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We mix some of the novelties that have occured recently in the field of explicit multiplicative number theory, together with some questions that have not been answered yet and with several new results.

1. Background. In the recent past several questions in multiplicative number theory have known some explicit extensions: instead of knowing that the problem is solvable provided the variables are large enough, a definite bound is given from which the result is true. Let us mention the representation of integers as sums of a prime (or a prime squared) and a square-free number by A. Dudek in [START_REF] Dudek | On the sum of a prime and a square-free number[END_REF] (and [START_REF] Dudek | On the sum of the square of a prime and a square-free number[END_REF]), an explicit density estimate for Dirichlet L-series by the author in [START_REF] Ramaré | An explicit density estimate for Dirichlet L-series[END_REF], the complete solutions of the odd Goldbach conjecture by H. Helfgott, a question that has been open for many decades, bounds on the number of Diophantine quintuples by T. Trudgian in [START_REF] Trudgian | Bounds on the number of Diophantine quintuples[END_REF] or M. Cipu in [START_REF] Cipu | Further remarks on Diophantine quintuples[END_REF], and bounds on the least k-th power non-residue by E. Treviño in [START_REF] Treviño | The least k-th power non-residue[END_REF]. We cannot list all of them, but they have a particularity: computing the constants in the classical proof fails to do the job and new techniques are necessary. We focus in this article on a crucial auxiliary tool: averages of arithmetical functions. Rather than trying to define what arithmetical means here, let us say that the quantities to be averaged can roughly be sorted in three classes:

• Averages of the von Mangoldt Λ-function,

• Averages of non-negative multiplicative functions, • Averages of oscillating multiplicative functions.

Theorem 1.3 (J. Buethe in [START_REF] Büthe | A Brun-Titchmarsh inequality for weighted sums over prime numbers[END_REF]). For D ě 10 [START_REF] Riesel | On sums of primes[END_REF] and the present author in [START_REF] Ramaré | On Snirel'man's constant[END_REF]. The constant c 0 has been computed in [43, (2.10)]. Theorem 3.1 below improves considerably on this result.

Having these examples and results at hand, the main questions that remain are:

• Can we do better?

• What about oscillating multiplicative functions?

We will see that both questions are linked.

2 

ˆ1

´1 p ´1 ˆ1 p 4s`3 `1 p 2s`2 ´1 p s`1 ´1 p 3s`3 ˙˙.

Proof. Let us give some tools on how to obtain such factorizations. We set X " 1{p s`1 and Y " p{pp ´1q, and then observe that p1 `XY qp1 ´Xqp1 `X2 q " 1 `pY ´1qXp1 ´X `X2 q ´Y X 4 from which the claimed formula follows on noticing that 1 `X2 " p1 ´X4 q{p1 ´X2 q.

We then use a truncated Perron formula, shift the line of integration to the left of the line s " ´1{2 but still within the zero-free region of ζp2s `2q and classically obtain for some positive constant c. We cannot push the line of integration further to the left since we may otherwise encounter poles of 1{ζp2s `2q whose residues are uncontrolled. The situation for ř n µ 2 pnq is exactly the same, since its Dirichlet series is ζpsq{ζp2sq, except that the difficult line is now s " 1.

If one wants to compute the constants in the above proof, we encounter a major hurdle: bounds for 1{ζpsq are hard to get. As a matter of fact, F. Dress asked this very question more than thirty years ago, though concerning ř n µpnq rather than ř n µpnq 2 , but the problem is the same. The best that has been obtained up to now has followed from the usual theory of the Riemann zeta-function.
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Theorem 2.1 (T. Trudgian in [START_REF] Trudgian | Explicit bounds on the logarithmic derivative and the reciprocal of the Riemann zeta-function[END_REF]). When t ě 45 and σ ě 1 ´1{p8 log tq, |1{ζpsq| ď 7 ¨10 6 log t.

Since the Riemann hypothesis has been checked for |t| ď 3¨10 9 , we can only ensure that log t ě 21.8 and the "constant" 7 ¨10 6 behaves more like t 2{3 . We use here the verification of D. Platt in [START_REF] Platt | Isolating some non-trivial zeros of zeta[END_REF] because it has been subject of a publication, but X. Gourdon has announced in 2004 in [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta Function and zeros computations at very large height[END_REF] a verification up to the height 2.445 ¨10 12 . This would sadly not make a large difference here.

3. Doing better. So, how to go beyond simple methods and remain explicit? We have changed "elementary" for "simple" in this sentence. Here "simple" means essentially that the constants do not accumulate to produce some useless error term.

We have recently managed to put a toe in this direction with P. Akhilesh in [START_REF] Akhilesh | Explicit averages of non-negative multiplicative functions: going beyond the main term[END_REF], and it is the history of this result that we recount below, with some comments and theorems in between. As it turns out, while writing this paper (in fact when preparing the talk), the author has improved on the result.

Theorem 3.1. For D ą 1, we have ÿ dďD µ 2 pdq ϕpdq " log D `c0 `O˚ˆ1 1 ? D log D ˙,
and equally for D ą 1, we have

ÿ dďD µ 2 pdq ϕpdq " log D `c0 `O˚ˆ6 1{25 ? D ˙.
The version with P. Akhilesh has a 21 rather than 11 (and a 3.99 rather than 61{25 " 2.44) but is valid for a larger family (with a coprimality condition pd, qq " 1 added). The method here is simpler though it relies on the same mechanism we used. Note that Lemma 9.3 below has also an independent interest: it contains the result of some finite computation over the range r1, 10 9 s that compares the error term with 1{D 3{4 . We will first prove the following theorem. Theorem 3.2. For D ě 1665, we have

ÿ dďD µ 2 pdq d " 6 π 2 `log D `C2 ˘`O ˚ˆ7{20 ? Dlog D ˙.
When D ą 1, it is enough to replace the 7{20 with 3{5 (and even by 0.56).

Again, Lemma 9.2 contains the result of some finite computation over the range r1, 10 11 s that compares the error term with 1{D 3{4 . With the help of Theorem 3.2, we can improve slightly on Corollary 1.2. A simple summation by parts yields the following (together with some finite computations; all of these details are relegated to Section 10). Theorem 8.1 below is the first key to the results above. It will enable us to prove Theorem 3.2 from which we will deduce Theorem 3.1 by generalizing the method we devised with P. Akhilesh in [START_REF] Akhilesh | Explicit averages of non-negative multiplicative functions: going beyond the main term[END_REF]. After explaining this one, we will set to tell how we came to Theorem 8.1.

4. Setting the direction. We start our journey towards the proof of Theorem 3.1 and 3.2 by an Unbalanced Dirichlet Hyperbola Formula that we proved with P. Akhilesh in [START_REF] Akhilesh | Explicit averages of non-negative multiplicative functions: going beyond the main term[END_REF]Theorem 1.3]. See H. Montgomery [27, Lemma 1] for a similar idea. Theorem 4.1 (Unbalanced Dirichlet Hyperbola Formula). Let pgpmqq mě1 be a sequence of complex numbers such that both series ř mě1 gpmq{m and ř mě1 gpmqplog mq{m converge. We define G 7 pxq " ř mąx gpmq{m and assume that ş 8 1 |G 7 ptq|dt{t converges. Let A 0 ě 1 be a real parameter. We have

ÿ nďD pg ‹ 1qpnq n " ÿ mě1 gpmq m ´log D m `γ¯`ż 8 D{A0 G 7 ptq dt t `O˚p Rq
where R is defined by

R " ˇˇˇˇÿ 1ďaďA0 1 a G 7 ˆD a ˙`G 7 ˆD A 0 ˙ˆlog A 0 rA 0 s ´RprA 0 sq ˙ˇˇˇˇ`6 {11 D ÿ mďD{A0 |gpmq|
where rA 0 s is the integer part of A 0 , while the remainder RpXq " ř nďX 1{n ´log X ´γ. The constant 6{11 " 0.545 ¨¨¨is commented on in [START_REF] Akhilesh | Explicit averages of non-negative multiplicative functions: going beyond the main term[END_REF]Lemma 2.1] and can be replaced by the optimal 2plog 2 `γ ´1q " 0.540 ¨¨¨. This theorem tells us that the key to improving the estimate for µ 2 pdq{d is to get some non-trivial bound for ř ąy µp q{ 2 . In the same manner, the key to µ 2 pdq{ϕpdq is to estimate non-trivially ÿ 2 kąy, p ,kq"1 µ 2 pkqµp q kϕpkq ϕp q .

Here, by "non-trivially", we mean exploiting the cancellation offered by the µp q factor. This is the path we followed in [START_REF] Akhilesh | Explicit averages of non-negative multiplicative functions: going beyond the main term[END_REF] but we shall see in Section 8 that another path is possible.

The above theorem covers the case of a convolution product g ‹1, but it may be useful to have a more general case. Let h be an arithmetical function (i.e. simply a sequence of complex numbers phpnqq ně1 ) and K 0 and K 1 be two complex numbers. We define the remainder R h , which in fact depends also on K 0 and K 1 , by @X ě 1, ÿ nďX hpnq{n " K 0 plog X `K1 q `Rh pXq.

(

) 1 
Theorem 4.2 (Generalized Unbalanced Hyperbola Formula). Let pgpmqq mě1 be a sequence of complex numbers such that both series ř mě1 gpmq{m and ř mě1 gpmqplog mq{m converge. We define G 7 pxq " ř mąx gpmq{m and assume that ş 8 1 |G 7 ptq|dt{t converges. Let A 0 ě 1 be a real parameter and h, K 0 , K 1 and R h be as above. We have

ÿ nďD pg ‹ hqpnq n " K 0 ÿ mě1 gpmq m ´log D m `K1 ¯`K 0 ż 8 D{A0 G 7 ptq dt t `O˚p R h q
where R h is defined by

R h " ˇˇˇˇÿ aďA0 hpaq a G 7 ˆD a ˙`G 7 ˆD A 0 ˙ˆK 0 log A 0 rA 0 s ´Rh prA 0 sq ˙ˇˇˇÿ mďD{A0 ˇˇg pmq m R h ´D m ¯ˇw here rA 0 s is the integer part of A 0 .
Partial proof of Theorem 4.2. We start by proving the following formula:

ÿ nďD pg ‹ hqpnq n " K 0 ÿ mě1 gpmq m ´log D m `K1 ¯`K 0 ż 8 D G 7 ptq dt t ´K0 K 1 G 7 pDq `ÿ mďD gpmq m R h ´D m ¯.
(

) 2 
This identity is linear in g, so it is enough to prove it for any positive integer k for g " δ ¨"k , i.e. the function that takes the value 1 at k and the value 0 everywhere else. In this case, G 7 ptq is 0 when t ą k and equal to 1{k otherwise, while pg ‹ hqpnq is hpn{kq when k divides n and 0 otherwise. The identity to prove reduces to

ÿ mďD{k hpmq km " K 0 1 k ´log D k `K1 ¯`K 0 k δ Dăk log k D ´δDăk K 0 K 1 k `δDěk k R h pD{kq.
On splitting according to whether D ă k or not, the reader will readily check the identity.

In order to continue, we need to rewrite the part

ÿ D{A0ămďD gpmq m R h ´D m ¯.
This is done in rather technical Covering Remainder Lemma 11.1 that we prove in Section 11.

As one can see, the preliminary step to Theorem 3.2 is to find a manner to handle the Moebius function. The analytical way seems to be ruled out. On the other side and as we have seen, lots of work has been done for the von Mangoldt Λ-function, and it would be great to inherit from it.

5. Leading theme. The Dirichlet series associated with the von Mangoldt Λ-function is ´ζ1 psq{ζpsq. The Euler product relates to primes, but by looking at it as ´ζ1 psq, defined in terms of integers, divided by ζ, equally defined in terms of integers, we have a way to relate primes to integers. This is in short the Riemann program. But for this program to work, we need ζpsq not to vanish and this is the crucial point. The factor ζ 1 psq is most probably superfluous. Pursuing this line of thought, we see that the distribution of the primes should be "equivalent" to the distribution of the Dirichlet coefficients of 1{ζpsq, i.e. to pµpnqq ně1 . This philosophy motivates the following theorem.

Theorem 5.1 (Axer-Landau Equivalence Theorem [START_REF] Landau | Neuer Beweis der Gleichung ř 8 k"1 µpkq k " 0[END_REF], [START_REF] Axer | Beitrag zur Kenntnis der zahlentheoretischen Funktionen µpnq und λpnq[END_REF] & [START_REF] Landau | Über einige neuere Grenzwertsätze[END_REF]). The five propositions are equivalent:

1. #tprimes ď xu is asymptotic to x{ log x. 2. ψpxq " ř nďx Λpnq is opxq. 3. M pxq " ř dďx µpdq is opxq. 4. mpxq " ř dďx µpdq{d is op1q. 5. mpxq " ř dďx µpdq logpx{dq{d is 1 `op1q.
A quantitative version of this theorem would be numerically efficient! The equivalence between ( 1) and ( 2) is trivial and we have given some ground for the equivalence of ( 2) and ( 3). The statement that (2) implies ( 4) is somewhat surprising and comes from E. Landau's thesis in [START_REF] Landau | Neuer Beweis der Gleichung ř 8 k"1 µpkq k " 0[END_REF], while that the statement (3) implies ( 4) is due to A. Axer in [START_REF] Axer | Beitrag zur Kenntnis der zahlentheoretischen Funktionen µpnq und λpnq[END_REF]. We shall tell more on this subject later and it is in fact the subject of the survey [START_REF] Ramaré | On the missing log factor, to appear[END_REF]. The statement (5) concerning the function m is a surprising addition.

In between, let us consider a related question.

Question 1. Can one bound efficiently |1{ζpsq|, in some zero-free region, in terms of ψpxq?

in connection with this question we propose how to go from ψpxq to M pxq in a not too bad manner.

6. From the primes to the Moebius function. Let us continue our journey around the Axer-Landau Equivalence Theorem. We first notice that W.-B. Zhang has exhibited in [START_REF] Zhang | A generalization of Halász's theorem to Beurling's generalized integers and its application[END_REF] a Beurling system of integers where one has M P pxq " opxq without ψ P pxq " x. Our final destination being numerical estimates, we are however more interested in the reverse implication, i.e. to derive bounds for M from bounds for the primes. This phenomenom is detailed in the survey [START_REF] Ramaré | On the missing log factor, to appear[END_REF]. This problem has been studied by A. Kienast in [START_REF] Kienast | Über die Äquivalenz zweier Ergebnisse der analytischen Zahlentheorie[END_REF] and by L. Schoenfeld in [START_REF] Schoenfeld | An improved estimate for the summatory function of the Möbius function[END_REF], and they proceeded as the author later did in [START_REF] Ramaré | From explicit estimates for the primes to explicit estimates for the Moebius function[END_REF] by using some combinatorial identities. Tough we indeed get results, the process we use is heavy and saves only some power of log. The higher this power, the more difficult the proof becomes; but we have been unable to find a path that would enable a power saving. The family of identities the author produced is simply more efficient than the one used by A. Kienast. It is better to refer the reader to the cited paper and to only give here the general flavour. The first interesting case reads ÿ ďx µp q log 2 "

ÿ d ďx µp q `Λ ‹ Λpdq ´Λpdq log d ˘. (3) 
It is worth mentionning that the Selberg identity that is used for proving elementarily the Prime Number Theorem is Λ ‹ Λpdq `Λpdq log d " pµ ‹ log 2 qpdq and that, assuming this theorem, both factors Λ ‹ Λpdq and Λpdq log d contribute equally to the average. In particular, the function Λ ‹ Λpdq ´Λpdq log d should be looked upon as a remainder term.
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We get information of its average order by using the Dirichlet hyperbola formula; it would most probably be better to use an explicit expression in terms of the zeros directly, but this involves the residues of pζ 1 {ζq 2 and there lacks a control of those, while the residues of ζ 1 {ζ are well understood. Some more thought discloses that we need essentially the L 1 -norm of such residues. Since they are non-negative integers for ζ 1 {ζ, we may as well compute their simple average, which is readily achieved by a contour integration that has most of its path outside the critical strip. No such phenomenom is known to occur for pζ 1 {ζq 2 . The reader may be wary of the Moebius factor that appears on the right-hand side of ( 3), but only one such factor appears. It is maybe more apparent in the next identity of this series:

ÿ ďx µp q log 3 " ÿ d ďx µp q `Λ ‹ Λ ‹ Λpdq ´3Λ ‹ pΛ logqpdq `Λpdq log 2 d ˘.
When starting with the last identity with k " 3, one can expect to save a log 3 x on the trivial estimate x, but the presence of the Moebius factor on the right-hand side reduces that to a saving of one log x less, so log 2 x. This is because the Dirichlet hyperbola method is not used, though one may employ a recursion process: indeed, L. Schoenfeld does that, followed by H. Cohen, F. Dress & M. El Marraki in [START_REF] Cohen | Explicit estimates for summatory functions linked to the Möbius µ-function[END_REF], [START_REF] Dress | Fonction sommatoire de la fonction de Möbius 2. Majorations asymptotiques élémentaires[END_REF] and [START_REF] Marraki | Fonction sommatoire de la fonction µ de Möbius, majorations asymptotiques effectives fortes[END_REF]. The present author did not introduce such a step as it is numerically costly, but a more careful treatment is possible here. Question 2. Can one introduce a recursion step in the proof of the above result to increase the explicit saving?

The 0.0146 is to be compared with 3{28 from [START_REF] Marraki | Fonction sommatoire de la fonction µ de Möbius, majorations asymptotiques effectives fortes[END_REF]. And, yes, it is amazing that one is not able to do much better, like ď 10 ´6D for sensible values of D (our result requires D ě 10 6 500 to reach such a conclusion) as in the case for the primes (see [START_REF] Faber | New bounds for ψpxq[END_REF]).

The present author believes (as already stated elsewhere) that there exists A ą 1 such that This question is trickier than it looks and the classical expression

|M pxq|

1 ζpsq " s ż 8 1 M pxq dx x s`1
is apparently not sufficient to go beyond s " 1.

7. From M pxq to mpxq " ř dďx µpdq{d. The reader may believe than an integration by parts does the job, but there is a catch. Indeed, on the formula mpxq "

M pxq x `ż x 1 M ptqdt t 2 , we see that the assumption M pxq " opxq is not enough to ensure that mpxq is even bounded! The same problem occurs when going from the Chebyschev ψ-function to ψpxq " ř nďx Λpnq{n In this case, H. Diamond & W.-B. Zhang in [START_REF] Diamond | A PNT equivalence for Beurling numbers[END_REF] found a system of Beurling integers where ψpxq in equivalent to x, but ψpxq ´log x is unbounded. No such counter-example has been found for the Moebius function, though the present author expects a similar phenomenom to occur.

We thus have to use some special property of the actual sequence we consider. Recall that we are seeking quantitative results. In the case of the primes, it took the author quite a while, but D. Platt and the present author finally cleared the situation in [START_REF] Ramaré | Explicit estimates for the summatory function of Λpnq{n from the one of Λpnq[END_REF] and [START_REF] Platt | Explicit estimates: from Λpnq in arithmetic progressions to Λpnq{n[END_REF]. Concerning the Moebius function, A. Axer in [START_REF] Axer | Beitrag zur Kenntnis der zahlentheoretischen Funktionen µpnq und λpnq[END_REF] produced a qualitative answer. M. El Marraki in a preprint [START_REF] Marraki | Majorations de la fonction sommatoire de la fonction µpnq n[END_REF], that has only known a very confidential dissemination, used an identity to do so, and we followed the same path. Our new ingredient is an identity due to M. Balazard in [START_REF] Balazard | Elementary remarks on Möbius' function[END_REF]. Here is our result. M. El Marraki in the aforementioned preprint had 4.5 instead of 69. Since the magical tool is a collection of identities, We recall one of these identities, so that the reader can imagine the beasts we are looking at. In the proof of Proposition 6 of [START_REF] Balazard | Remarques élémentaires sur la fonction de Moebius[END_REF], M. Balazard produces the following identity, valid for x ě 1:

mpxq " M pxq x `4p1 ´x´1 q 2 x ´4p1 ´x´1 q 3 3x 2 `1 x ż x 1 M px{tqε 1 1 ptqdt (4) 
where

ε 1 1 ptq " ˆp2ttu ´1qt `ttu ´ttu 2 t 2 ˙2 .
From that, he deduces the following theorem.

Theorem 7.2 (M. Balazard in [START_REF] Balazard | Elementary remarks on Möbius' function[END_REF]). When D ě 1, we have

|mpDq| ď |M pDq| D `1 D 2 ż D 1 |M ptq| dt `8 3D .
It turns out that M. Balazard was studying and trying to put some order in a collection of identities produced by R. A. MacLeod in [START_REF] Macleod | A curious identity for the Möbius function[END_REF]. This very paper is entitled "A curious identity for the Möbius function", and indeed, the question is to know whether such identities are ad hoc historical curiosities or whether some more information is lying there.
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The situation has been further cleared by a former student of mine, F. Daval [START_REF]Private comunication[END_REF], in the following theorem.

Theorem 7.3 (F. Daval in [START_REF]Private comunication[END_REF]). Select h : r0, 1s Ñ C, continuous and such that ş 1 0 hpuqdu " 1. When x ě 1, we have

mpxq ´M pxq x ´1 x ż 1 1{x hpyq y dy " 1 x ż x 1 M px{tq ˆ1 ´1 t ÿ nďt hpn{tq ˙dt.
So we can handle the convolution of M against any "Riemann integral-remainder"! On selecting h " 1, one recovers the classical Meissel identity, while the choice h " 2t leads to the first MacLeod identity.

The class of these "Riemann integral-remainder" is not yet clear. Given f over r0, 1s, say continuous, with integral equal to one, can it be approximated by such a remainder term, or more precisely, what is the class of functions attained?

We show in Theorem 7.4 below that we get every identity in this manner, at least when h is assumed to be C 1 .

7.1. The problem at large. Let us try to formalize the problem. We start from a regular function F : r1, 8q Ñ C, for instance F ptq " 1 or F ptq " log t. The question is to find two functions H and G and a constant C such that, for any x ě 1, we have

ÿ nďx µpnq n F px{nq ´C M pxq x " 1 x ż x 1 M px{tqGptqdt `Hpxq. (5) 
We assume that H is smooth and "small". To avoid solutions that would result from integration by parts, we assume that

ż 8 1 |F ptq|dt{t " 8, ż 8 1 |Gptq|dt{t ă 8.
Indeed, an integration by parts yields the formula

1 x ż x 1 M px{tqGptqdt " ÿ nďx µpnq n F px{nq but we have 8 " ż 8 1 |F ptq| dt t " ż 8 1 ˇˇˇ1 t ż t 1 Gpyqdy ˇˇˇd t t ď ż 8 1 |Gpyq|dt{t ă 8,
which contradicts our conditions. Equality (5) looks like a functional transform from F to G, but there is a lot of slack! Indeed, when F " 1 or when F ptq " log t, the vector space of solutions is infinite dimensional.

Note that, by looking at what happens at x " 1, we find that C " F p1q ´Hp1q.

7.2.

A completeness result when F " 1.

Theorem 7.4. Assume relation (5) holds with F " 1, G and H being C 2 over r1, 8q.

Then C " 1 and the function defined over r0, 1s by hpzq " pHp1{zq{zq 1 {z is C 1 over r1, 8q over r0, 1s, satisfies ş 1 0 hpzqdz " 1 and we have, when x ě 1,

Gpxq " 1 ´1 x ÿ nďx hpn{xq.
We did not try to reach minimal hypotheses and, in particular, to relax the regularity assumption on G.

Proof. When s ă 0, we find that

ż 8 1 ÿ nďx µpnq n x s´1 dx " ÿ ně1 µpnq n ż 8 n x s´1 dx " ´1 sζp1 ´sq .
Note also that ps ´1q ş 8 1 M pxqx s´2 dx " 1{ζp1 ´sq. Again when s ă 0, we find that ż 8 Ǧpsq "

1 1 x ż x 1 M px{tqGptqdtx s´1 dx "
ż 8 1 Gpxqx s´1 dx. (6) 
This means, with respect to the usual theory where the functions are defined over r0, 8q, that we extend G to this interval by setting Gpxq " 0 when x P r0, 1q. We infer from these computations that, when s ă 0, Ǧpsq " s ´1 s ´C `ζp1 ´sqps ´1q Ȟpsq or also

Ǧpsq " 1 ´C `1 s p´ps ´1q Ȟpsq ´1q `´ζp1 ´sq `1 s ¯ps ´1q Ȟpsq.

Since we ask that Ǧp0q exists, we need Ȟp0q " 1. Furthermore, (5) with x " 1 gives us Hp1q " 1 `C. And since H is C 2 , its Mellin transform decreases as fast as 1{|s| 2 when s is large. In particular we should account for the 1 ´C ´s´1 of Ǧ. The 1 is the Mellin transform of the Dirac measure at x " 1 and ´1{s of the function 1 r1,8q , but also of the Y function defined by

Y pxq " $ ' ' & ' ' %
0 when x P r0, 1q,

1 2
when x " 1, 1 when x ą 1.
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This function is better suited for inverse Mellin transform. Since G is regular, its Mellin transform has no Dirac part, which means that 1 ´C " 0 and thus Ǧpsq " Y psq `ζp1 ´sqps ´1q Ȟpsq.

Let us start toward a reciproqual statement. We first notice that

ps ´1q Ȟpsq " " xHpxqx s´1 ‰ 8 1 ´ż 8 1 pxHpxqq 1 x s´1 dx.
We set hp1{yq{y " pyHpyqq 1 , Hpxq "

1 x ż x 1 hp1{yqdy{y. ( 7 
)
The equation Ȟp0q " 1 translates into

ż 8 1 ż x 1 hp1{vq dv v dx x 2 " ż 8 1 ż 1 1{x hpuq du u dx x 2 " ż 1 0 hpuqdu " 1.
We infer from this by inverse Mellin transform that So, given f : r1, 8q Ñ C, we would like to solve f pxq " ş 1 0 tuxu hpuq u du. The change of variable y " 1{x leads to the problem: given g : r0, 1s Ñ C, solve gpyq " ş 1 0 tu{yu u{y hpuqdu. The operator, say T , over the Hilbert space L 2 pr0, 1sq which associates ş 1 0 tu{yu u{y hpuqdu to h is a Hilbert-Schmidt, compact and contracting operator. Indeed, we readily check that the kernel pu, yq Þ Ñ tu{yu u{y belongs to L 2 pr0, 1s 2 q and then, we for instance use the classical textbook [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein[END_REF] (around equations p9.6q ´p9.8q). Since

Gpxq ´Y pxq " 1 2iπ ż ´1 2 `i8 ´1 2 ´i8 ζp1 ´sqps ´1q Ȟpsqx ´sds " ÿ ně1 1 n 1 2iπ ż ´1 2 `i8
ż 1 0 ż 1 0 ˇˇˇt u{yu u{y ˇˇˇ2 dudy " ż 1 0 ż 1{y 0 ˇˇˇt zu z ˇˇˇ2 dz ydy ď ż 1 0 ˆ1 `ż 8 1 tzu z 2 dz ˙ydy " 1 2 p2 ´γq ă 1,
we see by invoking the Cauchy-Schwarz inequality that T is strictly contracting. Indeed, let ϕ be a normalised eigenvector of T associated with the eigenvalue λ, we have

|λ| 2 " ż 1 0 |λϕpyq| 2 dy " ż 1 0 ˇˇˇż 1 0 tu{yu u{y ϕpuqdu ˇˇˇ2 dy ď ż 1 0 ż 1 0 ˇˇˇt u{yu u{y ˇˇˇ2 du ż 1 0 |ϕpuq| 2 dudy ď 1 2 p2 ´γq.
The general theory tells us that there exists a sequence of complex numbers pλ n q n tending to zero (arranged in non-increasing order of their absolute value), and two orthonormal sequences of functions pψ n q n and pϕ n q n such that

ż 1 0 tu{yu hpuq u du " ÿ ně1 λ n ż 1 0 hpuqψ n puqdu ϕ n pyq
for every y P r0, 1s. By the paper [START_REF] Swann | Some new classes of kernels whose Fredholm determinants have order less than one[END_REF] of D. W. Swann, this operator is of Shatten class p for every p ą 1 (meaning that ř n |λ n | p ă 8), and the author suspects it is not of trace class. The above decomposition is a consequence of the general theory of integral operators and a more specific study should be able to disclose arithmetical properties.

The description of the operator T is possibly linked with the Nyman-Beurling criteria. Indeed, this asserts that the characteristic function of p0, 1s belongs to the closure in L 2 p0, 8q of the set of functions defined by y Þ Ñ tu{yu for any parameter u P p0, 1q (see for instance [START_REF] Báez-Duarte | Notes sur la fonction ζ de Riemann[END_REF]). The function gpyq{y would belong to this closure if it were defined for y P p0, 8q and not only for y P p0, 1s. We close this aside and resume the main course.

Question 4. Can one describe explicitly the triples pλ n , ϕ n , ψ n q? 7.4. Other streams of identities. Continuing our exploration of this kind of identities, we are led to the choice F pxq " plog xq k in (5), for non-negative integer k. J.-P. Gram had already an identity of this kind in 1884! R. A. MacLeod and M. Balazard produced a full bunch of other identities, but a nice theory like the one of F. Daval in Theorem 7.3 is still missing.

Rather than expanding on this subject, the author prefers to concentrate here on one application. Here is an identity proved in [START_REF] Ramaré | Explicit estimates on several summatory functions involving the Moebius function[END_REF] by following [START_REF] Balazard | Elementary remarks on Möbius' function[END_REF] and [START_REF] Balazard | Remarques élémentaires sur la fonction de Moebius[END_REF]. For every x ě 1, we have

ÿ nďx µpnq n log ´x n ¯´1 " 6 ´8γ 3x ´5 ´4γ x 2 `6 ´4γ 3x 4 `p 1 2 ´γq M pxq x ´1 x ż x 1 M px{tqh 1 ptqdt
where h is a function that verifies t 2 |h 1 ptq| ď 7 4 ´γ. This function can be very explicitely described. This leads to the following unexpected result. We then use a GP-script to extend the result on the interval r142 130, 10 s, noting that 0.0195 log y ´0.11 ě 0 when y ě 282 and that the function y Þ Ñ p0.0195 log y 0.11q{pyplog yq 2 q is first increasing and then decreasing.

And again, the bound in Theorem 8.1 saves a constant and a logarithm. A careful look at the proof of Theorem 8.1 discloses that the final constant is governed by the summand ř dďy apdq{y, meaning that we may benefit from a closer examination of it. This is the meaning of the next result. We then use a GP-script to extend the result on the interval r1043, 10 6 s, noting that 0.0051 log y ´0.015 ě 0 when y ě 16 and that the function y Þ Ñ p0.0051 log y 0.015q{pyplog yq 2 q is first increasing and then decreasing.

Question 5. Can one relate ř dąx µpdq{d 2 to M pyq directly via some identity and get a better numerical result than Theorem 8.1?
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By reading the proof, it is clear that such identities exist but a clear background like the one we have between mpxq and M pyq is missing.

We are now ready to prove Theorem 3.2.

9. Impact on some non-negative multiplicative functions.

Proof of Theorem 3.2. We start with an easy observation.

Lemma 9.1. With RpXq " ř nďX 1{n ´log X ´γ, we have ˇˇˇl og A 0 rA 0 s ´RprA 0 sq ˇˇˇď 1{2 rA 0 s .

When rA 0 s " 1 (resp. rA 0 s " 2, resp. rA 0 s " 3), we can replace 1{2 by 0.3 (resp. 0.36, resp. 0.4).

Proof. We recall that, with N " rA 0 s, we have

RpN q " 1 2N ´1 12N 2 `O˚´1 60N 4 ānd thus log A 0 N ´RpN q " log A 0 N ´1 2N `1 12N 2 `O˚´1 60N 4
from which we easily deduce that

ˇˇˇl og A 0 N ´RpN q ˇˇˇď |N logp1 `N ´1q ´1 2 `1 12N | `1 60N 3 N .
Corollary 1.2 only proves our result for D P r82 005, 5 ¨10 7 s. So we have recourse to direct computations. Lemma 9.2. For D ď 10 11 , we have

ÿ dďD µ 2 pdq d " 6 π 2 `log D `C2 ˘`O ˚ˆ1 D 3{4 ˙.
The constant in the numerator of 1{D 3{4 oscillates in this range between 0.074 ¨¨( around D " 7.214 ¨10 10 ˘10 7 ) and 0.977 ¨¨¨(around D " 3.63 ¨10 9 ˘10 7 ). It still seems to decrease slowly. We adapted the GP/Pari script described in the proof of Lemma 2.1 of [START_REF] Ramaré | Explicit estimates on the summatory functions of the Moebius function with coprimality restrictions[END_REF] and let it run for some days (on a desktop computer having only 8 Gigabytes of RAM, the computation was split to intervals of length 2 ¨10 7 ).

This lemma proves Theorem 3.2 for D P r5000, 10 11 s. When D ě 10 11 , we use our Unbalanced Dirichlet Hyperbola formula (Theorem 4.1) with the multiplicative function g being defined by gpp 2 q " ´1, @k P t1u Y pr3, 8rXNq, gpp k q " 0.

Hence we need to evaluate

G 7 pxq " ÿ m 2 ąx µpmq m 2 (9) 
for which Theorem 8.1 gives G 7 pxq " O ˚p1{p25 ?

x log xqq when x ě p59600q 

? A 0 log D logpD{A 0 q ˆ1 ´2 logpD{A 0 q `8 logpD{A 0 q ˙. (11)
We choose A 0 " 0.504 0.62 0.04`0 .04 2 log D ě 71 when D ě expp23q, obtaining the final constant 0.347, which we majorize by 7{20. This 0.347 would only be replaced by 0.345 if we were assuming that D ě 10 11 . A numerical verification using GP/Pari [29] enables us to finish the proof.

The proof of Corollary 3.3 follows from the above result when D ě 10 10 . Lemma 9.2 proves it for D P r36 000, 10 11 s and a finite verification concludes.

Proof of Theorem 3.2. Let us now turn to the summatory function of µ 2 pdq{ϕpdq. There are two ways to handle the situation:

• Compare the summand to 1{d, • Compare the summand to µ 2 pdq{d.

The first path consists in using our Unbalanced Dirichlet Hyperbola formula (Theorem 4.1). This is the one we followed with P. Akhilesh in [START_REF] Akhilesh | Explicit averages of non-negative multiplicative functions: going beyond the main term[END_REF] and we show here how the proof simplifies when we use the second path.

We start with a finite verification.

Lemma 9.3. When D P r1, 2 ¨10 9 s, we have

ÿ dďD µ 2 pdq ϕpdq " log D `c0 `O˚p 2.2{D 3{4 q.
The constant 2.2 above is an upper bound for a function that oscillates, when D ranges r1, 10 9 s, between 0.52 and 2.16, the maximum being away from the beginning (after 10 6 ).

We relate µ 2 pdq{ϕpdq to µ 2 pdq{d in the following, next-to-trivial lemma.

O. RAMAR É Lemma 9.4. For any integer n ě 1, we have

µ 2 pnq n ϕpnq " ÿ m"k θp qµ 2 pmq
were θ is the multiplicative function defined on the prime powers p k by θpp k q " p´1q k`1 {pp ´1q.

Proof. Both functions being multiplicative, it is enough to check the identity on the p-components of the Dirichlet series. To do so, it is enough to note that

1 `p p´1 X 1 `X " 1 `1 p ´1 X 1 `X " 1 `ÿ kě1 p´1q k`1 X k p ´1 .
As it turns out, the function θ that appears is much more difficult to handle precisely than (the author) expected.

On a troublesome special function. On denoting by kpnq the squarefree kernel of n (sometimes called the core of n), i.e. kpnq " ś p|n p, we find that θpnq " λpnkpnqq ϕpkpnqq .

The simplest function 1{kpnq has already been the subject of numerous questions; its average order is known (see [START_REF] De Bruijn | On the number of integers ď x whose prime factors divide n[END_REF] and [START_REF] Robert | Sur la répartition du noyau d'un entier[END_REF]) but difficult to get. We have

ÿ nďN 1{kpnq " exp ˆp1 `op1qq a 8plog N q{ log log N ˙. (13) 
An inspection of the proof of [START_REF] De Bruijn | On the number of integers ď x whose prime factors divide n[END_REF] discloses that a similar asymptotic holds true for the average ř nďN 1{ϕpkpnqq. In particular, it is not of the shape C log N , which means the convolution method (which would compare it to a simpler function, say 1{n) will not work here. The function θ, being not especially non-negative, is not covered by these results.

Since we do not know how to be precise with the function θ, we will employ Rankin's trick. Notice that both Dirichlet series

$ ' ' ' & ' ' ' % T psq " ÿ ně1 θpnq n s " ź pě2 ˆ1 `1 pp ´1qpp s `1q ˙, T ˚psq " ÿ ně1 |θpnq| n s " ź pě2 ˆ1 `1 pp ´1qpp s ´1q ˙(14)
are absolutely convergent for s ą 0 with T p1q " π 2 {6. We also readily compute that We use our Generalized Unbalanced Hyperbola Formula (Theorem 4. `T ˚p1 ´α0 q pD{A 0 q α0 ˇˇˇ1 `6 π 2 log A 0 rA 0 s ´Rµ 2 prA 0 sq ˇˇˇ˙.

We select A 0 " 1 and notice that R µ 2 p1q " 1 ´6 π 2 C 2 . Let us take a parameter L " D β for some β P p0, 1q. We note that when D{M 0 ě 1665, we have ? D It is then obvious to establish the claimed formula since R h p1q " hp1q ´K0 K 1 and ´hpaq{a " Rpa ´1q `K0 logpa ´1q ´pRpaq `K0 logpaqq when a ě 2.

12. Proof of Corollary 1.2. We simply use the following identity which comes from an integration by parts: On plugging the estimate given by Theorem 1.1 inside, we get our result. The constant term that appears is simply identified. The constant in the numerator of 0.43{ ? D can be reduced by this process to ˆ6 π 2 plog 5 `C2 q ´11 6 ˙?5 " 0.422 ¨¨b ut no more.

ÿ dďD µ 2

 2 pdq{ϕpdq " log D `C `O´e xpp´c a log DqD ´1{2

Corollary 3 . 3 .

 33 When D ě 3475 is a real number, we have ÿ dďD µ 2 pdq d " 6 π 2 `log D `C2 ˘`O ˚´0.073 ? D ¯.

Corollary 3 . 4 .

 34 When D ą 1 is a real number, we have This is better than the (basic) error term O ˚p0.1333 ? Dq of Theorem 1.1 only when D ě 10 64 and better than O ˚p0.02767 ? Dq (from Theorem 1.1 when D ě 438 653) only when D ě 10 1468 .

Theorem 6 . 1 (

 61 [START_REF] Ramaré | From explicit estimates for the primes to explicit estimates for the Moebius function[END_REF]). When D ě 464 402, we have ˇˇˇÿ dďD µpdq ˇˇˇ{ D ď 0.0146 log D ´0.1098 plog Dq 2 .

Question 3 .

 3 Can one bound 1{ζpsq in terms of M pxq in some zero-free region?

Theorem 7 . 1 (

 71 [START_REF] Ramaré | Explicit estimates on several summatory functions involving the Moebius function[END_REF]). When D ě 463 421, we have ˇˇˇÿ dďD µpdq{d ˇˇˇď 0.0144 log D ´0.1 plog Dq 2 . When D ě 97 000, we have ˇˇˇÿ dďD µpdq{d ˇˇˇď 1 69 log D .

  Mellin transform of G by Ǧpsq, i.e.

  Daval's identity. 7.3. A functional approach when F " 1. Starting from Theorem 7.3 and, remembering the identities of MacLeod in Balazard's form, we aim at writing the integral with M in the form ş M px{tqf 1 ptqdt. With this goal in sight we note that

Question 6 .

 6 Can one find an efficient bound for | ř ąt θp q{ | ? We will only use the upper bound ř ąt |θp q|{ for | ř ąt θp q{ | and then use Rankin's trick, losing at least the sign of θp q in the process.Resuming the proof. As a consequence of Lemma 9.4, we find that

  3.2 when m P r1, M 0 s with the constant 7{20, then Theorem 3.2 when m P rM 0 `1, Ls this time with the constant 0.56, and then the last part of Corollary 1.2 when m P pL, Ds. With D ě 10 9 , we select α 0 " 0.81, M 0 " 80, α " 0.26, β " 0.78 and get a constant ď 11.Concerning the error term in 1{ ? D, the preceding result proves it when D ě 10 9 . Lemma 9.3 enables us to extend it to D ě 3 and a direct verification concludes.

10 .

 10 Proof of Corollary 3.4. We start with an easy lemma.

ÿ dďD µ 2 pdq d " 6 π 2 8 D ˆÿ dďt µ 2 pdq ´6 π 2 t ˙dt t 2 .

 6282 plog D `C2 q `řdďD µ 2 pdq ´6 π 2 D D ´ż

  9 , we have

	ÿ dďD	µ 2 pdq ϕpdq	" log D `c0	? `O˚ˆ5 8 D	ẇhere
	c 0 " γ	`ÿ pě2	log p ppp ´1q	" 1.332 582 275 733 ¨¨T
	his is after the work of H. Riesel and R. C. Vaughan in

  . An analytical detour. When asking about possible improvements, it is interesting to see what the classical theory gives. The Dirichlet series associated with µ 2 pnq is ζpsq{ζp2sq while the one associated with µ 2 pnq{ϕpnq reads

		ˆ1		"
		ź	
	Dpsq "	pě2	`1 p s pp ´1q
		ζps `1q	ζp4s `4q ζp2s `2q	ź pě2

  Theorem 7.5 ([37, Theorem 1.5]). When D ě 3 861, we have ˇˇˇˇÿ

	Note that the contribution from the main term of	ř	dďt µpdq logpt{dq{d cancels out with
	the one from	ř	dďy µpdq logpy{dq{d and thus
	|S| ď	ż 8 y	p0.00252 log t ´0.0077qdt t 2 plog tq 2	`0.00252 log y ´0.0077 yplog yq 2	`0.0144 log y ´0.1 yplog yq 2
	ď	ż 8 y	p0.00252 log y ´0.0077qdt t 2 plog tq log y	`0.00252 log y ´0.0077 yplog yq 2	`0.0144 log y ´0.1 yplog yq 2
	ď	0.01944 log y ´0.1154 yplog yq 2	ď	0.0195 log y ´0.11 yplog yq 2	.
				dďD	µpdq logpD{dq d	´1ˇˇˇˇˇď 0.00252 log D ´0.0077 plog Dq 2	.

  Theorem 8.3. When y ě 1043, we have ˇˇˇÿ

					dąy	µpdq d 2 ´1 y	ÿ dąy	µpdq d	ˇˇˇď 0.0051 log y ´0.015 yplog yq 2	.
	When y ě 222, we have										
							ˇˇˇÿ dąy	µpdq d 2 ´1 y	ÿ dąy	µpdq d	ˇˇˇď	1 196y log y	.
	Proof of Theorem 8.3. Let us establish the first inequality for y ě 4 000. We employ
	Lemma 8.2 with apdq " µpdq{d and get		
	S "	ÿ dąy	µpdq d 2 `1 y	ÿ dďy	µpdq d	"	ż 8 y	ÿ dďt	µpdq logpt{dq d	dt t 2	´ÿ dďy	µpdq dy	log	y d	.
	Note that	ř dďy µpdq{d " ´řdąy µpdq{d. We infer from the above that
			|S| ď	ż 8 y	p0.00252 log t ´0.0077qdt t 2 plog tq 2	`0.00252 log y ´0.0077 yplog yq 2
				ď	ż 8 y	p0.00252 log y ´0.0077qdt t 2 plog tq log y	`0.00252 log y ´0.0077 yplog yq 2
				ď	0.00504 log y ´0.0154 yplog yq 2	ď	0.0051 log y ´0.015 yplog yq 2	.

  2 . Whence we find that (in the notation of Theorem 4.1), provided that a D{A 0 ě 1700:

	R a D log D ď 0.04 .504 ˆ0.62 ÿ ? a a logpD{aq ? log D 1ďaďA0 ? ? A 0 `0.04 `0.04 ? logpD{A 0 q A 0 log D D{A0 ˇˇˇl og a D log D log D ż 8	A 0 rA 0 s dt{pt 3{2 log tq. ´RprA 0 sq ˇˇ0 (10)
	The quantity	ş 8 D{A0 dt{rt 3{2 log ts is dealt with via	
	ż 8 D{A0	dt{rt 3{2 log ts "	ż	1 2 logpD{A0q e ´u du u	ď	?	D logpD{A 0 q 2	ˆ1	´2 logpD{A 0 q `8 logpD{A 0 q	˙.
	Let A 1 be an integer parameter (we shall select A 1 " 71). We single out the term with a ď A 1 and use the inequality ř A1`1ďaďA0 1{ ? a ď ş A0 A1 dt{ ? t ď 1 2 p ? A 0 ´?A 1 q. This
	yields									
	R a D log D							
		ď	ÿ 1ďaďA1 `0.504 ˆ0.62 0.04 a logpD{aq ? log D `0.04 2 ? A 0 `0.08 ? log D ´log A0 ? A 0 ´?A 1 ? log D	`0.04 ? log D ´log A0 ? A 0 ? log D	1{2 A 0 ´1

  Notice that, for any α 0 P r0, 1q, we have |G 7 pxq| ď T ˚p1 ´α0 q{x α0 . By Lemma 9.3, we can assume that D ě 10 9 . We get

												2) and get
	ÿ dďD	µ 2 pdq ϕpdq	"	ÿ ě1	θp q 6 π 2 ˆlog	D	`C2	˙`6 π 2	ż 8 D{A0	G 7 ptq	dt t
					`O˚ˆˇˇˇˇÿ aďA0	µ 2 paq a	G 7	ˆD a	˙`G 7	ˆD A 0	˙ˆ6 π 2 log	rA 0 s A 0	´Rµ 2 prA 0 sq ˙ˇˇˇˇȮ
						˚ˆÿ mďD{A0	ˇˇθ	pmq m	R h	´D m	¯ˇˇẇ
	here now we have set					
												G 7 pxq "	ÿ	θpmq{m.
												mąx
	ÿ	µ 2 pdq								
	dďD	ϕpdq								
		" log D `c0	`O˚ˆ6 π 2	T ˚p1 ´α0 qA α0 0 α 0 D α0	`ÿ mďD{A0	ˇˇθ	pmq m	R h	´D m	¯ˇˇȮ
			˚ˆT ˚p1 ´α0 q			ÿ	µ 2 paq
						D α0	aďA0´1	a 1´α0

Acknowledgments. Thanks are due to the anonymous referee for having read this work very carefully and having proposed useful modifications. This work has been partly supported by the Indo-French Centre for the Promotion of Advanced Research -CEFIPRA, project No 5401-1.

Hence, not only do we save a logarithm, but we also save a large constant! Similar results, though less spectacular, are available with the weight log 2 pD{nq. They are in principle available for higher powers of logpD{nq, but no one has yet explored this area, nor found some order in it. For identities with logpD{nq, the fractional part that occured earlier is replaced with the remainder term ř nďt 1 n ´log t ´γ. We shall see an application of the above theorem in the next section.

8. Impact on some oscillating multiplicative functions. Musing over the quality of the numerics in Theorem 7.5, the author recently found the following result. Let us now prove Corollary 3.4. We find that

We directly compute that We can assume that D ě 10 32 and get that this error term is also O ˚p1.06 ? D{ ? log Dq. When 82 005 ď D ď 10 32 , our estimate is a consequence of Theorem 1.1 and a readilyachieved finite verification justifies the extension of the range to D ą 1.

EXPLICIT AVERAGE ORDERS: NEWS & PROBLEMS 21 11. The Covering Remainder Lemma. We work under the assumption detailed just before the statement of Theorem 4.2.

Lemma 11.1 (The Covering Remainder Lemma). Let pgpmqq mě1 be a sequence of complex numbers such that ř mě1 gpmq{m converges. Define G 7 pxq " ř mąx gpmq{m. Let A 0 ě 1 be a real number and let rA 0 s denote its integer part. We have

Proof. We set B " rA 0 s to ease the typing. When a is a positive integer, b P ra, a `1s, and m is inside pX{b, X{as, we have

We see at this level that the proof of the Coverring Remainder Lemma of [START_REF] Akhilesh | Explicit averages of non-negative multiplicative functions: going beyond the main term[END_REF] applies, simply multiplying the integral by K 0 , replacing R by R h . Since this part is not long, we copy it for the comfort of the reader. We sum the construction step over a P t1, . . . , Bu with the choice b " minpa `1, A 0 q. On using the notation G