

n ĉU0 ĉE0 ĉU1 ĉE1 p̂U p̂E

1000 0.271 0.294 0.089 0.089 0.789 0.770
2000 0.227 0.261 0.066 0.069 0.712 0.696
5000 0.164 0.187 0.047 0.049 0.624 0.591
10000 0.128 0.144 0.037 0.039 0.555 0.517

Table 2: Square root of the MISE of ĉU0 , ĉE0 , ĉU1 , ĉE1 , p̂U and p̂E for the tv-ARCH(∞)
processes for n = 1000, 2000, 5000 and 10000 computed from 1000 independent replications.

0.1 + 0.5 cos2(4u) and p∗(u) = 2.1 + u. Moreover, we assume that (ξt) is
a sequence of i.i.d.r.v. following U([−

√
3,
√

3]) (uniform) distribution.
As previously, we replicated 1000 trajectories of such process (see for
instance one trajectory in Figure 3), for n = 2000, 5000 and 10000
and computed the Gaussian QMLE estimators with Epanechnikov ker-
nel ĉE0 (u), ĉE1 (u) and p̂E(u) for u = k/50 with k = 1, . . . , 49.

Table 2 contains the results of these Monte-Carlo experiments where we
computed the square root of mean integrated squared error (RSMISE).

5.2. Application to financial data

We apply our local kernel-based estimator to a trajectory of financial data. More
precisely, we consider the log-returns of the daily closing values of S&P500 index
between July 1999 and July 2019 (therefore n = 5031, see also Figure 4 for the
graph of this trajectory). Many studies have shown that the GARCH(1, 1)
process is a relevant model for this type of data (We refer to the monograph
of Francq and Zaköıan [17] for more details). As a consequence, we used a tv-
GARCH(1, 1) process (see (47)) to take into account the changes in economic
and financial conjectures over 20 years on such a model (think in particular
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Figure 4: log-returns of daily closing values of S&P500 index between October 1990 and
October 2020

of the September 2008 crisis and of the spring 2020 COVID crisis). Figure
5 exhibits the evolution of the three estimators computed with Uniform and
Epanechnikov kernels, i.e. ω̂U , α̂U1 , β̂U1 , ω̂E , α̂E1 , β̂E1 from Gaussian QMLE.

We draw the evolution of α1+β1 in order to get a visual indicator of the variabil-
ity of the S&P500 index. The larger α1 +β1 the worst the moment properties of
the tv-GARCH(1, 1). The variability may be seen as an indicator of instability
of the financial markets and thus of the crisis. Indeed the maximum of the
α1 +β1 is achieved at the chore of the September 2008. More surprisingly, there
is also a peak of variability as early as 2003. There the financial markets were
renewing at their climate between 1998 and 2008 crisis. In order to distinguish
between the two peaks of variability, one should observe that the curves of the
coefficients α1 and β1 separately. Then we observe that 2003 corresponds to a
higher value for the coefficient β1 and 2008 to a higher value for the coefficient
α1. We note that β1 is the coefficient of persistence in the volatility whereas α1

transfers external shocks in the volatility. Finally, also surprisingly, the COVID
crisis does not seem to change the last five years evolution of α1 and β1.

6. Moments properties of non stationary infinite memory processes

6.1. Proof of the properties of moments

Proof of Lemma 2.1. The proof of Lemma 2.1 follows from arguments extending
those in [1] where more details may be found. From the iterative definition

of X
(n)
t and under the assumption (A0(Θ)), we obtain, for any n ∈ N∗ and

0 ≤ t ≤ n :

‖X(n)
t − F

θ
(n)
t

(0; ξt)‖p ≤
∞∑
s=1

b(0)
s (θ

(n)
t ) ‖X(n)

t−s‖p .
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Thus from the triangle inequality we obtain

‖X(n)
t ‖p ≤

∞∑
s=1

b(0)
s (θ

(n)
t ) ‖X(n)

t−s‖p + sup
θ∈Θ
‖Fθ(0, ξ0)‖p.

‖X(n)
t ‖p ≤ B0({θ(n)

t }) max
j<t
‖X(n)

j ‖p + C0(Θ). (58)

A recursion entails with Mt = maxj≤t ‖X(n)
j ‖p that Mt ≤ B0(Θ)Mt−1 +C0(Θ)

where 0 ≤ B0(Θ) < 1. Since M0 = 0, for any 0 ≤ t ≤ n,

Mt ≤
C0(Θ)

1−B0(Θ)
<∞

and this achieves the proof.

The next Lemma is a stronger moment inequality, useful only to prove the
uniform consistency. It requires a uniform contraction condition stronger than
B0(Θ) < 1, namely B̃0(Θ) < 1.

Lemma 6.1. Let Θ ⊂ Rd be such that (Ã0(Θ)) holds with B̃0(Θ) < 1 and

assume that (H(ρ)) also holds. Then the stationary version (X̃t(u))t∈Z solution
of (9) satisfies ∥∥∥ sup

u∈[0,1]

|X̃t(u)|
∥∥∥
p
≤ C̃0(Θ)

1− B̃0(Θ)
, t ∈ Z .

Proof of Lemma 6.1. We adapt here the fixed point approach in [24]. Consider
the Banach space of random continuous functionsH : [0, 1]→ R, Lp(C([0, 1],R))
with finite pth-moments equipped with the norm H 7→ ‖ supu∈[0,1] |Hu|‖p. The
underlying probability space is the one of the probability distribution of the
iid sequence (ξt)t∈Z, i.e. Hu is a measurable function of (ξt)t∈N such that
E[supu∈[0,1] |Hu((ξt)t∈N)|p] < ∞. We denote L the forward-lag operator on

sequences (xt)t∈N of RN such that L((xt)t∈N) = (xt+1)t∈N (quote that [24] use
bidirectional sequences for non causal models and the current version is some-
how simpler). Define:

Φ : Lp(C([0, 1],R))→ Lp(C([0, 1],R)),

Φ(H)(u) = Fθ∗(u)((Hu ◦ Lj)j≥0, π0), ∀u ∈ [0, 1] ,

with π0 the projection π0

(
(xt)t∈N

)
= x0. The continuity of u 7→ Φ(H)(u) follows

from that of θ 7→ Fθ and u 7→ θ∗(u) under (Ã0(Θ)) and (H(ρ)). Finiteness
of pth-moments for supu∈[0,1] |Φ(H)|(u) follows from similar arguments than in

Lemma 1 of [24] since (Ã0(Θ)) holds uniformly wrt u ∈ [0, 1]. The Picard

fixed point theorem applies to Φ which is a contraction since B̃0(Θ) < 1. The

existence of X̃t(u) in the Banach space Lp(C([0, 1],R)) and the desired estimate
on its norm follow.
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We note in passing that in any cases the stationary version (X̃t(u))t∈Z is an
ergodic process by its construction as a measurable function of the past of the
innovations X̃t(u) = Hu((ξt−j)j∈N), see [25] for more details.

6.2. The tangent process

The tangent process is a stationarized version of the time-varying infinite mem-

ory process (X
(n)
t ) that respects the history of the original process. In order to

localize, we define u ∈ [ε, 1− ε], ε > 0 and n large enough the quantities

1 ≤ in(u) := [n(u− chn)] < jn(u) := [n(u+ chn)] ≤ n, (59)

where we recall that the compact support of the kernel K is included in [−c, c].

Definition 6.1. In the time-window {in(u), in(u) + 1, . . . , jn(u)} we define

X∗t (u) =

{
X

(n)
t , t < in(u),

Fθ∗(u)

(
(X∗t−k(u))k≥1, ξt

)
, in(u) ≤ t ≤ jn(u).

(60)

As n is fixed and is sufficiently large in this section, for the ease of notation
we omit the dependence on n concerning the quantities below, and especially
for this process (X∗t (u))t∈Z. We first prove its existence and uniform moment

properties under the strong contraction condition B̃0(Θ) < 1. Note that its
existence and non uniform moment properties extend easily under the weak
contraction condition B0(Θ) < 1 and (A0(Θ)). We omit the proof of the latter
case since it is similar but simpler than the following one.

Lemma 6.2. Let Θ ⊂ Rd be such that (Ã0(Θ)) holds with B̃0(Θ) < 1 and
assume that (H(ρ)) also holds. Then, for any u ∈ (0, 1), there exists a.s. a
unique process (X∗t (u))t∈Z satisfying (60) and there exists a positive constant
C∗ > 0 such that∥∥∥ sup

u∈[ε,1−ε]

∣∣X∗in(u)+s(u)
∣∣ ∥∥∥
p
≤ C∗ n1/p, for all 0 ≤ s ≤ 2c nhn.

Proof of Lemma 6.2. We use a simple chaining argument. Denote uk = (k +
1/2 + chn)/n, for k ∈ Un(ε) =

{
[εn− chn − 1/2], . . . , [(1− ε)n− chn − 1/2]

}
a

grid of points of the segment [ε, 1−ε] and therefore Card Un(ε) ' (1−2ε)n ≤ n.
Moreover, for each u ∈ [ε, 1− ε] there exists uk such that |u− uk| ≤ 1/(2n) and
therefore in(u) = in(uk) with in(u) defined in (59). Hence

sup
u∈[ε,1−ε]

∣∣X∗in(u)+s(u)
∣∣ ≤ max

k∈Un(ε)

∣∣X∗in(uk)+s(uk)
∣∣

+ sup
u,v: in(u)=in(v)

∣∣X∗in(u)+s(u)−X∗in(v)+s(v)
∣∣ . (61)
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Using max(|x|, |y|) ≤ |x| + |y| and an argument as in the proof of Lemma 2.1,
we get that∥∥ max

k∈Un(ε)

∣∣X∗in(uk)+s(uk)
∣∣∥∥
p
≤
∥∥∥ ∑
k∈Un(ε)

∣∣X∗in(uk)+s(uk)
∣∣∥∥∥
p

≤
( ∑
k∈Un(ε)

∥∥X∗in(uk)+s(uk)
∥∥p
p

)1/p

≤ n1/p C̃0(Θ)

1− B̃0(Θ)
, (62)

since ‖X∗in(u)+s(u)‖p ≤ C̃0(Θ)/(1 − B̃0(Θ)) for any u ∈ [ε, 1 − ε] and 0 ≤ s ≤

2c nhn. Set δn =
∥∥∥ supu,v: in(u)=in(v)

∣∣X∗in(u)+s(u) − X∗in(v)+s(v)
∣∣∥∥∥
p
. From an

application of the chaining argument, we derive

δn ≤
∥∥∥ sup
u,v: in(u)=in(v)

∣∣Fθ∗(in(u)+s)

(
(X∗in(u)+s−k(u))k≥1, ξin(u)+s

)
−Fθ∗(in(u)+s)

(
(X∗in(v)+s−k(v))k≥1, ξin(v)+s

)∣∣∥∥∥
p

+
∥∥∥ sup
u,v: in(u)=in(v)

∣∣Fθ∗(in(u)+s)

(
(X∗in(v)+s−k(v))k≥1, ξin(v)+s

)
−Fθ∗(in(v)+s)

(
(X∗in(v)+s−k(v))k≥1, ξin(v)+s

)∣∣∥∥∥
p

≤
∞∑
k=1

b
(0)
k (Θ)

∥∥∥ sup
u,v: in(u)=in(v)

∣∣X∗in(u)+s−k(u)−X∗in(v)+s−k(v)
∣∣ ∥∥∥
p

+ sup
u,v: in(u)=in(v)

∥∥θ∗(u)−θ∗(v)
∥∥(∞∑
k=1

b
(1)
k (Θ)

∥∥∥ sup
u∈[ε,1−ε]

∣∣X∗in(u)+s−k(u)
∣∣∥∥∥
p
+
∥∥∥ sup
θ∈Θ

∥∥∂1
θFθ(0; ξ0)

∥∥∥∥∥
p

)
≤ B̃0(Θ)

∥∥∥ sup
u,v:in(u)=in(v)

∣∣X∗in(u)+s−k(u)−X∗in(v)+s−k(v)
∣∣ ∥∥∥
p

+
Kθ
nρ

∥∥∥ sup
θ∈Θ

∥∥∂1
θFθ(0; ξ0)

∥∥∥∥∥
p

+ Kθn
−ρB̃1(Θ)

( C̃0(Θ)n1/p

1− B̃0(Θ)
+
∥∥∥ sup
u,v:in(u)=in(v)

∣∣X∗in(u)+s−k(u)−X∗in(v)+s−k(v)
∣∣ ∥∥∥
p

)
,

from (8), (61) and (62). Collecting all those bounds for n sufficiently large in
order that n−ρ is sufficiently small, we get∥∥∥ sup

u,v: in(u)=in(v)

∣∣X∗in(u)+s(u)−X∗in(v)+s(v)
∣∣∥∥∥
p

≤

KθB̃1(Θ)C̃0(Θ)

1− B̃0(Θ)
n1/p−ρ +Kθ n

−ρ
∥∥ supθ∈Θ |∂1

θFθ(0; ξ0)|
∥∥
p

1− B̃0(Θ)−Kθ n−ρB̃1(Θ)
.

Finally, applying again the chaining argument we obtain

‖ max
k∈Un(ε)

∣∣X∗in(uk)+s(uk)
∣∣‖p ≤ n1/p C̃0(Θ)

1− B̃0(Θ)
+O(n1/p−ρ) .
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This ends the proof.

We point out that (X∗t (u)) is not a copy of (X
(n)
t ) as it does not follow the

same distribution. However this is a satisfactory non-stationary approximation

of (X
(n)
t ) because we obtain the following moment bound:

Lemma 6.3. Under Assumptions (Ã0(Θ)) with B̃0(Θ) < 1, (Ã1(Θ)) and
(H(ρ)), with (X∗t (u)) the tangent process defined in (60), there exists a positive
constant C ′ > 0 such that∥∥ sup
u∈[ε,1−ε]

∣∣X(n)
in(u)+s −X

∗
in(u)+s(u)

∣∣ ∥∥
p
≤ C ′ hρnn1/p, for all 0 ≤ s ≤ 2c nhn.

(63)

Here again a similar non-uniform moment bound also holds under B0(Θ) < 1,
(A0(Θ)) and (A1(Θ)) following the same arguments than in the proof below.

Proof of Lemma 6.3. Define ∆∗s = 0 for any s ≤ 0 and for 0 ≤ s ≤ 2c nhn set

the quantity ∆∗s = supu∈[ε,1−ε]
∣∣X(n)

in(u)+s−X
∗
in(u)+s(u)

∣∣. For 0 ≤ s ≤ 2c nhn we

decompose

∆∗s = sup
u∈[ε,1−ε]

∣∣F
θ
(n)

in(u)+s

(
(X

(n)
in(u)+s−k)k≥1, ξin(u)+s

)
−Fθ∗(u)

(
(X∗in(u)+s−k(u))k≥1, ξin(u)+s

)∣∣
≤ sup

u∈[ε,1−ε]

∣∣F
θ
(n)

in(u)+s

(
(X

(n)
in(u)+s−k)k≥1, ξin(u)+s

)
−F

θ
(n)

in(u)+s

(
(X∗in(u)+s−k(u))k≥1, ξin(u)+s

)∣∣
+ sup

u∈[ε,1−ε]

∣∣F
θ
(n)

in(u)+s

(
(X∗in(u)+s−k(u))k≥1, ξin(u)+s

)
−Fθ∗(u)((X

∗
in(u)+s−k(u))k≥1, ξin(u)+s

)∣∣.
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Then we derive

‖∆∗s‖p ≤
∥∥∥ sup
u∈[ε,1−ε]

∣∣F
θ
(n)

in(u)+s

(
(X

(n)
t−k)k≥1, ξt

)
−F

θ
(n)

in(u)+s

(
(X∗in(u)+s−k(u))k≥1, ξin(u)+s

)∣∣∥∥∥
p

+
∥∥∥ sup
u∈[ε,1−ε]

∣∣F
θ
(n)

in(u)+s

(
(X∗in(u)+s−k(u))k≥1, ξt

)
−Fθ∗(u)((X

∗
in(u)+s−k(u))k≥1, ξin(u)+s

)∣∣∥∥∥
p

≤
∥∥∥ ∞∑
k=1

b
(0)
k (Θ) sup

u∈[ε,1−ε]

∣∣X(n)
in(u)+s−k −X

∗
in(u)+s−k(u)

∣∣∥∥∥
p

+ sup
u∈[ε,1−ε]

∥∥θ(n)
in(u)+s−θ

∗(u)
∥∥∥∥∥ sup

θ∈Θ
sup

u∈[ε,1−ε]

∥∥∂1
θFθ((X∗in(u)+s−k(u))k≥1, ξin(u)+s)

∥∥∥∥∥
p

≤
∥∥∥ ∞∑
k=1

b
(0)
k (Θ) ∆∗s−k

∥∥∥
p

+ sup
u∈[ε,1−ε]

∥∥θ(n)
in(u)+s − θ∗(u)

∥∥
×
∥∥∥ sup
u∈[ε,1−ε]

∞∑
k=1

b
(1)
k (Θ)

∣∣X∗in(u)+s−k(u)
∣∣+ sup

θ∈Θ

∥∥∂1
θFθ(0; ξin(u)+s)

∥∥∥∥∥
p

≤
∞∑
k=1

b
(0)
k (Θ)

∥∥∆∗s−k
∥∥
p

+ sup
u∈[ε,1−ε]

∥∥θ(n)
in(u)+s − θ∗(u)

∥∥
×
( ∞∑
k=1

b
(1)
k (Θ)

∥∥∥ sup
u∈[ε,1−ε]

∣∣X∗in(u)+s−k(u)
∣∣∥∥∥
p

+
∥∥∥ sup
θ∈Θ

∥∥∂1
θFθ(0; ξ0)

∥∥∥∥∥
p

)
by using the Assumptions (Ã0(Θ)) and (Ã1(Θ)).

Now define M∗t = maxs≤t
∥∥∆∗s

∥∥
p
. We derive from an application of Lemma 6.2

that for any 0 ≤ t ≤ 2c nhn it holds∥∥∆∗t
∥∥
p
≤ B̃0(Θ)M∗t−1 + sup

u∈[ε,1−ε]

∥∥θ(n)
in(u)+t − θ∗(u)

∥∥× (C∗ n1/p + C̃1(Θ)
)
.

Remark that sup
u∈[ε,1−ε]

∥∥θ(n)
in(u)+t − θ∗(u)

∥∥ ≤ cKθ h
ρ
n from condition (8) of As-

sumption (H(ρ)). As a consequence, for any 0 ≤ t ≤ 2c nhn, we have

M∗t ≤ B̃0(Θ)M∗t−1 + cKθ

(
C∗n1/p + C̃1(Θ)

)
hρn.

By definition, M∗0 = 0. Therefore we deduce for any 0 ≤ t ≤ 2c nhn,

M∗t ≤
cKθ

1− B̃0(Θ)

(
C∗n1/p + C̃1(Θ)

)
hρn.

This completes the proof of the Lemma 6.3.
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Finally, the tangent process (X∗t (u))t∈Z is also used for estimating the approxi-

mation of X
(n)
t with the stationary version X̃t(u) for t/n ' u.

Lemma 6.4. Under Assumptions (Ã0(Θ)) with B̃0(Θ) < 1, (Ã1(Θ)) and
(H(ρ)) there exists a positive constant C ′′ > 0 such that∥∥ sup
u∈[ε,1−ε]

∣∣X(n)
in(u)+s−X̃in(u)+s(u)

∣∣ ∥∥
p
≤ C ′′ n1/p

(
hρn+λs

)
, for all 0 ≤ s ≤ 2c nhn.

(64)

Proof of Lemma 6.4. Using the tangent process (X∗t (u)) defined in (60) and
repeating the same arguments than above, we obtain a recursive relation on the
sequence (

max
t≥kr

∥∥∥ sup
u∈[ε,1−ε]

∣∣X̃in(u)+t(u)−X∗in(u)+t(u)
∣∣∥∥∥
p

)
k≥0

given any r ∈ N∗, using Lemma 6.2 and the estimates∥∥∥ sup
u∈[ε,1−ε]

∣∣X̃in(u)+s(u)
∣∣∥∥∥
p
≤
∥∥∥ max

1≤t≤n
sup

u∈[ε,1−ε]

∣∣X̃t(u)
∣∣∥∥∥
p

≤
( ∑

1≤t≤n

∥∥∥ sup
u∈[ε,1−ε]

∣∣X̃t(u)
∣∣∥∥∥p
p

) 1
p ≤ C n

1
p .

We obtain∥∥∥ sup
u∈[ε,1−ε]

∣∣X∗in(u)+s(u)− X̃in(u)+s(u)
∣∣∥∥∥
p
≤ C n1/p λs , for 0 ≤ s ≤ 2c nhn,

with λs = inf1≤r≤s

(
B0(Θ)s/r +

∑∞
t=r+1 b

(0)
t (Θ)

)
for s ≥ 1 defined as in The-

orem 3.1 in [1]. Combining this result with (64) we bound the Lp norm of the

approximation of X
(n)
s with the stationary version X̃s(u), namely for for all

0 ≤ s ≤ 2c nhn,∥∥∥ sup
u∈[ε,1−ε]

∣∣X(n)
in(u)+s − X̃in(u)+s(u)

∣∣∥∥∥
p
≤
∥∥∥ sup
u∈[ε,1−ε]

∣∣X(n)
in(u)+s −X

∗
in(u)+s(u)

∣∣∥∥∥
p

+
∥∥∥ sup
u∈[ε,1−ε]

∣∣X∗in(u)+s(u)− X̃in+s(u)
∣∣∥∥∥
p
≤ C n1/p

(
hρn + λs

)
.

7. Proofs for Sections 3 and 4

The section is organised as follows. § 7.1 proves the asymptotic behaviour of
weighted partial sums of independent interest, and p Theorem 3.1 in the case
of a step function kernel. § 7.2 includes the proof of the main Theorem 3.1 for
general kernel functions. Then we prove Theorem 3.2. To this aim a specific
additional approximation of the contrast, Proposition 7.1, is a last main step
for those results. Then a last subsection § 7.2 proves our Proposition 4.4, useful
for one essential example.
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7.1. Some useful lemmas

Proof of Lemma 3.1. For θ ∈ Θ, t ∈ Z and m ∈ N, define

φt,m = Φ
(
X

(n)
t , X

(n)
t−1, . . . , X

(n)
t−m, 0, 0, . . . ;θ

)
.

As Φ ∈ Lip p(Θ) the sequence (φt,m)m∈N is a Cauchy sequence in Lq since for
any m2 > m1

∥∥φt,m2
− φt,m1

∥∥
1
≤ g

(
sup

0≤s≤m2

‖X(n)
t−s‖p

) m2∑
k=m1+1

αk(h,Θ)‖X(n)
t−k‖p (65)

≤ C

m2∑
k=m1+1

αk(h,Θ) (66)

from Lemma 2.1, since if s < 0 then Xs = 0, thus the corresponding supremum
bound extends over each s ≤ n.
As
∑∞
k=1 αk(h,Θ) < ∞ we deduce that for any ε > 0,

∑m2

k=m1+1 αk(h,Θ) ≤ ε

for m1 and m2 large enough. Using the completeness of L1 we deduce the
consistency of the sequence (φt,m)m∈N and the existence in L1 of its limit

Φ
(
(X

(n)
t−k)k≥0,θ

)
.

When θ
(n)
t = θ∗(u) for any t, n, we consider Φ

(
(X̃t−k(u))k∈N,θ

)
that also exists

in L1. Moreover, as (X̃t−k(u))k∈N is a stationary ergodic process, this is also

the case for
(
Φ
(
(X̃t−k(u))k∈N,θ

))
t∈Z (see Corollary 2.1.3. in [25]).

Lemma 7.1. Let in(u)) and jn(u) defined in (59).

1. Let Z(u) = (Zt(u))t∈N be a centered stationary process on a Banach space
(B, ‖ · ‖) for any 0 ≤ u ≤ 1. If Z(u) is an ergodic process continuous with
respect to u and satisfying E[sup0≤u≤1 ‖Z0(u)‖] <∞ then we have

sup
0<u<1

∥∥∥∥∥∥ 1

nhn

jn(u)∑
t=in(u)

Zt(u)K
( t
n − u
hn

)∥∥∥∥∥∥ a.s.−→
n→+∞

0. (67)

2. Let Z = (Zt)t∈N be a centered stationary process on Rd such as E
[
‖Z0‖2

]
<

∞ and 0 < u < 1.
If 1√

n

∑n
t=1 Zt

L−→
n→+∞

Nd
(
0 , Σ

)
with Σ a positive definite symmetric ma-

trix, then we have

1√
nhn

jn(u)∑
t=in(u)

ZtK
( t
n − u
hn

)
L−→

n→+∞
N
(

0 ,
(∫

R
K2(x) dx

)
Σ
)
. (68)

Proof of Lemma 7.1. Let ` ∈ N∗, [−c, c] be the compact support of K and let
n be large enough such as n(u − c hn) ≥ 1 and nu + c nhn ≤ n. Then, for j ∈
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{1, . . . , `}, we denote I
(`)
j =

[
−c+2c j−1

` , −c+2c j`
]

, T
(`)
j =

{
t ∈ N,

t
n−u
hn
∈ Ij

}
and

S(`)
n (u) =

1

nhn

jn(u)∑
t=in(u)

Zt(u)K
( t
n − u
hn

)
and S

(`)
n,j(u) =

1

nhn

∑
t∈T (`)

j

Zt(u) .

(69)
Below, we will omit ta recall the dependence with respect to u when no confusion
will be possible.
1. We notice that (Zt(u)) is a centered ergodic process on the Banach space
L1(C([0, 1], B)).

Thus for any fixed ` ∈ N∗ such that Card(T
(`)
j ) ' 2cnhn/` −→

n→+∞
∞ we apply

the uniform ergodic theorem and since E[Z0(u)] = 0 for any 0 < u < 1 we
obtain

sup
0≤u≤1

‖S(`)
n,j(u)‖ a.s.−→

n→+∞
0. (70)

Denote t
(`)
j = −c+ c 2j−1

` , the midpoint of T
(`)
j , then we have

S(`)
n (u) =

∑̀
j=1

K
( t(`)j

n − u
hn

)
S

(`)
n,j(u)+

∑̀
j=1

1

nhn

∑
t∈T (`)

j

Zt(u)
[
K
( t
n−u
hn

)
−K

( t(`)j

n −u
hn

)]
.

(71)
Firstly, since K is a bounded function and from (70), then for any ` ∈ N∗ we
obtain

sup
0≤u≤1

∥∥∥∑̀
j=l

K
( t(`)j

n − u
hn

)
S

(`)
n,j(u)

∥∥∥ a.s.−→
n→+∞

0. (72)

Secondly, since K is a C1 function on [−c, c] it holds

sup
0≤u≤1

max
1≤j≤`

sup
t∈T (`)

j

∣∣∣K( t
n − u
hn

)
−K

( t(`)j

n − u
hn

)∣∣∣ ≤ c

`
‖K ′‖∞

for any ` ∈ N∗ and any n ∈ N. Then we obtain

sup
0≤u≤1

∥∥∥∑̀
j=1

1

nhn

∑
t∈T (`)

j

Zt(u)
[
K
( t
n − u
hn

)
−K

( t(`)j

n − u
hn

)]∥∥∥
≤ ‖K ′‖∞

c

`
· 1

nhn

n∑
t=1

sup
0<u<1

‖Zt(u)‖.

The ergodicity of
(

sup0<u<1 ‖Zt(u)‖
)
t

its stationarity, and E[sup0<u<1 ‖Z0(u)‖] <
∞ together yield

1

nhn

jn(u)∑
t=in(u)

sup
0<u<1

‖Zt(u)‖ a.s.−→
n→+∞

E
[

sup
0<u<1

‖Z0(u)‖
]
.
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Thus, for any ε > 0, there exists a.s. (`0, n0) such as for any ` ≥ `0 and n ≥ n0,

sup
0<u<1

∥∥∥∑̀
j=1

1

nhn

∑
t∈T (`)

j

Zt(u)
[
K
( t
n − u
hn

)
−K

( t(`)j

n − u
hn

)]∥∥∥ ≤ ε a.s. (73)

From (71), (72) and (73), we deduce (67).

2. Consider firstK = K` the piecewise constant functionK`(x) =
∑`
j=1 aj I1

x∈I(`)j
,

and also assume first that d = 1 with Σ = σ2 > 0 (unidimensional case).

S(`)
n =

∑̀
j=1

aj S
(`)
n,j , (74)

with S
(`)
n,j defined in (69). Using Card(T

(`)
j ) ∼ 2cnhn/` −→

n→+∞
∞, for any

j ∈ {1, . . . , `},( `

2cnhn

)1/2 ∑
t∈T (`)

j

Zt =

√
nhn`

2c
S

(`)
n,j

L−→
n→+∞

N
(

0 , σ2
)
, (75)

where σ2 =
∑
t∈Z E[Z0Zt] is such as 0 <

∑
t∈Z E[Z0Zt] < ∞. Moreover, using

the stationarity of Z, we have for any j, j′ ∈ {1, . . . , `} such as j 6= j′,

nhnCov
(
S

(`)
n,j , S

(`)
n,j′

)
=

1

nhn

∑
t∈T (`)

j

∑
t′∈T (`)

j′

E[ZtZt′ ] =
1

nhn

∑
t∈T (`)

j

∑
t′∈T (`)

j′

E[Z0Zt′−t]

=⇒
∣∣∣nhn Cov

(
S

(`)
n,j , S

(`)
n,j′

)∣∣∣ ≤ C ∣∣∣ ∑
k>T

(`)
j

E[Z0Zk]
∣∣∣ −→
n→+∞

0,

as soon as ` = o(nhn) since
∑
t∈Z
∣∣E[Z0Zt]

∣∣ <∞. Hence a central limit theorem

holds for any linear combinations of S
(`)
n,j . E.g. for S

(`)
n defined in (74),√

nhn`

2c
S(`)
n

L−→
n→+∞

N
(

0 ,
∑̀
j=1

a2
j

∑
t∈Z

E[Z0Zt]
)

=⇒
√
nhn S

(`)
n

L−→
n→+∞

N
(

0 , σ2

∫
R
K2
` (x) dx

)
, (76)

since for piecewise kernel we have

∫
R
K2
` (x) dx =

2c

`

∑̀
j=1

a2
j .

Consider now a general piecewise differentiable kernel K and denote K` such as
K`(x) =

∑`
j=1 aj I1x∈Ij for x ∈ R with aj = K

(
− c+ c 2j−1

`

)
such that∫

R
K2
` (x) dx −→

`→+∞

∫
R
K2(x) dx.
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The result will follow from Theorem 3.2 in [26]. For this we check that for any
ε > 0

lim
`→∞

lim sup
n→∞

P
(∣∣∣S(`)

n −Sn
∣∣∣ ≥ ε/√nhn) = 0, with Sn =

1

nhn

n∑
t=1

ZtK
( t
n − u
hn

)
.

From Markov inequality

P
(∣∣∣S(`)

n − Sn
∣∣∣ ≥ ε/√nhn) ≤ nhn E[∆2

n]

ε2

with

∆n =
1

nhn

jn(u)∑
t=in(u)

ZtK
( t
n − u
hn

)
−
∑̀
j=1

aj S
(`)
n,j

=
1

nhn

∑̀
j=1

∑
t∈Tj

(
K
( t
n − u
hn

)
−K

(
− c+ 2c

j − 1

`

))
︸ ︷︷ ︸

at,j(`)

Zt .

Thus

E[∆2
n] =

1

(nhn)2

∑̀
j=1

∑
t∈Tj

∑̀
j′=1

∑
t′∈T ′j

at,j(`) at′,j′(`)E[ZtZt′ ]

≤ 1

(nhn)2

∑̀
j=1

∑
t∈Tj

∑̀
j′=1

∑
t′∈T ′j

|at,j(`)||at′,j′(`)||E[ZtZt′ ]| .

Since K is Lipschitz continuous, there exists a constant C > 0 such that

|at,j(`)| ≤ 2
cC

`
, for in ≤ t ≤ jn 1 ≤ j ≤ ` .

Thus

E[∆2
n] ≤ C2

(nhn)2

(
2c

`

)2 ∑
1≤t,t′≤n

|E[ZtZt′ ]| ≤ 8
C2

nhn

(c
`

)2∑
t≥0

∣∣E[ZtZt′ ]
∣∣ .

Then we obtain, again from Markov inequality that, for any ε > 0,

P
(∣∣∣S(`)

n − Sn
∣∣∣ ≥ ε/√nhn) ≤ 2C2

(c
`

)2∑
t≥0

∣∣E[ZtZt′ ]
∣∣ −→
`→+∞

0.

Now the extension to d > 1 is standard: consider r = (r1, . . . , rd)
T ∈ Rd and a

linear combination Zt = r1Z
(1)
t + · · ·+ rdZ

(d)
t where Zt =

(
Z

(1)
t , . . . , Z

(d)
t

)T
and

apply the result obtained for d = 1. Then the asymptotic covariance matrix
rT Σ r > 0 appears to be positive definite and this implies the multidimensional
central limit theorem.
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7.2. Proofs of the main results

The following Lemma proves a strong law of large number on the contrast as if
the stationary versions were observed: which implies the second point (uniform
consistency) in Theorem 3.1. The first point (pointwise consistency) in Theorem
3.1 follows by similar arguments under the weaker assumptions as in Theorem
3.1. Thus the proof of the first point in Theorem 3.1 is omitted. The end of the
section will aim at proving the CLT (15) in Theorem 3.1.

Lemma 7.2. Under the assumptions of Theorem 3.1 we have

sup
ε≤u≤1−ε

sup
θ∈Θ

∣∣∣ 1

nhn

jn(u)∑
t=in(u)

Φ(X̃t−k(u))k∈N,θ)K
( t
n − u
hn

)
−E
[
Φ
(
(X̃−k(u))k≥0,θ

)]∣∣∣
a.s.−→

n→+∞
0. (77)

Proof. The expression I in (77) tends to 0 a.s., if is it the case for I1 and I2
such that,

I1 = sup
ε≤u≤1−ε

sup
θ∈Θ

∣∣∣ 1

nhn

jn(u)∑
t=in(u)

(
Φ(X̃t−k(u))k∈N,θ)− E

[
Φ
(
(X̃−k(u))k∈N,θ

)])
K
( t
n − u
hn

)∣∣∣
I2 = sup

ε≤u≤1−ε
sup
θ∈Θ

∣∣∣ 1

nhn

jn(u)∑
t=in(u)

K
( t
n − u
hn

)
E
[
Φ
(
(X̃−k(u))k∈N,θ

)]
− E

[
Φ
(
(X̃−k(u))k∈N,θ

)]∣∣∣.
1. We use the part 1. of Lemma 7.1 to control I1. For this we define Z(θ, u) =

(Zt(θ, u))t∈Z with Zt(θ, u) = Φ
(
(X̃t−k(u))k∈N,θ)−E

[
Φ
(
(X̃−k(u))k∈N,θ

)]
; this

is a centred ergodic stationary process on the Banach space of the continuous
function over Θ× [0, 1] equipped with the uniform norm.
Using E

[
sup(θ,u)∈Θ×[0,1] |Z0(θ, u)|

]
< ∞ since Φ ∈ Lip p(Θ), with Theorem

2.2.1. in [25] we apply the part 1. of Lemma 7.1 to get

I1
a.s.−→

n→+∞
0. (78)

2. For the term I2, notice that

I2 ≤ sup
ε≤u≤1−ε

sup
θ∈Θ

∣∣∣(1− 1

nhn

jn(u)∑
t=in(u)

K
( t
n − u
hn

))
E
[
Φ
(
(X̃−k(u))k∈N,θ

)]∣∣∣
≤ C sup

ε≤u≤1−ε

∣∣∣1− 1

nhn

jn(u)∑
t=in(u)

K
( t
n − u
hn

)∣∣∣ ≤ C

nhn
, (79)

from the usual comparison of a Riemann sum and its integral: indeed K is Lip-
schitz because it is a piecewise differentiable function with a compact support.
As a consequence, the proof is complete from (78) and (79).
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We also need the uniform approximation of the contrast with its stationary
version stated in the next Proposition.

Proposition 7.1. Under the assumptions of Theorem 3.1 with (X̃t(u))t denot-
ing the stationary process defined in (9), we obtain

sup
u∈[ε,1−ε]

sup
θ∈Θ

∣∣∣ 1

nhn

n∑
k=1

Φ
(
(X

(n)
k−t)t≥0,θ

)
K
( k
n − u
hn

)
−E
[
Φ
(
(X̃−k(u))k≥0,θ

)]∣∣∣ P−→
n→+∞

0.

(80)

Proof of Proposition 7.1. Since Φ ∈ Lip p(Θ) with p ≥ 1, we have

∥∥∥ sup
u∈[ε,1−ε]

sup
θ∈Θ

1

nhn

jn(u)∑
t=in(u)

(
Φ
(
(X

(n)
t−k))k≥0,θ

)
−Φ
(
(X̃t−k(u))k≥0,θ

))
K
( t
n − u
hn

)∥∥∥
1

≤ C

nhn

2c nhn∑
t=0

∣∣∣K( in(u)+t
n − u
hn

)∣∣∣ g( sup
s≤jn(u)

{
‖X(n)

s ‖p ∨ ‖X̃s(u)‖p
})

×
∞∑
s=1

αs(Φ,Θ)
∥∥ sup
u∈[ε,1−ε]

∣∣X(n)
in(u)+t+1−s − X̃in(u)+t+1−s(u)

∣∣ ∥∥
p
.

From Assumption (Ã0(Θ)) and B̃0(Θ)<1,∥∥∥ sup
u∈[ε,1−ε]

|X(n)
in(u)+j − X̃in(u)+j(u)|

∥∥∥
p
≤ Cn1/p,

for j ≤ 0 using similar arguments as in the proof Lemma 6.4. Moreover with
(Ã1(Θ)) and (H(ρ)), we apply 6.4 in order to get∥∥∥ sup

u∈[ε,1−ε]
|X(n)

in(u)+j − X̃in(u)+j(u)|
∥∥∥
p
≤ n1/p

(
hρn + λj

)
.

for j ≥ 1. Therefore,

∥∥∥ sup
u∈[ε,1−ε]

sup
θ∈Θ

1

nhn

2c nhn∑
t=0

(
Φ
(
(X

(n)
t−k))k≥0,θ

)
−Φ
(
(X̃t−k(u))k≥0,θ

))
K
( t
n − u
hn

)∥∥∥
1

≤ C

nhn

2c nhn∑
t=0

CK C
∗
( t∑
s=1

αs(Φ,Θ)C n1/p
(
hρn+λt+1−s

)
+

t∑
s=t+1

αs(Φ,Θ)C n1/p
)
.

(81)
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Then we deduce∥∥∥ sup
u∈[ε,1−ε]

sup
θ∈Θ

1

nhn

2c nhn∑
t=0

(
Φ
(
(X

(n)
t−k))k≥0,θ

)
− Φ

(
(X̃t−k(u))k≥0,θ

))
K
( t
n − u
hn

)∥∥∥
1

≤ C n1/p

nhn

jn(u)∑
t=in(u)

( t−in∑
s=1

αs(Φ,Θ)
(
λt−s−in + hρn

)
+

∞∑
s=t−in+1

αs(Φ,Θ)
)

≤ C n1/p

nhn

( jn−in∑
k=1

λk

k∑
i=1

αi(Φ,Θ) + hρn

jn−in∑
k=1

k∑
i=1

αi(Φ,Θ) +

∞∑
i=1

iαi(Φ,Θ)
)

≤ Cn1/p

nhn

( ∞∑
k=1

λk

∞∑
i=1

αi(Φ,Θ) +
(
hρn + 1

) ∞∑
i=1

iαi(Φ,Θ)
)

≤ C n1/p

nhn
. (82)

Here we made use of the assumption
∑∞
s=1 sαs(Φ,Θ) <∞ and of the fact that∑∞

k=1 λk < ∞. This last bound holds if
∑∞
t=1 t log(t)b

(0)
t (Θ) < ∞ and follows

from Lemma 7.3. Finally, using (81), (82) and the almost sure convergence (77)
we obtain the weak consistency result (80).

Lemma 7.3. If
∑∞
t=2 t log(t)b

(0)
t (Θ) <∞ then

∑∞
s=1 λs <∞.

Proof. Choosing r = bs/C log(s)c for s ≥ 2 and C > 0 we have

λs ≤ s−C log(1/B̃0(Θ)) +

∞∑
t=bs/C log(s)c

b
(0)
t (Θ).

For C > 0 large enough and since B̃0(Θ) < 1, we get
∑∞
s=1 s

−C log(1/B̃0(Θ)) <∞.
Moreover, for s > e then t = s/C log(s) implies s > Ct log(t). Thus:

∞∑
s=3

∞∑
t=bs/C log(s)c

b
(0)
t (Θ) ≤ C

∞∑
t=1

t log(t)b
(0)
t (Θ) <∞ ,

and the desired result follows.

Proof of Theorem 3.1 (uniform consistency). From the Assumption (Co(Φ,Θ),
we have

θ∗(u) = Argmin
θ∈Θ

E
[
Φ
(
(X̃−t(u))t≥0,θ

)]
.

The uniform weak law of large numbers implies the uniform convergence, and
we need:

sup
u∈[ε,1−ε]

sup
θ∈Θ

∣∣∣ 1

nhn

n∑
k=1

Φ
(
(X

(n)
k−t)t≥0,θ

)
K
( k
n − u
hn

)
−E
[
Φ
(
(X̃−k(u))k≥0,θ

)]∣∣∣ P−→
n→+∞

0 ,
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see the discussion in the Appendix of [2]. From an application of the approxi-
mation in Proposition 7.1, this uniform weak law of large number follows from
the uniform weak law of large number on the stochastic version of the contrast,
namely

sup
u∈[ε,1−ε]

sup
θ∈Θ

∣∣∣ 1

nhn

n∑
k=1

Φ
(
(X̃k−t(u))t≥0,θ

)
K
( k
n − u
hn

)
−E
[
Φ
(
(X̃−k(u))k≥0,θ

)]∣∣∣ P−→
n→+∞

0 .

From usual arguments, see for instance [26], this uniform version of the weak
law of large number obtained in Lemma 7.2 will follow from the equicontinuity
of the family(

sup
θ∈Θ

∣∣∣ 1

nhn

n∑
k=1

Φ
(
(X̃k−t(u))t≥0,θ

)
K
( k
n − u
hn

)
− E

[
Φ
(
(X̃−t(u))t≥0,θ

)]∣∣∣)
u∈[ε,1−ε]

.

This holds from Markov inequality as Φ ∈ Lip p(Θ) and from the relation

‖X̃t(u)− X̃t(u
′)‖p ≤

∥∥θ∗(u′)− θ∗(u)
∥∥

1− B̃0(Θ)

( B̃1(Θ) C̃0(Θ)

1− B̃0(Θ)
+ C̃1(Θ)

)
, (83)

as θ∗ is equicontinuous. Indeed, under (Ãk(Θ)), k = 1, 2, we have

‖X̃t(u)− X̃t(u
′)‖p ≤‖Fθ∗(u)

(
(X̃t−k(u))k≥1, ξt

)
− Fθ∗(u′)

(
(X̃t−k(u′))k≥1, ξt

)
‖p

≤ ‖Fθ∗(u)

(
(X̃t−k(u))k≥1, ξt

)
− Fθ∗(u)

(
(X̃t−k(u′))k≥1, ξt

)
‖p

+ ‖Fθ∗(u)

(
(X̃t−k(u′))k≥1, ξt

)
− Fθ∗(u)

(
(X̃t−k(u′))k≥1, ξt

)
‖p

≤
∞∑
k=1

b
(0)
k (Θ) ‖X̃t−k(u′)− X̃t−k(u)‖p

+
∥∥θ∗(u′)− θ∗(u)

∥∥× sup
θ∈Θ

∥∥∂1
θFθ(X̃t−1(u), X̃t−2(u), . . . , ξt)

∥∥
p
.

We upper-bound

sup
θ∈Θ

∥∥∂1
θFθ(X̃t−1(u), X̃t−2(u), . . . , ξt)

∥∥
p

≤
∞∑
k=1

b
(1)
k (Θ) ‖X̃t−k(u)‖p + sup

θ∈Θ

∥∥∂1
θFθ(0, 0, . . . , ξt)

∥∥
p
.

By a similar argument than in the proof of Lemma 6.3, we deduce that (83)
holds.

Now we are in position to prove Theorem 3.2.

Proof of Theorem 3.2. We follow the usual proof of asymptotic normality of a
M-estimator. This will follow from the 3 forthcoming steps:
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• I/ We establish that the family ∂θHt

(
θ∗(u)

)
=
(

∂
∂θi
Ht

(
θ∗(u)

))
1≤i≤d

for

in ≤ t ≤ jn satisfies a multidimensional central limit theorem, where we denote
Ht

(
θ
)

= Φ
(
(X̃t−k(u))k∈N,θ

)
.

We notice first that ∂θE
[
Φ
(
(X̃t−k(u))k∈N,θ

∗(u)
)
| F0

]
= 0 as θ∗(u) is the

unique minimizer of E
[
Φ
(
(X̃t−k(u))k∈N,θ

∗(u)
)
| F0

]
over the open set

o

Θ.

The function θ ∈ Θ 7→ E
[
Φ
(
(X̃t−k(u))k∈N,θ

∗(u)
)
| F0

]
is differentiable under

the condition
∥∥∂θΦ

∥∥ ∈ Lip p(Θ). Thus ∂θHt

(
θ∗(u)

)
constitutes a differences of

martingale sequence. We also have E
[∥∥∂θΦ

∥∥2]
<∞ and we can apply the CLT

for differences of martingale sequences (See for instance [26]). As a consequence
we can apply the point 2. of Lemma 7.1 and obtain the multidimensional central
limit theorem

1√
nhn

jn(u)∑
t=in(u)

∂θΦ
(
(X̃t−k(u))k∈N,θ

∗(u)
)
K
( t
n − u
hn

)
L−→

n→+∞
N
(

0,Σ
(
θ∗(u)

))
(84)

with Σ
(
θ∗(u)

)
=

∫
R
K2(x)dx

×
∑
t∈Z

(
Cov

[ ∂
∂θi

Φ
(
(X̃−k(u))k∈N,θ

∗(u)
)
,
∂

∂θj
Φ
(
(X̃t−k(u))k∈N,θ

∗(u)
)])

1≤i,j≤d
.

• II/ We use a Taylor-Lagrange expansion for establishing

1√
nhn

jn(u)∑
t=in(u)

∂θΦ
(
(X̃t−k(u))k∈N, θ̂(u)

)
K
( t
n − u
hn

)

=
1√
nhn

jn(u)∑
t=in(u)

∂θΦ
(
(X̃t−k(u))k∈N,θ

∗(u)
)
K
( t
n − u
hn

)

+
√
nhn ·

1

nhn

jn(u)∑
t=in(u)

∂2
θ2Φ

(
(X̃t−k(u))k∈N,θ(u)

)
K
( t
n − u
hn

)(
θ̂(u)− θ∗(u)

)
,

(85)

where θ(u) belongs to the segment with extremities θ∗(u) and θ̂(u). From Theo-

rem 3.1, we have θ(u)
P−→

n→+∞
θ∗(u). Moreover, since E

[∥∥∂2
θ2Φ

(
(X̃t−k(u))k∈N,θ

)∥∥] <
∞ for any θ ∈ Θ and θ ∈ Θ 7→ ∂2

θ2Φ
(
(X̃t−k(u))k∈N,θ

)
is uniformly continuous

because Θ is a bounded set included in Rd, we can apply Lemma 7.1 and then:

1

nhn

jn(u)∑
t=in(u)

(
∂2
θ2Φ((X̃t−k(u))k∈N,θ(u))−E

[
∂2
θ2Φ((X̃t−k(u))k∈N,θ(u))

])
K
( t
n−u
hn

) P−→
n→+∞

0.

(86)
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Thus we get, with Γ(θ∗(u)) = E
[
∂2
θ2Φ

(
(X̃t−k(u))k∈N,θ

∗(u)
)]

,

1

nhn

jn(u)∑
t=in(u)

∂2
θ2Φ

(
(X̃t−k(u))k∈N,θ(u)

)
K
( t
n − u
hn

)
P−→

n→+∞
Γ(θ∗(u)).

Moreover, since θ̂(u) minimizes the contrast function we have

1

nhn

jn(u)∑
t=in(u)

∂θΦ
(
(X

(n)
t−k(u))k∈N, θ̂(u)

)
K
( t
n − u
hn

)
= 0. (87)

Using the assumptions on the Lipschitz coefficients of ∂θΦ, the same inequalities
as (81) and (82) in the proof of Proposition 7.1 lead for a convenient constant
C > 0 to:∥∥∥ 1

nhn

jn(u)∑
t=in(u)

(
∂θΦ

(
(X

(n)
t−k(u))k∈N, θ̂(u)

)
−∂θΦ

(
(X∗t−k(u))k≥0, θ̂(u)

))
K
( t
n − u
hn

)∥∥
1
≤ Chρn,

∥∥∥ 1

nhn

jn(u)∑
t=in(u)

(
∂θΦ

(
(X∗t−k(u))k≥0, θ̂(u)

)
−∂θΦ

(
(X̃t−k(u))k∈N, θ̂(u)

))
K
( t
n − u
hn

)∥∥
1
≤ C

nhn
.

As a consequence we deduce that:

∥∥∥ 1√
nhn

jn(u)∑
t=in(u)

∂θΦ
(
(X̃t−k(u))k∈N, θ̂(u)

)
K
( t
n − u
hn

)∥∥∥
1
≤ C

( 1√
nhn

+hρn
√
nhn

)

=⇒ 1√
nhn

jn(u)∑
t=in(u)

∂θΦ
(
(X̃t−k(u))k∈N, θ̂(u)

)
K
( t
n − u
hn

)
P−→

n→+∞
0, (88)

by using (17). Finally, from (85), using (86), (88), Slutsky Lemma and (84), we
deduce: √

nhn Γ(θ∗(u))
(
θ̂(u)− θ∗(u)

) L−→
n→+∞

N
(

0 , Σ
(
θ∗(u)

))
,

and this leads to Theorem 3.2.

Proof of Proposition 4.1. We proved in Section 4 that ak(ΦG,Θ) = b
(0)
k (Θ) and

ΦG ∈ Lip 3(Θ) when fθ and Mθ satisfy Lipschitz inequalities (23). But we also
have:

∂θΦG(x,θ) =
∂θMθ ·

(
(xk)k≥2

)
Mθ

(
(xk)k≥2

) + 2 ∂θfθ
(
(xk)k≥2

)
·
fθ
(
(xk)k≥2

)
− x1

M2
θ

(
(xk)k≥2

)
− 2 ∂θMθ

(
(xk)k≥2

)
·
(
fθ
(
(xk)k≥2

)
− x1

)2
M3
θ

(
(xk)k≥2

) .
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After computations and using Mθ ≥M as well as Hölder Inequalities, we obtain

E
[

sup
θ∈Θ

∥∥∂θΦG(U,θ)−∂θΦG(V,θ)
∥∥] ≤ 1

M

∥∥∂θMθ

(
(Uk)k≥2

)
−∂θMθ

(
(Vk)k≥2

)∥∥
1

+
‖∂θMθ

(
(Vk)k≥2

)
‖2

M

∥∥Mθ

(
(Uk)k≥2

)
−Mθ

(
(Vk)k≥2

)∥∥
2

+ 2
(‖fθ((Uk)k≥2

)
− U1‖2

M2

∥∥∂θfθ((Uk)k≥2

)
− ∂θfθ

(
(Vk)k≥2

)∥∥
2

+ 2 ·
‖fθ
(
(Vk)k≥2

)
− V1‖3‖∂θfθ

(
(Vk)k≥2

)
‖3

M3

∥∥Mθ

(
(Uk)k≥2

)
−Mθ

(
(Vk)k≥2

)∥∥
3

+
‖∂θfθ

(
(Vk)k≥2

)
‖2

M2

(∥∥fθ((Uk)k≥2

)
− fθ

(
(Vk)k≥2

)∥∥
2

+ ‖U1 − V1‖2
))

+ 2
(‖∂θMθ

(
(Vk)k≥2

)
‖3 ‖fθ

(
(Uk)k≥2

)
+ fθ

(
(Vk)k≥2

)
− U1 − V1‖3

M3

×
(∥∥fθ((Uk)k≥2

)
− fθ

(
(Vk)k≥2

)∥∥
3

+ ‖U1 − V1‖3
)

+3·
‖∂θMθ

(
(Vk)k≥2

)
‖4 ‖fθ

(
(Vk)k≥2

)
− V1‖24

M4

(∥∥Mθ

(
(Uk)k≥2

)
−Mθ

(
(Vk)k≥2

)∥∥
4

)
+
‖fθ
(
(Uk)k≥2

)
− U1‖23

M3

∥∥∂θMθ

(
(Uk)k≥2

)
− ∂θMθ

(
(Vk)k≥2

)∥∥
3

)
.

Thus

E
[

sup
θ∈Θ

∥∥∂θΦG(U,θ)− ∂θΦG(V,θ)
∥∥] ≤ g

(
sup
i≥1

{∥∥Ui‖4 ∨ ∥∥Vi‖4})
×
(∥∥∂θMθ

(
(Uk)k≥2

)
−∂θMθ

(
(Vk)k≥2

)∥∥
4

+
∥∥∂θfθ((Uk)k≥2

)
−∂θfθ

(
(Vk)k≥2

)∥∥
4

+
∥∥Mθ

(
(Uk)k≥2

)
−Mθ

(
(Vk)k≥2

)∥∥
4
+
∥∥fθ((Uk)k≥2

)
−fθ

(
(Vk)k≥2

)∥∥
4
+‖U1−V1‖4

)
from Jensen inequality and since we assume that fθ, Mθ, ∂θfθ and ∂θMθ satisfy
Lipschitz inequalities (23). As a consequence we derive

E
[

sup
θ∈Θ

∥∥∂θΦG(U,θ)− ∂θΦG(V,θ)
∥∥ ] ≤ g

(
sup
i≥1

{∥∥Ui‖4 ∨ ∥∥Vi‖4})
×
(
‖U1−V1‖4+

∞∑
i=2

(
βi(f,Θ)+βi(M,Θ)+βi(∂θf,Θ)+βi(∂θM,Θ)

)
‖Ui−Vi‖4

)
,

therefore ∂θΦG ∈ Lip 4(Θ). From these computations and with the inequality
(24) we also deduce that condition (31) impliesB0(Θ) < 1, and

∑∞
t=2 t log(t)bt(Θ) <

∞ follows from
∑
s≥0 s as(Φ,Θ) <∞, required in Theorems 3.1 and 3.2. Similar

calculations also entail

E
[∥∥∂2

θ2Φ
(
(X̃−k(u))k∈N,θ

)∥∥2
]
<∞, for any θ ∈ Θ,
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since p = 4 and ∂2
θ2fθ and ∂2

θ2Mθ satisfy Lipschitz inequalities (23). We also
have

E
[∥∥∂θΦ

(
(X̃k(u))k≤0,θ

∗(u)
)∥∥2] ≤ 12

(1 ∨M)2

(∥∥∂θMθ∗(u)((X̃k(u))k≤−1)
∥∥2

2

+
∥∥∂θfθ∗(u)((X̃k(u))k≤−1)

∥∥2

2

∥∥ξ0∥∥2

2
+
∥∥∂θMθ∗(u)((X̃k(u))k≤−1)

∥∥2

2

∥∥ξ0∥∥4

4

)
,

since X̃0(u)−fθ∗(u)((X̃k(u))k≤−1) = Mθ∗(u)((X̃k(u))k≤−1) ξ0, withMθ∗(u)((X̃k(u))k≤−1)
and ξ0 which are independent. Therefore, we obtain

E
[∥∥∂θΦ

(
(X̃k(u))k≤0,θ

∗(u)
)∥∥2]

<∞

since p = 4. Finally (30) ensures that asymptotic covariance matrix Σ
(
θ∗(u)

)
and Γ(θ∗(u)) are positive definite matrix (see [11]) and (29) implies the existence

and the uniqueness of θ∗(u) as the minimum of θ ∈ Θ 7→ E
[
Φ
(
(X̃k(u))k≤1),θ

)
| F0

]
defined in (11) (see also [11]). This ends the checking of the conditions of The-
orem 3.2.

Proof of Proposition 4.2. Denote Pθ(B) =
∑∞
j=1 a(θ)Bj−1 andRθ(x) = −

∑∞
j=0 bj+1(θ)xj .

Using an iteration of (40), we obtain:

X
(n)

t = σ
(
θ

(n)
t

)
ξt +

(
I − P

θ
(n)
t

(B)
)
X

(n)

t −
∞∑
j=1

P
θ
(n)
t−j

(B)
( j−1∏
k=0

R
θ
(n)
t−k

(B)
)
X

(n)

t−j ,

(89)

for any 1 ≤ t ≤ n, n ∈ N∗ and X
(n)

t = 0 for t ≤ 0. Following the same idea, we
also have:

X
(n)
t = σ

(
θ

(n)
t

)
ξt +

∞∑
i=1

di
(
θ

(n)
t

)
Xt−i

= σ
(
θ

(n)
t

)
ξt +

(
I − P

θ
(n)
t

(B)
)
X

(n)
t −

∞∑
j=1

P
θ
(n)
t

(B)
(
R
θ
(n)
t

(B)
)j
X

(n)
t−j , (90)

for any 1 ≤ t ≤ n, n ∈ N∗ and X
(n)
t = 0 for t ≤ 0. Therefore,

∥∥X(n)

t −X(n)
t

∥∥
p

≤
∥∥∥ ∞∑
j=1

P
θ
(n)
t−j

(B)
( j−1∏
k=0

R
θ
(n)
t−k

(B)
)
−P

θ
(n)
t

(B)(R
θ
(n)
t

(B))j
)
X

(n)

t−j

∥∥∥
p

+
∥∥∥(I−Pθ(n)

t
(B)

)(
X

(n)
t −X

(n)

t

)
−
∞∑
j=1

P
θ
(n)
t

(B)(R
θ
(n)
t

(B))j
(
X

(n)
t−j −X

(n)

t−j
)∥∥∥
p
.

(91)
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Now let Ut(x) =
∑∞
k=0 uk(t)xk, Vt(x) =

∑∞
k=0 vk(t)xk with supt∈N

∑∞
k=0 |uk(t)| <

1 and supt∈N
∑∞
k=0 |vk(t)| < 1.

Then, for any s, t ∈ N,

Us(B)Vt(B) =

∞∑
k=0

ck(s, t)Bk,

where ck(s, t) =

k∑
j=0

uj(s) vk−j(t), and sup
s,t∈N

∞∑
k=0

|ck(s, t)| < 1.

Moreover, if

 |uj(s)− uj(s
′)| ≤ |ũj |

(
|s−s′|
n

)ρ
|vj(s)− vj(s′)| ≤ |ṽj |

(
|s−s′|
n

)ρ for any j ∈ N, 1 ≤ s, s′ ≤ n

with
∑
i |ũi|+ |ṽi| <∞ then if X = (X`) is a sequence with sup`∈Z

∥∥X`

∥∥
p
<∞,

for any ` ≤ n,

∥∥Us(B)Vt(B)Xn − Us′(B)Vt′(B)X`

∥∥
p
≤
∥∥∥ ∞∑
k=0

(
ck(s, t)− ck(s′, t′)

)
X`−k

∥∥∥
p

≤
∞∑
k=0

(∣∣∣s− s′
n

∣∣∣ρw(u)
k (t) +

∣∣∣ t− t′
n

∣∣∣ρw(v)
k (s)

)∥∥X`−k
∥∥
p
,

with w
(u)
k (t) =

∑k
j=0 |ũj | |vk−j(t)| and w

(v)
k (s) =

∑k
j=0 |ṽj | |uk−j(s)|.

Now, if we denote ãk = Kθ sup
0≤t,n, n∈N∗

∣∣a′k(θ
(n)
t )
∣∣ and b̃k = Kθ sup

0≤t,n, n∈N∗

∣∣b′k(θ
(n)
t )
∣∣,

implying
∑
k ãk + b̃k <∞ from condition (39). We obtain for j ≥ 2,

P
θ
(n)
t−j

(B)
( j−1∏
k=0

R
θ
(n)
t−k

(B)
)
− P

θ
(n)
t

(B)
(
R
θ
(n)
t

(B)
)j

=

∞∑
`=0

c`(t, j)B
`

with |c`(t, j)| ≤
∑

i0+···+ij=`

|bi1(θ
(n)
t )|

(( j
n

)ρ
ãi0

j∏
k=2

bik(θ
(n)
t )

+

j∑
k=2

(k − 2

n

)ρ
ai0(θ

(n)
t−j) b̃ik

k∏
m=2

|bim(θ
(n)
t−m)|

j∏
m=k+1

|bim(θ
(n)
t )|

)

≤
( j
n

)ρ ∑
i0+...+ij=`

|bi1(θ
(n)
t )|

(
ãi0

j∏
k=2

|bik(θ
(n)
t )|

+

j∑
k=2

|ai0(θ
(n)
t−j)| b̃ik

k∏
m=2

bim(θ
(n)
t−m)

j∏
m=k+1

|bim(θ
(n)
t )|

)
.
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Then,

∞∑
`=0

|c`(t, j)| ≤
( j
n

)ρ [( ∞∑
k=0

ãk

)( ∞∑
k=0

|bk(θ
(n)
t )|

)j
+

∞∑
k=0

|ak(θ
(n)
t−j)|

( ∞∑
k=0

b̃k

) j∑
j′=2

( ∞∑
k=0

|bk(θ
(n)
t )|

)j−j′ j′∏
m=2

( ∞∑
k=0

|bjm(θ
(n)
t−m)|

)]
≤

( j
n

)ρ
max

{ ∞∑
k=0

ãk ,

∞∑
k=0

b̃k

}
j a b

j
,

since a = supθ∈Θ

∑∞
k=0 |ak(θ)| < 1 and b = supθ∈Θ

∑∞
k=0 |bk(θ)| < 1 by as-

sumption. Therefore,

∞∑
j=1

∞∑
`=0

|c`(t, j)| ≤
C

nρ

∞∑
j=1

j1+ρ b
j ≤ C ′

nρ
,

since 0 < b < 1. Therefore with Lemma 2.1,

∥∥∥ ∞∑
j=1

(
P
θ
(n)
t−j

(B)
( j−1∏
k=0

R
θ
(n)
t−k

(B)
)
− P

θ
(n)
t

(B)
(
R
θ
(n)
t

(B)
)j)

X
(n)

t−j

∥∥∥
p

≤ C ′

nρ
C0(Θ)

1−B0(Θ)
≤ C ′′

nρ
. (92)

Finally, with M
(n)
t = sups≤t

∥∥X(n)
t−j −X

(n)

t−j
∥∥
p
,

∥∥∥(I − Pθ(n)
t

(B)
) (
X

(n)
t −X(n)

t

)
−
∞∑
j=1

P
θ
(n)
t

(B)
(
R
θ
(n)
t

(B)
)j (

X
(n)
t−j −X

(n)

t−j
)∥∥∥
p

=
∥∥∥ ∞∑
j=1

dj(θ
(n)
t )

(
X

(n)
t−j −X

(n)

t−j
)∥∥∥
p
≤ d×M (n)

t−1, (93)

with 0 ≤ d < 1 As a consequence, using (91), (92) and (93), for any 1 ≤ t ≤ n,
n ∈ N∗,∥∥X(n)

t −X(n)
t

∥∥
p
≤ d×M (n)

t−1 +
C ′′

nρ
=⇒ M

(n)
t ≤ d×M (n)

t−1 +
C ′′

nρ
.

Since M
(n)
t−1 = 0, this implies for any 1 ≤ t ≤ n, n ∈ N∗,

M
(n)
t ≤ C ′′

nρ

t−1∑
k=0

d
k ≤ C ′′

1− d
× 1

nρ
.

And this achieves the proof.
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Proof of Proposition 4.3. We will sharply follow the same proof that the one of
Proposition 4.2. For any n ∈ N∗ and 1 ≤ t ≤ n, using the causal property of
the processes, we have∥∥X(n)

t −X
(n)
t

∥∥
p

=
∥∥ξ0∥∥p ∥∥σ(n)

t −σ
(n)
t

∥∥
p
≤

∥∥ξ0∥∥p
2 inf1≤t≤n a0(θ

(n)
t )

∥∥∥(σ(n)
t

)2−(σ(n)
t

)2∥∥∥
p
.

(94)
Using an iteration of (47), we also obtainv for any n ∈ N∗ and 1 ≤ t ≤ n,(

σ
(n)
t

)2
=
(
a0(θ

(n)
t )+

∞∑
k=0

a0(θ
(n)
t−k−1)

k∏
j=0

Qt−j(1)
)

+

∞∑
k=0

Pt−k(B)
( k−1∏
j=0

Qt−j(B)
) (
X

(n)

t−k−1

)2
.

(95)

As a consequence, we have∥∥∥(σ(n)
t

)2 − (σ(n)
t

)2∥∥∥
p
≤
∣∣∣a0(θ

(n)
t )

[ ∞∑
k=0

(
Qt(1)k −

k∏
j=0

Qt−j(1)
)]∣∣∣

+
∥∥∥ ∞∑
k=0

(
Pt(B)Qkt (B)

) (
X

(n)
t−k−1

)2−Pt−k(B)
( k−1∏
j=0

Qt−j(B)
) (
X

(n)

t−k−1

)2)∥∥∥
p
.

Now we can use the same inequalities and bounds as in the proof of Proposition
4.2 for obtaining (48).

Proof of Proposition 4.4. We already proved in Section 4.3 that ΦLARCH ∈
Lip 4(Θ) as well as Assumption Co(ΦLARCH ,Θ) when condition (55) holds.
We assumed that θ ∈ Θ 7→ ai(θ) are C2(Θ) functions for any i ∈ N. Thus
in order to check the conditions of Theorem 3.2, we first have to prove that
∂θΦLARCH ∈ Lip 4(Θ). Indeed we use the estimates∥∥∂θΦLARCH(U,θ)− ∂θΦLARCH(V,θ)

∥∥
≤ 8

(
|U1|+ |V1|+ 2a0(θ) +

∞∑
i=1

|ai(θ)|
(
|Ui+1|+ |Vi+1|

))2

×
(∥∥∂θa0(θ)

∥∥+

∞∑
i=1

∥∥∂θai(θ)
∥∥ |Ui+1|

)(
|U1 − V1|+

∞∑
i=1

|ai(θ)| |Ui+1 − Vi+1|
)

+4
(
|U1|+|V1|+ 2a0(θ) +

∞∑
i=1

|ai(θ)|
(
|Ui+1|+|Vi+1|

))3 ∞∑
i=1

∥∥∂θai(θ)
∥∥ |Ui+1−Vi+1| .

Therefore, using Hölder and Minkowski Inequalities, we obtain

E
[

sup
θ∈Θ

∥∥∂θΦLARCH(U,θ)− ∂θΦLARCH(V,θ)
∥∥]

≤ g
(

sup
i≥1

{∥∥Ui‖4∨∥∥Vi‖4})(|U1−V1|+
∞∑
i=1

(
sup
θ∈Θ
|ai(θ)|+sup

θ∈Θ

∥∥∂θai(θ)
∥∥) ∥∥Ui+1−Vi+1

∥∥
4

)
.
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This inequality implies that ∂θΦLARCH ∈ Lip 4(Θ) under the assumptions of
Proposition 4.4.

We also have to establish that under conditions of Proposition 4.4,

E
[∥∥∂θΦLARCH

(
(X̃k(u))k≤0,θ

∗(u)
)∥∥2]

<∞

and E
[∥∥∂2

θ2ΦLARCH
(
(X̃−k(u))k∈N,θ

∗(u)
)∥∥] <∞. Indeed we have

∂θΦLARCH
(
(X̃k(u))k≤0,θ

∗(u)
)

= −4(ξ2
0 − 1)

(
a0(θ∗(u)) +

∞∑
i=1

ai(θ
∗(u)) X̃−i(u))

)3

×
(
∂θa0(θ∗(u)) +

∞∑
i=1

∂θai(θ
∗(u)) X̃−i(u))

)
.(96)

Therefore, using Hölder and Minkowski Inequalities and independence of ξ0

and (X̃k(u))k≤−1 together with Eu ≡ E
[∥∥∂θΦLARCH

(
(X̃k(u))k≤0,θ

∗(u)
)∥∥2
]

we

derive that

Eu ≤ 16E
[(
ξ2
0 − 1

)2] (E[(a0(θ∗(u)) +

∞∑
i=1

ai(θ
∗(u)) X̃−i(u))

)8])3/4

×
(
E
[∥∥∂θa0(θ∗(u)) +

∞∑
i=1

∂θai(θ
∗(u)) X̃−i(u)

∥∥8
])1/4

≤ C
(

sup
θ∈Θ
|a0(θ)|+ ‖X̃0(u)‖8

∞∑
i=1

sup
θ∈Θ
|ai(θ)|

)6

×
(

sup
θ∈Θ
‖∂θa0(θ)‖+ ‖X̃0(u)‖8

∞∑
i=1

sup
θ∈Θ
‖∂θai(θ)‖

)2

.

Thus we obtain E
[∥∥∂θΦLARCH

(
(X̃k(u))k≤0,θ

∗(u)
)∥∥2
]
< ∞ with r = 8 under

suitable conditions on (aj)j . The expression for the second derivatives is also
derived

∂2
θ2ΦLARCH

(
(X̃k(u))k≤0,θ

∗(u)
)

= −4
(
a0(θ∗(u)) +

∞∑
i=1

ai(θ
∗(u)) X̃−i(u))

)2

×
{

(ξ2
0−3)

(
∂θa0(θ∗(u))+

∞∑
i=1

∂θai(θ
∗(u))X̃−i(u))

)(
∂θa0(θ∗(u))+

∞∑
i=1

∂θai(θ
∗(u))X̃−i(u))

)′
+
(
a0(θ∗(u))+

∞∑
i=1

ai(θ
∗(u))X̃−i(u))

)(
∂2
θ2a0(θ∗(u))+

∞∑
i=1

∂2
θ2ai(θ

∗(u))X̃−i(u))
)}
.

As a consequence, similar arguments as previously entail

E
[∥∥∂2

θ2ΦLARCH
(
(X̃k(u))k≤0,θ

∗(u)
)∥∥] <∞
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from Hausdorff and Minkowski inequalities. Finally we checked the conditions
of Theorem 3.2 since the asymptotic covariance matrix Σ

(
θ∗(u)

)
and Γ(θ∗(u))

are positive definite matrix from (56) using (96).
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[17] C. Francq, J.-M. Zaköıan, GARCH Models: Structure, Statistical Inference
and Financial Applications, Wiley, 2010.

[18] L. Giraitis, P. Kokoszka, R. Leipus, Stationary arch models: dependence
structure and central limit theorem, Econometric Theory 1 (16) (2000)
3–22.

[19] N. Rohan, A time varying GARCH() model and related statistical inference,
Statistics & Probability Letters 83 (2013) 1983–1990.

[20] L. Truquet, Parameter stability and semiparametric inference in time-
varying arch models, Journal of Royal Statistical Society Series B 79 (2017)
1391–1414.

[21] P. Robinson, Testing for strong serial correlation and dynamic conditional
heteroskedasticity in multiple regression, Journal of Econometrics 47 (1)
(1991) 67–84.

[22] L. Giraitis, R. Leipus, P. Robinson, D. Surgailis, LARCH, leverage and
long memory, Journal of Financial Econometrics 2 (2) (2003) 177–210.
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