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A Variant of the Truncated Perron's Formula and Primes in Polynomial Sets VARIANT OF THE TRUNCATED PERRON FORMULA / PRIMES IN POLYNOMIAL SETS

We show under the Generalised Riemann Hypothesis that for every non-constant integer valued polynomial f , for every δ > 0, and almost every prime q in [Q, 2Q], the number of primes from the interval [x, x + x 1 2 +δ ] that are values of f modulo q is the expected one, provided Q is not more than x 2 3 -. We obtain this via a variant of the classical truncated Perron's formula for the partial sums of the coefficients of a Dirichlet series.

Introduction

The classical truncated Perron's formula relates, for any x ≥ 1, the partial sum 1≤n≤x a n of the coefficients of a Dirichlet series F (s) = n≥1 an n s with a finite abscissa of convergence σ c to the integral on the line segment [κ -iT, κ + iT ] of F (s)x s 2πis , for any T > 0 and κ > max(0, σ a ), where σ a is the abscissa of absolute convergence of F (s). The difference between these two quantities is estimated by an error term that depends on a sum of the absolute values |a n | of the a n . We present here a variant that has sums of the a n rather than |a n | and is valid for κ > max(0, σ c ). The basic version of this variant is stated in Theorem 2.1. This proposition results from a simple rewriting of the Fourier adjunction formula (1) R f (u) φ(u)du = R f (u)φ(u)du, valid for any f, φ in L 1 (R), applied with f (u) = e -κu 1≤n≤xe u a n and suitable φ. Corollaries 2.2 puts Theorem 2.1 in applicable form. These are stated with the aid of notation introduced at the head of Section 2. At the end of this section we include a brief comparative description with other variants of the Perron formula in the literature such as those in G. Coppola & S. Salerno [START_REF] Coppola | On the symmetry of the divisor function in almost all short intervals[END_REF], [START_REF] Coppola | On the symmetry of arithmetical functions in almost all short intervals[END_REF], J. Kaczorowski & A. Perelli [START_REF] Kaczorowski | A new form of the Riemann-van Mangold explicit formula[END_REF], J. Liu & Y. Ye [START_REF] Liu | Perron's formula and the prime number theorem for automorphic L-functions[END_REF], and Wolke [START_REF] Wolke | On the explicit formula of Riemann-von Mangoldt[END_REF]. As an illustration of our version of the truncated Perron's formula, we shall obtain the following result in Section 3.

Theorem 1.1. Let f be a non-constant integer valued polynomial. For any prime q, we set V * q (f ) to be the set of non zero values taken by f modulo q. For any positive real numbers Q ≥ 2, δ ≤ 1/2 and η ≤ 1/6 and assuming the Generalised Riemann Hypothesis we have that for all but o(Q/ log Q) primes q in [Q, 2Q], the number of primes from V * q (f ) in [x, x + x 1 2 +δ ] is asymptotic to

|V * q (f )| q -1 x 1 2 +δ log x
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provided that x 1 6 +δ-η ≥ Q. Furthermore, for almost all prime moduli q in [Q, 2Q], the sum p µ(p) where p ranges the primes from [x, x + x

1 2 +δ ] that belong to V * q (f ) is o(x 1 2 +δ / log x) provided again that x 1 6 +δ-η ≥ Q.
Note that it follows from a conjecture of Schur proved in [START_REF] Fried | On a conjecture of Schur[END_REF] that the set V q (f ) of values taken by f modulo q is infinitely often equal to the full Z/pZ only for special polynomials. The authors do not know of any such result concerning V * q (f ). In the final section of this note, Section 4, we consider the effect of "moving the line of integration σ = κ" in the integrals on this line on the right hand sides of the formulae supplied by Corollary 2.2. In the classical case the kernel φ is identically equal to 1 on [κ -iT, κ + iT ]. Our choices for φ are, however, sufficiently smooth, compactly supported, piecewise polynomial functions on [κ -iT, κ + iT ]. These functions extend holomorphically in horizontal strips and, in general, these extensions are incompatible on adjacent strips. Nevertheless, Proposition 4.1 tells us that the smoothness of φ is enough to guarantee that the error due to this incompatibility on moving the line of integration is O(x κ /T 2 ) under reasonable assumptions on F .

Throughout this article we use e(z) to denote e 2πiz , for any complex number z. Further, all constants implied by the symbols and are absolute except when dependencies are indicated, either in words or by subscripts to these symbols. We will use the terms majorised and minorised to mean and respectively. The Fourier transform f of an integrable function f on R is defined by f (u) = R f (t)e(-ut)dt.

The Variant

Throughout this section, we let F (s) = n≥1 a n /n s be a Dirichlet series with a finite abscissa of convergence σ c and an abscissa of absolute convergence σ a . Also, let σ 0 = max (0, σ c ) and for any real σ > σ 0 , let

B(σ) = sup N ≥1 | 1≤n≤N an n σ |.
Then on writing a n as an n σ • n σ and using the Abel summation formula we obtain the classical bound of E. Cahen [START_REF] Cahen | Sur la fonction ζ(s) de Riemann et sur des fonctions analogues[END_REF]:

(2) 1≤n≤x a n ≤ 2B(σ)x σ , valid for all x ≥ 1 and any σ > σ 0 . The following theorem uses a test function φ and its Fourier transform φ to express 1≤n≤x a n in terms of F (s).

Theorem 2.1. Let φ a function in L 1 (R) with φ(0) = 1 and such that φ is also in L 1 (R). Then for any κ > σ 0 and x ≥ 1 we have

(3) 1≤n≤x a n = 1 2πi κ+i∞ κ-i∞ F (s)φ s -κ 2πi x s s ds + R   1≤n≤x a n -e -κu 1≤n≤xe u a n   φ(u) du.
Proof. For any f in L 1 (R) we have ( 4)

f (0) = R f (0) φ(u)du = R f (u)φ(u)du + R (f (0) -f (u)) φ(u)du ,
on taking account of R φ(u)du = φ(0) = 1 and (1), valid since φ and φ are also in L 1 (R). The relation (3) results on using (4) with

f (u) = e -κu 1≤n≤xe u a n ,
for the given κ > σ 0 and x ≥ 1. Indeed, then f (u) = 0 for u < -log x. Further, we have from [START_REF] Coppola | On the symmetry of arithmetical functions in almost all short intervals[END_REF] with σ in (σ 0 , κ) that f is integrable in a neighbourhood of +∞. Thus f is in L 1 (R). A comparision of the right hand side of (3) with the last term of ( 4) now shows that it only remains to verify that

(5) f (u) = x s F (s) s where s = κ + 2πiu ,
for all u ∈ R, which is a well-known fact. For the sake of completeness, however, we provide a proof. For any integer m ≥ 1, let f m (u) = e -κu 1≤n≤m a n χ n (u), where χ n (u) is 1 when n ≤ xe u and is 0 otherwise. Then we certainly have lim m→+∞ f m (u) = f (u) for all u in R. Also, (2) gives for any σ in (σ 0 , κ) the bound

|f m (u)| ≤ 2B(σ)x σ e (σ-κ)u
for all m ≥ 1 and all u in R. This allows us to apply the dominated convergence theorem to justify the relation

R f (t)e -2πiut dt = lim m→+∞ R f m (t)e -2πiut dt = lim m→+∞ 1≤n≤m a n R χ n (t)e -κt e -2πiut dt , (6) 
for all u in R. Since κ > 0 we have

R χ n (t)e -κt e -2πiut dt = ∞ log( n x )
e -(κ+2πiu)t dt = x s s n s , for all n ≥ 1, where s = κ+2πiu. Also, since κ > σ c we have lim m→+∞ 1≤n≤m

an n s = F (s). Consequently, (6) yields [START_REF] Iwaniec | Analytic number theory[END_REF].

The following corollary puts the second term on the right hand side of (3) into a convenient form, with additional hypotheses on the test function φ. These hypotheses are satisfied when φ is a sufficiently smooth positive compactly supported function with φ(0) = 1, as will be the case in our application.

Corollary 2.2. Let φ a function in L 1 (R) with φ(0) = 1 and such that (i) φ is in L 1 (R) and φ(u) = φ(-u) for all u in R. (ii) There is m ≥ 2 such that C k (φ) = sup u∈R |u k φ(u)| < +∞ for 0 ≤ k ≤ m + 1. We set C(φ) = max 0≤k≤m+1 C k (φ).
Then for any κ > σ 0 , x ≥ 1 and T ≥ 1 we have

(7) 1≤n≤x a n = 1 2πi κ+i∞ κ-i∞ F (s)φ s -κ 2πiT 
x s s ds

+ T 0   xe -u T <n≤xe u T a n sgn(x -n)   φ(u) du + O * 4C(φ)(1 + κ) 2 e 2κ B(κ)x κ T .
Proof. We first prove that (8)

1≤n≤x a n = 1 2πi κ+i∞ κ-i∞ F (s)φ s -κ 2πiT 
x s s ds

+ T 0   xe -u T <n≤xe u T a n sgn(x -n)   φ(u) du + κ T T 0   xe -u T <n≤xe u T a n   u φ(u) du + O * 4C(φ)(1 + κ 2 )e 2κ B(κ)x κ log(eT ) T 2 .
To do so, we use (4) with f (u) = φ(u/T ) to obtain a similar version of (3). Plainly, the first terms on the right hand sides of ( 8) and ( 3) applied to f are the same. If for the given κ > σ 0 and x ≥ 1 we set A(u) = 1≤n≤xe u a n for all u ∈ R then, since f is also even by (ii), the second term on the right hand side of (3) applied to f can be written

(9) +∞ 0 2A(0) -e -κu A(u) -e κu A(-u) f (u)du.
First we estimate the contribution to the integral (9) from the interval [1, +∞). From ( 2) with σ = κ we see that |A(0)| and |e -κu A(u)| for u ≥ 1 do not exceed 2B(κ)x κ . Since A(-u) = 0 when u > log x, we similarly obtain

|e κu A(-u)| ≤ 2B(κ)x κ for u ≥ 1. Consequently, we have (10) +∞ 1 2A(0) -e -κu A(u) -e κu A(-u) f (u)du ≤ 8B(κ)x κ +∞ 1 | f (u)|du ≤ 8B(κ)x κ C 3 (f ) +∞ 1 du u 3 ≤ 4B(κ)x κ C 3 (f ).
Let us now define h(z) for any complex number z by e z = 1 + z + h(z). Then the contribution to the integral (9) from the interval (0, 1) can be written as 

1 0 (2A(0) -A(u) -A(-u)) f (u)du + κ 1 0 (A(u) -A(-u)) u f (u)du - 1 0 (h(-κu)A(u) + h(κu)A(-u)) f (u)du.
1 0 (h(-κu)A(u) + h(κu)A(-u)) f (u)du ≤ 2κ 2 e 2κ B(κ)x κ 1 0 u 2 | f (u)|du.
We have f (u) = T φ(uT ) and therefore

C 3 (f ) = C3(φ) T and 1 0 u 2 | f (u)|du ≤ C(φ) log(eT ) T 2
. Also, on making the change of variable uT → u in the first two integrals in (11) and recalling the definition of A(u) we immediately see that these integrals are, respectively, the same as the second and third integrals on the right hand side of [START_REF] Wolke | On the explicit formula of Riemann-von Mangoldt[END_REF]. Since C 3 (φ) ≤ C(φ), the preceding remarks together with (10) and ( 12) gives [START_REF] Wolke | On the explicit formula of Riemann-von Mangoldt[END_REF].

Let us now simplify (8) further. Note that we have |A(u)| ≤ 2B(κ)x κ e κ when |u| ≤ 1 by [START_REF] Coppola | On the symmetry of arithmetical functions in almost all short intervals[END_REF]. The triangle inequality gives

(13) κ T T 0 A( u T ) -A - u T u φ(u) du ≤ 4κB(κ)x κ e κ T T 0 u| φ(u)|du ≤ 8C(φ)κB(κ)x κ e κ T , since T 0 u| φ(u)|du ≤ C 0 (φ) + C 3 (φ)
. By the definition of A(u), the integrand in the first term of (13) is the same as that in the second integral on the right hand side of [START_REF] Wolke | On the explicit formula of Riemann-von Mangoldt[END_REF]. Thus the corollary follows from the above estimate and ( 8), on noting that log(eT )

T 2 ≤ 1 T when T ≥ 1. Remark 2.3.
In basic applications it is useful to further simplify the second term on the right hand side of [START_REF] Liu | Perron's formula and the prime number theorem for automorphic L-functions[END_REF]. Thus suppose that φ, T satisfy the conditions of the above corollary with m = + 1, ≥ 1 and let us for brevity set

E( u T ) = xe -u T <n≤xe u T a n sgn(x -n).
Then on rewriting E( u T ) as 2A(0) -A( u T ) -A(-u T ) and using the Cahen bound (2) as above we get

(14) T T 1/ E u T φ(u) du κ,φ x κ T , since T T 1/ u| φ(u)| du φ 1/T
. Also, by the triangle inequality we have (15)

T 1/ 0 E u T du ≤ 2C(φ) max 0≤ξ≤eT 1 -1 1< n x ≤1+ξ a n + 1≤ x n <1+ξ
a n , since 1 + ξ = e u T implies ξ ≤ eu T when 0 ≤ u ≤ T , by the mean value theorem, and we have

T 0 | φ(u)|du ≤ C 0 (φ) + C 2 (φ).
It follows from (14) and (15) that the sum of the second and third terms on the right hand side of (7) can be replaced with

(16) 2C(φ) max 0≤ξ≤eT 1 -1 1≤ n x ≤1+ξ a n + 1≤ x n ≤1+ξ a n + O κ x κ T .
When used with a suitable φ, for instance with φ = p 3 (t; 1) of (41), Corollary 2.2 is of similar strength to Theorem 1 of Wolke [START_REF] Wolke | On the explicit formula of Riemann-von Mangoldt[END_REF]. The presence of the kernel φ dispenses with the delicate analysis required for the proof of Theorem 2 of [START_REF] Wolke | On the explicit formula of Riemann-von Mangoldt[END_REF]. Also, Corollary 2.2 merits comparison with Theorem 2.1 of Liu & Ye [START_REF] Liu | Perron's formula and the prime number theorem for automorphic L-functions[END_REF]. In addition to the facts that [START_REF] Liu | Perron's formula and the prime number theorem for automorphic L-functions[END_REF] has sums of the a n rather than |a n | and is valid for κ > max(0, σ c ), we note that the error term in (7) has a 1/T rather than essentially 1/ √ T in Theorem 2.1 of [START_REF] Liu | Perron's formula and the prime number theorem for automorphic L-functions[END_REF].

It is perhaps pertinent here to remark that there is a small mistake in Theorem 1 of [START_REF] Wolke | On the explicit formula of Riemann-von Mangoldt[END_REF]: in inequality (2.5) therein, a factor ( x n ) σ appears to be missing. This has the consequence that Theorem 2 of [START_REF] Wolke | On the explicit formula of Riemann-von Mangoldt[END_REF] is valid only for T ≥ log x, a restriction that is of no consequence for the applications. Theorem 1 of [START_REF] Kaczorowski | A new form of the Riemann-van Mangold explicit formula[END_REF] must therefore also be read with the same restriction (A. Perelli agrees on this point) as it relies on [START_REF] Wolke | On the explicit formula of Riemann-von Mangoldt[END_REF].

One may hope to use the symmetry on account of the factor sgn(x -n) in the first error term of Proposition 2.2. This is undoubtedly very difficult in general, but see Coppola and Salerno [START_REF] Coppola | On the symmetry of the divisor function in almost all short intervals[END_REF] and [START_REF] Coppola | On the symmetry of arithmetical functions in almost all short intervals[END_REF] a treatment. Theorem 1 in Kaczorowski & Perelli [START_REF] Kaczorowski | A new form of the Riemann-van Mangold explicit formula[END_REF] also gives a formula with a similar symmetry.

Thanks.

Proof of the Theorem

We start with a non-constant integer valued polynomial f . For any prime q, we define V * q (f ) to be the set of non zero values taken by f modulo q. If for any integer n we write ñ to denote the image of n modulo q and write 1 V * q (f ) for the characteristic function of V * q (f ), then we have that

(17) 1 V * q (f ) (ñ) = χ mod q c q (χ)χ(n) ,
for all integers n, where the sum runs over all Dirichlet characters χ modulo q with c q (χ) defined to be 1 φ(q) a∈V * q (f ) χ(a). To quantify our estimates, we use

(18) W 1 = Q≤q≤2Q, q prime χ mod q, χ =χ0 |c q (χ)|, W 2 = Q≤q≤2Q, q prime χ mod q, χ =χ0 |c q (χ)| 2 .
By an application of the Cauchy-Schwarz inequality followed by the Parseval relation for the group (Z/qZ) * we get (19)

χ mod q |c q (χ)| ≤ φ(q) 1 2   χ mod q |c(χ)| 2   1 2 = |V * q (f )| 1 2
while χ mod q, χ =χ0

|c q (χ)| 2 ≤ |V * q (f )|/φ(q) by the Parseval relation. Since the polynomial f is integer-valued, it is an integral linear combination of binomial polynomials, from which we deduce that there exists an integer b such that cf is polynomial in Z[X]. A further consequence is that the equation f (x) = m modulo the prime q has, except for finitely many q's, at most the degree of f solutions; indeed, we only have to avoid those q's for which cf modulo q becomes a constant polynomial. We conclude from these remarks that, except for finitely many primes, we have 1/ deg(f ) ≤ |V * q (f )|/φ(q) ≤ 1. We will however refrain to use these bounds until (31) and only use W 1 and W 2 .

Throughout the remainder of this section b = {b n } n≥1 will denote one of the sequences {Λ(n)} n≥1 and {µ(n)} n≥1 . Then for any real number w ≥ 1 we have (20)

Q≤q≤2Q, q prime 1≤n≤w, n∈V * q (f ) mod q. b n = Q≤q≤2Q, q prime χ mod q c q (χ) 1≤n≤w χ(n)b n .
For a given real x ≥ 1, let us set y = x θ with 0 < θ < 1. Then on subtracting the contribution from the principal character χ 0 modulo q to the right hand side of (20) from both sides of this relation and using the resulting relation for w = x, w = x + y together with triangle inequality we get (21)

Q≤q≤2Q, q prime x<n≤x+y, n∈V * q (f ) mod q. b n - |V * q (f )| φ(q) x<n≤x+y, (n,q)=1. b n ≤ Q≤q≤2Q, q prime χ mod q, χ =χ0. c q (χ) x<n≤x+y χ(n)b n .
We shall presently bound the sum

(22) Σ = Σ(b, x, y, Q) = Q≤q≤2Q, q prime χ mod q, χ =χ0. c q (χ) x<n≤x+y b n χ(n) .
by means of Corollary 2.2. To this end, we set F (s, χ) = n≥1 b n χ(n)/n s , which converges in σ > 1 2 for each χ = χ 0 under the GRH for our sequences b. We then fix a > 0 and set κ = 1 2 + . Also, we let ϕ be a positive continuous function supported in [-1, 1] and satisfying the conditions on φ of Corollary 2.2 with m = 2. For example we may take φ = p 3 (t; 1) of (41). On applying this corollary we now get

1≤n≤w b n χ(n) = 1 2πi κ+i∞ κ-i∞ F (s, χ)ϕ s -κ 2πiT 
w s s ds + T 0   we -u T <n≤we u T b n χ(n)sgn(w -n)   φ(u) du + O B(κ, χ)w κ log(eT ) T 2 , (23) 
for all real numbers w ≥ 1, T ≥ 1 and χ = χ 0 . Here we have

B(κ, χ) = sup N ≥1 | 1≤n≤N bnχ(n) n κ |
q under the GRH for sequences b given above, as can be seen by integrating by parts using Theorem 15.5 of [START_REF] Iwaniec | Analytic number theory[END_REF]. We now note the following lemma, which allows us to take advantage of the cancellation in the sums on the right hand side of the above relation. Lemma 3.1. Let w ≥ T ≥ 1 be two real numbers. Then with {b n } n≥1 as above, we have

(24) T 0 Q≤q≤2Q, q prime χ mod q, χ =χ0. c q (χ) we -u T <n≤we u T b n sgn(w -n)χ(n) φ(u) du max 1≤n≤ew |b n | w log(eT ) T + √ w √ T Q W 2 .
where the implied constant depends on ϕ alone.

Proof. We set u n = b n sgn(w -n). By means of the triangle inequality and the Cauchy-Schwarz inequality we have T 0 Q≤q≤2Q, q prime χ mod q, χ =χ0.

c q (χ)

we -u T <n≤we u T u n χ(n) φ(u) du 2 ≤ Q≤q≤2Q, q prime χ mod q, χ =χ0. |c q (χ)| 2 T 0 | φ(u)| du × T 0 Q≤q≤2Q, q prime χ mod q, χ =χ0. we -u T <n≤we u T u n χ(n) 2 | φ(u)| du . ( 25 
)
Since φ is integrable on R, the first of the two bracketed expressions on the right hand side of the above relation does not exceed φ 1 W 1 . We estimate the second expression using the variant of the large sieve inequality for characters that can be found for instance in [START_REF] Iwaniec | Analytic number theory[END_REF]Theorem 7.13]. Indeed, when w ≥ 1 and u > 0, the number of integers in (we -u T , we

u T ] is at most 2wue u T T + 1.
Then it follows from this inequality that

Q≤q≤2Q, q prime χ mod q, χ =χ0 we -u T <n≤we u T u n χ(n) 2 ≤ max we -u T <n≤we u T |u n | 2 2wue u T T + 1 2wue u T T + 4Q 2 max we -u T <n≤we u T |u n | 2 w 2 u 2 T 2 + wu T Q 2 + Q 2 . (26) On noting that T 0 u 2 | φ(u)| du ≤ C(φ) log(eT ), T 0 u| φ(u)| du ≤ 2C(φ) and T 0 | φ(u)| du ≤ 2C(φ)
we conclude that the second expression in the brackets on the right hand side of (25) is majorised by

max 1≤n≤ex |u n | 2 T 0 w 2 u 2 T 2 + wu T Q 2 + Q 2 | φ(u)| du max 1≤n≤ew |u n | 2 w 2 log(eT ) T 2 + w T Q 2 + Q 2 .
Since T ≤ w, the lemma now follows on substituting the preceding bounds into (25) and passing to square roots.

We sum the absolute values of both sides of (23) over the characters χ = χ 0 and the primes q in [Q, 2Q]. We then estimate the second and third terms on the right hand side of the resulting relation using Lemma 3.1. On using (19) to bound the error term of this relation we conclude that Q≤q≤2Q, q prime

χ mod q, χ =χ0. 1≤n≤w b n χ(n) = 1 2πi κ+i∞ κ-i∞ Q≤q≤2Q, q prime χ mod q, χ =χ0. F (s, χ)ϕ s -κ 2πiT 
w s s ds + O max 1≤n≤ew |b n | w log(eT ) T + √ w √ T Q W 2 + O Q log(eT )w 1 2 + W 1 T 2 (27)
for all real w ≥ 1. We apply this with w = x and w = x + y, subtract and recall the definition of Σ to obtain by means of the triangle inequality that

Σ ≤ 1 2π κ+i∞ κ-i∞ Q≤q≤2Q, q prime χ mod q, χ =χ0. |c q (χ)||F (s, χ)| ϕ s -κ 2πiT (x + y) s -x s s dt + O max 1≤n≤2ex |b n | x log(eT ) T + √ x √ T Q W 2 + O W 1 x 1 2 + log(eT ) T 2 . ( 28 
)
On the GRH we have the classical Lindelöf bound |F (s, χ)| (q + q|t|) , by [START_REF] Iwaniec | Analytic number theory[END_REF], Theorem 5.17 and Corollary 5.19. Also, for s = κ + it we have | (x+y) s -x s s | ≤ min( 3x κ |s| , x κ-1 y) by a trivial estimate and the mean value theorem. Further, ϕ( s-κ 2πiT ) = 0 when |t| ≥ T . On combining these remarks with (19) and assuming that T ≤ x, we see that κ+i∞ κ-i∞ Q≤q≤2Q, q prime χ mod q, χ =χ0

|c q (χ)||F (s, χ)| ϕ s -κ 2πiT (x + y) s -x s s dt W 1 (xQ) T -T min 3x κ |κ + it| , x κ-1 y dt yW 1 x 1 2 min T, x y (xQ) (29) 
Using this in (24) and noting that log(eT )

x we finally obtain

Σ (xQ) yW 1 x 1 2 min(T, x y ) + x √ W 2 T + Q √ xW 2 T 1/2 , ( 30 
)
since for our choices of the sequence b we certainly have max 1≤n≤2ex |b n |

x . If we select T larger than x/y, then the first term of our majorant is O((xQ) W 1 √ x), which is what using the GRH of each sum modulo q gives. Since we want to improve on this bound, we seek to choose T smaller. We set T = x 3/4 W 1/4 2 / √ yW 1 which we assume to be within [1, x]. Then on combining (30) with ( 21) and ( 22) we get the bound (31)

Q≤q≤2Q, q prime x<n≤x+y, n∈V * q (f ) b n - |V * q (f )| φ(q)
x<n≤x+y, (n,q)=1.

b n yQ (Qx)

x 1/4 W 1/4 2 W 1/2 1 y 1/2 Q + W 3/8 2 W 1/4 1 y 3/4 .
We now employ the bounds W 1 Q 3/2 and W 2 Q to infer that (32)

Q≤q≤2Q, q prime x<n≤x+y, n∈V * q (f ) b n - |V * q (f )| φ(q)
x<n≤x+y, (n,q)=1.

b n yQ (Qx)

x 1/4 1 y 1/2 + Q 3/4 y 3/4 .
The assumed condition T ≥ 2 is granted by the condition Qy ≤ c x 3/2 for a large enough constant c.

3.1.

The case of the primes. We now take b n = Λ(n) in (32) and verify the first conclusion of Theorem 1.1. In effect, since Q ≤ x, in this case (32) can be rewritten as

log Q Q Q≤q≤2Q, q prime x<n≤x+y, n∈V * q (f ) Λ(n)- |V * q (f )| φ(q) x<n≤x+y, (n,q)=1. Λ(n) y x x 1/4 y 1/2 + Q 3/4 x 1/4 y 3/4 .
Under the RH we have x<n≤x+y Λ

(n) = y + O(x 1 2 (log x) 2 
)). The trivial estimate for the contribution from n = p k , with p prime and k ≥ 2, to the sums inside the absolute value on the left hand side is O(x 1 2 (log x) 2 ). Since Q ≤ x, the condition (n, q) = 1 on the left hand side can be dropped when n is a prime. These remarks yield log

Q Q Q≤q≤2Q, q prime. x<p≤x+y, p∈V * q (f ) p prime. log p- |V * q (f )|y φ(q) y (Qx) x 1/4 y 1/2 + Q 3/4 x 1/4 y 3/4 +x 1 2 (log x) 2 . With y = x 1 2 +δ we have x 1 2 (log x) 2 yx x -δ 2 . Since also Q ≤ x θ with θ = δ+ 1 6 -η, we get (33) log Q Q Q≤q≤2Q, q prime. x<p≤x+y, p∈V * q (f ) p prime. log p - |V * q (f )|y φ(q) yx x -δ/2 + x -3η/4 .
As noted before, for all but finitely many prime numbers q we have |V

* q (f )| ≥ (p -1)/ deg f and φ(q) = q -1. Thus if S is the set of primes q in [Q, 2Q] such that (34) x-y≤p≤x, p∈V * q (f ) log p - |V * q (f )|y q -1 ≥ |V * q (f )|y q -1 x -ξ , ξ = min(δ/2, 3η/4) then it follows from (33) with = ξ/2 that (35) |S| Q x -ξ/2 Q -ξ/2 ,
which yields the desired conclusion of the theorem after removing the weights log p in the usual fashion.

3.2. The case of the Möbius function. Here we set b n = µ(n) in (32) and carry out the details just as in the preceding case, taking note of the simplification afforded by the fact that in this case there is no main term and no prime powers in the support of the function µ.

Moving the Line of Integration

Our first purpose here is to record the proposition below that describes the effect of "moving the line of integration" in the integrals over the line σ = κ on the right hand sides of ( 8) and ( 7) when φ is a given continuous positive compactly supported piecewise polynomial function.

It will be convenient here to use both s = σ + it and z = u + iv to denote complex numbers. Also, we shall suppose that the support of φ is in [-U, U ] for some U > 0. Further, let -U = u 1 < u 2 < . . . < u m = U be such that the restriction of φ to the real interval [u j , u j+1 ) agrees with that of a polynomial φ j defined on C, for 1 ≤ j ≤ m -1. We will assume that u j = 0 and let η ≤ |u j | for all j. Let V > 0 be a positive real number and let M satisfy | φ j (z)| ≤ M for all z = u + iv in the rectangle -U ≤ u ≤ U and 0 ≤ v ≤ V and 1 ≤ j ≤ m -1. Finally, we define φ(z) for z = u + iv with u ∈ [-U, U ) by φ(z) = φ j (z) where j is the unique index such that u ∈ [u j , u j+1 ) . Proposition 4.1. With notation as above, let κ , κ be such that 0 < κ -κ ≤ 2πV . Also, let F be a meromorphic function on a neighbourhood of the closed rectangle with vertices κ ± 2πiU T and κ ± 2πiU T , for some T ≥ 1. Suppose further that if A is the set of poles of s → F (s)/s in this neighbourhood then Re(a) = κ, κ and Im(a) = 2πu j for all a in A and 1 ≤ j ≤ m. Then we have that Proof. For 1 ≤ j ≤ m -1, the function G with G(s) = F (s) φj ( s-κ 2πiT )x s s is meromorphic in a neighbourhood of the closed rectangle R j with vertices κ + 2πiu j+1 T , κ + 2πiu j T and κ + 2πiu j T , κ + 2πiu j+1 T , with no poles on the boundary of this rectangle. On applying the residue theorem to G on each R j oriented anticlockwise for 1 ≤ j ≤ m -1 and adding the resulting relations, we see that (36) follows if we show that the sum of the integrals of G along the oriented horizontal sides of the

( 11 )

 11 We estimate the third integral in (11) by means of the bounds |h(z)| ≤ |z| 2 e |z| 2 for all z ∈ C and |A(u)| ≤ 2B(κ)x κ e κ for |u| ≤ 1. The first of these bounds follows from the Taylor expansion of e z while the second follows from (2) with σ = κ. We obtain (12)

R j is majorised by the error term in (36). This reduces to verifying for 1 ≤ j ≤ m the inequality (37) 1 2πi

where

. Then since φ is continuous and supported in [-U, U ], we have a j (κ) = P j (u j ) = 0 for each j. Thus the mean value theorem applied to σ → a j (σ), which is a continuously differentiable function, gives (38)

for all σ ∈ [κ , κ] and 1 ≤ j ≤ m. Here we have used 0

These bounds together with an application of the triangle inequality to the left hand side of (37) verify this inequality.

We now describe a convenient family test functions that may be used for φ in our formulae. Let us we set δ > 0 and m ≥ 1, an integer. Also, we will write 1 

. and that pm (-u; δ) = pm (u; δ). We end this note by explicitly describing p 3 (t; 1) :

when 7/6 ≤ |t| ≤ 3/2, (36t 3 -108t 2 + 99t -25)/4 when 5/6 ≤ |t| ≤ 7/6, (-9t 3 + 27t 2 -27t + 25)/16 when 1/2 ≤ |t| ≤ 5/6, 1 when |t| ≤ 1/2.
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