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1 Introduction

At the beginning of our query lie two constants, namely

1 I 1\ 2
A3 = 512214 (1 - 2) (1)
2T SN P
and 12
34 /m log(2 + v/3)1/4 1\~
( / ) p=5,7,11[12] p

Both occur in number theory as densities. The number of integers n of the
shape n = 22 — 2y + y?, where x and y are integers (these are the so-called
Loeschian numbers, see sequence A003136 of the [2]), is given by

z(1+ o(1))
N(z) = qa—~r 77 3
(@) =™ 3)
This accounts for our interest in the first constant. The second one occurs
because the number of Loeschian numbers that are also sums of two squares
(see sequence A301430 of the [2]) is given by

z(1+ o(1))
Viegz -

The question we address here is devising a fast manner to compute the in-
tervening Euler products. From sequence A301429 of the [2], we know that
ag = 0.638909... but we would like (much!) more digits. Similarly the con-
stant a; = 0.30231614235. ... We prove here that

N'(z) = a3

Theorem 1.1. We have

az = 0.63890 94054 45343 88225 49426 74928 24509 37549 75508 02912
33454 21692 36570 80763 10027 64965 82468 97179 11252 86643 - - -

[2] O.F. Inc., 2019, The On-Line Encyclopedia of Integer Sequence.

{eq:12}

{eq:1}



and

a1 = 0.30231 61425 69799 15540 44179 05922 52433 94675 42586 71306
1371535597 72574 35560 81500 06128 08597 69222 39895 08293 - - -

As a matter of fact, our method is more general and allows one to compute
Euler products of the shape

[T a-p™

peAmod q

for any s with Rs > 1 and some subsets A of (Z/gZ)*. The history of such
formulae for scientific computations starts with D. Shanks in [7, equation (15)].
D. Shanks’s approach has been put in a general context by P. Moree & D. Osburn
in [3, equation (3.2)]. As a matter of fact, an accurate value of a3 already follows
from this paper, but not the one for ;. The formulae we prove have a wider
reach, though they fail to exhaust the problem. A subset A of (Z/qZ)* is said
to be a lattice-invariant class is all its elements generate the same subgroup (see
Definition 3.1 below). Here is a consequence of our approach.

Theorem 1.2. Let q be some modulus and A be a lattice-invariant class of
(Z/qZ)* . For every s > 1, the product

[[ a=p)

pmodgeA
can be computed in double-exponential time.

This theorem applies in particular to [ ],_;,(1—p~") and to [ [,—_,(1 -
p~?) and this is enough to compute a; and ag. We end this paper with numerical
examples.

The material of this paper has been used to write the script

LatticeInvariantEulerProducts.sage

which we shorten below in LIEP.sage and which can be found on the second
author website. We give some details about this script when developing the
proof below.

Precise statement of the main result

Let ¢ > 1 be a modulus. We set Gy be a subgroup of G = (Z/qZ)* and Gg
be the subgroup of characters that take the value 1 on Gy. Let s > 1 be a real
number.

Remark 1.3. We assume that s is a real number while in fact, any complex
value with real part > 1 would do. We do so because our prsentation relies on
logarithms and this allows us to use the confortable notation of linear analys.
If we skip this step and stick to the multiplicative setting, all our estimates still
hold true.

[7] D. Shanks, 1964, “The second-order term in the asymptotic expansion of B(z)”.
[3] P. Moree and R. Osburn, 2006, “Two-dimensional lattices with few distances”.
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Let P > 2 be a parameter. We shall compute directly what happens for the
primes < P. We define accordingly

Lp(s,x) = [ [ (1 = x(»)/p"). (4)

p=P

We define, for any positive integer ¢:

Vs(Go,t) =log [ Lp(ts, x). (5)

XEG#

The parameter P has disappeared from our notation and the reader may stick
with P = 2. When s is a real number, the number erGé Lp(ts,x) is indeed a

positive real number, essentially because, when y belongs to G(J)-, so does X.
We denote the set of lattice-invariant clases by G¥ and the set of cyclic
subgroups by ¢. Both sets are in an obvious one-to-one correspondence. We
consider the vector
Ls(t) = (75(Gos 1)) Goew - (6)
The vector T'4(t) has cyclic subgroups as indices for its rows. The rather for-
mal expression is computed by the function GetFormalExpGamma of the script
LIEP.sage from the values of the Hurwitz zeta function; by “rather formal”,
we mean that we have not yet introduced the notion of interval arithmetic and
that we did not take the logarithm of the value yet; the numerical computations
will deliver complex numbers with a negligible imaginary part, which we have
to convert to a real number before applying the logarithm function. We next

define
Vi(t) = <1og I (1—p‘5))b ” (7)

p+qZebd,
p=P

The vector Vi (t) has classes as indices for its rows. We control the size of our
vectors with the norm
W] = max W] (®)

when W is the vector of coordinates W;. We define the matrix M, ' by

{u(l@/KI)/G/KI when K < (b),
0

M = .
otherwise.

i=bj=K 9)
It is unusual to define a matrix by its inverse. In the natural course of the
proof, a matrix M; will occur, whose inverse is the one above; it is computed
in Proposition 4.1. The reader will readily check that there are no circularity
in our definitions. Let us recall that the exponent of G is the maximal order of
an element in G and is denoted by exp G. To each divisor d > 1 of exp G, we
associate the matrix Ny whose columns and rows are indexed by cyclic subgroups
of G and whose entries are given by

Nd|¢:30,j:31 (10)

_ Ju(|Bo/K]|) if 3K/|By/K|=dand K < By n By,
o otherwise.

Such a subgroup K if it exists is unique: it is determined by B; and d as there
are only one subgroup of index d in the cyclic group B;. Here is our main
theorem.

{defGammaoft}

{defVsoft}

{eq:8}

{defL}

{defNd}



{precise}
Theorem 1.4. For any integer r = 2, we have

A D SR CS MDY Ndl...Nd”Mles(dl...dv)

o<v<r—1 dydy <27 dy o
“|d "14+27"s7LP
< 2r <|G | (;)XPG)> + PS; (11) {fineq}
where dy, ...,d, are all divisors of exp G excluding 1.

When v =0, weuse dy ...d, =1 and Ny, --- Ng, = Id.

2 A general mechanism

Let us start by presenting the mechanism of Shanks is a somewhat general

setting.
{shanks}
Lemma 2.1. Let P be a set of prime numbers and let f be a function from P

to {£1}. For every s with s > 1, we have

—5\2 __ HPEKP(lipis) o 2s
pl;,[, =) T Lep(1 = f(p)p~) pl;l’ =

fp)=-1 fp)=—1

Proof. The proof is straighforward. We simply write

—S

1-p)? _ 1-p~° _ 1-p
[l L—p=2 L] L+p=s Ll 1—f(p)p

peP, peP, peEP,
f(p)=-1 f(p)=-1 fp)=—1
“T1 _Lep
sop L= ()™
as required. O

Shanks’s method is efficient to deal with product of primes belonging to a

: ) coset modulo a quadratic character. We generalize it as follows.
dede
Lemma 2.2. Let g > 1 be a modulus. We set Gg be a subgroup of G = (Z/qZ)*

and Gg be the subgroup of characters that take the value 1 on Go. For any
integer b, we define (b) to the the subgroup generated by b modulo q. We have

e —IGUE]
[ e= [T T] (-ser)
xeGg GocKcG  p=P,

(p)Go=K

and, for any element a ¢ Go of order 2, we have

. (1 _p|K/G0\s/2)2 —|G/K]|
n LP(SaX)X( ) = H 1_[ ( l_p*|K/Go\S

xeGE GocKcG, p=P,
aeK (p)Go=K

where G is the set of characters of G.



Case Gy = {1} of the first identity is classical in Dedekind zeta function
theory, and can be found in [6, Proposition 13] in a rephrased form. Case a # 1
will not be required for the general theory. It may however lead quickly to the
required result.

Proof. We note that ercé(l —x(p)z)X(®) = [Tpen(1— ¥(p)2)f @) when (p) =
H and where
fw)=" %, x(@): (12) {ea:6)
x€Gy,
x|H=1

The condition x € G can also be written as x|Go = 1, hence we can assume
that ¢|(H n Go) = 1. We write

[Ta-xma¥ = ] 0-vp=/ ™
x€Gy ¢'eHGo,
' |Go=1

where
F@h =" xl. (13) {eq:76}
XEG’&,
X|HGo=1

When a does not belong to HG), this sum vanishes; otherwise it equals |G/(HGp)|¢'(a).
The characters of HG( that vanish on Gy are essentially the characters on the
cyclic group (HGy)/Go. We thus have

H (1 —tp(p)z) = 1 — £|(HG0)/Gol,
¢'eHGo,
¥ |Go=1

When a? = 1[q] and a ¢ Gy, and since (HGy)/Gy is cyclic, of (even) order
h say, the characters are given by x(p*) = e(cx/h) since p is a generator and
where ¢ ranges {0,--- ,h — 1}. We thus have, when a € H,

[T a=v®)"@ = ] Q-el/h)z)?

w’e(HC/;o\)/GO cmod h
= J] @-e@dn)z) ] Q-e(@d+1)/h)z)""
0<d<(h—2)/2 0<d<(h—2)/2
1— Zh/2 1— Zh/2 (1 _ Zh/2)2
11— (e(1/h)2)M2 14 2h2 1 —2h
The reader will readily complete the proof by setting K = HGy. O
Examples

Let us select for G the kernel of a given quadratic character x;. The subgroup
K can take only two values, Gg or G. We thus get

L(s,x1)L(s;x0) = [ =p)? J] (-p)

x1(p)=1 x1(p)=—1

[6] J.-P. Serre, 1970, Cours d’arithmétique.
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{eq:9}

which gets converted into

L(s,x1)L(s,x0) = L(s,x0)*  [] (1=p7)7 [] (-p7) (14)

x1(p)=-1 x1(p)=-1

which is what follows from Lemma 2.1. In the same situation, let a be outside
Go. The only choice for K is K = G. We find that

L(s,x0)/Ls,x1) =[] A-p)"

_ mn—2s5)2
x1(p)=—1 (L=p7)

which gets converted into

L _
L(s,x0)/L(s;x1) =[] 8_2_22): I1 1 -

which is rather trivial.

3 Products obtained

We want to compute Euler products of the shape

[T a-1p9

peAmod g

for s > 1 and some subset A of (Z/gZ)*. Computing L(s, x) is easier as it can
be reduced to sums over integers is some arithmetic progressions. Equation (14)
reduces the computations of [ [ ¢ 4,044(1 —1/p%) to the one of [ [ 4 o q(1 —

2: : « . 2N
1/p**), and we can continue the process. We soon reach [ [ ¢ 40441 —1/P° %)
with a large enough N which can be approximated by 1+O(272V#). The object
of this section is to devise a setting to understand which sums we relate together.

Definition 3.1. Two elements g1 and g of the abelian group G are said to be
lattice-invariant if and only if they generates the same group.

The map between the cyclic subgroups of G and the lattice-invariant-classes
which, to a subgroup, associates the subset of its generators, is one-to-one.

The function GetLatticeInvariantClasses of the script LIEP.sage gives
the two lists: the one of the cyclic subgroups and the one of their generators,
ordered similarly and in increasing size of the subgroup.

Any two elements of (Z/qZ)* equivalent according to it cannot be distin-
guished by using the formulae of Lemma 2.2. Conversely, the question is to
know whether we are indeed able to distinguish each class.

We set G = (Z/qZ)*. Let G¥ be the set of all lattice-invariant-equivalence
classes. To each class b, we attach the enumerable collection of symbols (z})r>1.
We shall replace each of them according to

xp — log n (1-p°). (15)
p+qZeb,
p=P

{myshanks}



We consider the module of finite formal combinations

.
2, i

beGH,
r=1

with coeflicients oy, € Z and indeterminates xj. The superscript r is not a
power. We consider the following special elements. Let Gg € K < G be two
subgroups such that K/Gyq is cyclic. We define

9(Go, Kty = Y el (16)
beGHE bGo=K
With that, we find that

GocKcG

4 TIterating the formulae

The first identity of Lemma 2.2 gives us as many identities as there are subgroups
Go; we know by Definition 3.1 that the number of lattice-invariant-classes equals
the one of cyclic subgroups. It turns out that it is enough to restrict our atten-
tion to cyclic subgroups Gy. Let & be the subset of such subgroups, which we
order by inclusion. On recalling (6), we may then rewrite (17) in the form

L(t) = ). MgVi(dt) (18)
d||G|

where (this is the case K = Gy)

jval R 19
1|z=Go,J=b {0 otherwise, 1)
and, where, when d > 1 (i.e. Go € K), we have
|G/bGo|  if [bGol/|Gol = d,
Ml R 20
d|l:G07J:b {0 otherwise. 20)

Equation (18) gives us a relation between M;V;(t) and MyV;(dt) for several d’s
that are strictly larger than 1. Our roadmap is to invert the matrix M; and
to iterate this formula. We compute explicitely M; ! by using some generalised
Moebius inversion, which we first put in place.

The Moebius function associated to ¥

We follow closely the exposition of Rota in [5]. On the algebra of functions f on
couples (K, L) of points of ¢4 such that K < L (the so-called incidence algebra,
see [5, Section 3]), we define the convolution product

(f*9)(K,L)= > f(K H)g(HL).

KcHcL

[5] G.-C. Rota, 1964, “On the foundations of combinatorial theory. I. Theory of Mdbius
functions”.

{eq:5}

{basicrel}

{initeq}

{eq:20}

{eq:19}



{eq:21}

{eq:21b}

{eq:22}

{eq:23}

We consider the ¢-zeta function which is defined by

1 when K c L,

0 otherwise.

C%(KvL) = {

This function is shown to be invertible in the above algebra and its inverse is
called the ¥-Moebius function, denoted by ue. By definition, we have the two
Moebius inversion formulas:

Z f(K7H)=g(K7L) B f(K7L): Z 9<K7H)M€4(HaL) (21)

KcHcL KcHcL
and
>, fHL)=g(K,L) = f(K,L)= Y, pug(K H)g(HL). (22)
KcHcL KcHcL

We end this reminder with a formula giving the value of ug (K, H).

Computing ug (K, H)

Let C,(K, H) be the number of chains of length p going from K to H, i.e. the
number of p + l-uples K = Ay & A1 € A2 & ... & A, = H. Then (cf [5,
Proposition 6])

peg (K, H) = > (~1)PCy (K, H). (23)

p=0

Since the subgroups of a cyclic group are all cyclic, we only have to consider the
chains in H/K. There is one and only one subgroup for each divisor of |H/K]|,
and any two such subgroups L; and Ly are included according to whether their
|L1|||L2| or not. This transfers the problem on a problem on integers. Let
cp(n) be the number of p + 1-divisibility chains between 1 and n. We have
co(n) = 1,21 while ¢1(n) = 1,52 and ¢cp+1(n) = (¢p * ¢1)(n). This proves that
cp(n) = dy(n), the number of p-tuples (di,ds,...,d,) of divisors of n that are
such that d; # 1 and didy - - - d, = n. We have

> dy(n)/n® = (¢(s) — 1)

n=1

and thus the generating series of 3, _(—1)Pd;(n) is

ng)(_l)p(qS) - 1P = Trc) =1 1/¢(s).
We have proved that
peg (K, H) = p(|H/K]). (24)

[6] G.-C. Rota, 1964, “On the foundations of combinatorial theory. I. Theory of Mdbius
functions”.



Inverting the matrix M;
{compL}
Proposition 4.1. The matrixz M; is invertible and the coefficients of its inverse

are given by

M71| _ w(|<bY/K|)/|G/K| when K < {b),
bolishi=K 0 otherwise.

Proof. We find that

M1V = (|G/K| Z ’Ub)K.
bcK

We replace b by the subroup B = (b) it generates. Inverting f(K) = |G/K| > s VB
is done with the Moebius function of ¢4. To do so, simply consider the more
general function

F(H,K)=|G/K| Y. v*(H, B)=|G/K|(v**(y)(H, K)
HcBcK

where v*(H, B) = vg. This gets inverted in

U*(H7B): Z F(H,K)‘G/K‘_lug(K,B)
HcKcB

which yield, by specializing H = {1}

vp = Y, [(K)|G/K| ' uy (K, B).

KcB

We could also have applied [5, Proposition 2 (**)]. This gives us

1 ug (K, B)/|G/K| if K c B,
M, |i=B =K .
J 0 otherwise.
Our proposition is proved. O]

The function GetMiInverse of the script LIEP.sage computes Ml_l.

The recursion formula
We start from (18) and deduce that

Vo(t) = — > M7 MyVi(dt) + My 'D(t). (25) {seceq}

|G|,
d#1

We readily find that Ny = dM; ' My is given by (10).

Proof. Indeed we have

-1
Nali_p s =d > wl|Bo/K|)|G/K|7G/By.
I(CB(}7
KcBy,
|B1/K|=d

This is exactly what we have written in (10). O



As a consequence, we see that only the d that divides the ezponent of G.
The function GetNds of the script LIEP.sage computes (Ny)q.

V)=~ 3 SAVi(dn) + M), (26)

d|exp G,
d#1

Unfolding the recursion

Let z > 1 and r > 1 be two parameters. We have

N, N,
Vi(t)=(-1)" Y = =R v(d L dt)
didy< dy dy
1dr<z
Na Na
-1)” Lo —=2V(dy ... dyt
Fn ey 3 A M)
<v<r dy-dy—_1<z,
d1-~-dv71dv>2’
. v Na, Na, , 1 -1
{recursion} + }: (-1 }: e M T(dy...dyt)+ M T(t) (27)
1< dl d”
<v<r—1 dy-dy<z
where di,...,d, are all divisors of exp G excluding 1. We can incorporate the

last summand in the one before by considering as the value for s = 0.

Proof. Let us prove this formula by recursion. Case r = 1 is just (26). Let us
see precisely what happens for r = 2. We start from

1
Vi) =— )] d—Ndlvs(dlt)Jer_lF(t)
dy|exp G, 1
di1#1

which we rewrite as

Ng Ny
Vi(t) = — LV, (dqt) — LV, (dit) + M7 IT(2).
(t) > 4 (dit) > 4 (dit) + My T(¢)
di|exp G, di|exp G,
di#1, dy#1,
di1<z dy>z

We use again this equation on Vi(dit) when d; < z, and z/d; rather than z,
getting

Ng, N,
Vi(t) = ), > i Vs(ddat)
di|exp G, dz2| exp G,

dy#1, da#1,
d1<z dida<z

n Z Z Nd1 ng V;((hdgf) _ Z ZZdl Vvs(dlt)

dl d2 1
di|exp G, d2| exp G, di|exp G,
dy#1, da#1, di#1,
d1<z dida>z d1>z

N,

— Y SRMIT() + MTD().
dy

di|exp G,

d1#1,
di1<z

To go from r to r+ 1, we select the divisors d, that are such that dids ---d, < z
and employ (26) on Vi(d; - - - d,t). O

10

{trieq}



Lemma 4.2. The coefficients of a product Ng, Ny, - -+ Ng, are at most (in ab-
solute value) equal to |GE|"~', where G* is the set of lattice-invariant classes
(which is also the number of cyclic subgroups of G ).

End of the proof of Theorem 1.4

The formula (27) with ¢ = 1 contains most of our proof.

The number of possible d’s is at most the number of divisors of exp G minus 1,
so at most d(exp G). The coefficients of a typical product Ny, - - - Ny, are of size
at most |G#|?~1, we divide each coefficient by d; - - - d,, which is at least z, and we
have at most d(exp G)? v-tuples (dy, ..., d,). As a consequence, each coordinate,
says y, of the vector

v Na,  Na,
(-1 > d—l i Vi(dy ... dyt)

1<v<r dy-dy—1<2,
dl--'dvfldru>z

satisfies . .
GH|d G
ly| <r M max | Vs (Dt)].
z D>2r

We deal similarly with the coordinates of the vector

N, N,
-0 Y =R =RV (dy . det)
dy d,
dy-d.<z

except that the denominator d; - - - d,- is not especially larger than z; we however
select z = 2" to ensure this condition. So, on combining both, we see that

AGEEED JENCE VDY Ndl...Nd”Mles(dl...dv)

0<v<r—1 dy-dy <27 dy dy

CPld(expG) )"
<or (140 max [V,(D)]. (29

To complete the proof, we simply need a bound for maxpsar |Vs(D)|| and such
a bound is provided by the next lemma.

Lemma 4.3. Let A be a subset of the G = (Z/qZ)*. Let f > 1 be a real
parameter. We have

1
‘bg 10 _p—f)’ L i

PEA, P!
p=P
Proof. We use
_ 1
log [[(1=p7") == 2 27
peA, peA, k=1
p=P p=P

hence, by using a comparison to an integral, we find that

o [T-) < X s <57+ [
peA, n?Pn P Pt
p=P

11



5 Notes on the implementation

The parameter r is not very large, typically between 2 and 8. Since in (11),
several products d = dy---d, are equal, we store the computed values of
I's(dt) in the dictionary ComputedGammas in the function GetVs of the script
LIEP.sage. We do the same for the products Ng, --- Ng,M; ' in the dictio-
nary ComputedProductNdsMlInverse. Since the list [dy, - ,d,] cannot be a
key for sur a dictionary, we replace it in the function encode by the string
“diAdaA---d,A”.

A final and very efficient time-saver is to be introduced: when ds is very
large, we directly replace L(ds, x) by an approximation of 1.

Concerning the general structure, the function GetStructure computes all
the algebraical quantities that we need: the list of cyclic subgroups, the one of
lattice-invariant classes, the exponent of our group, its character group, the set
of invertible classes and, for each cyclic subgroup, the set of characters that are
trivial on it.

Once the script is loaded via load (*LatticeInvariantEulerProducts.sage’),
a typical call will be

GetVs(12, 2, 100, 300)

to compute modulo 12 the possible constants with s = 2, asking for 100 decimal
digits and using P = 300. The output is self explanatory. The number of deci-
mal digits asked for is roughly handled and one may lose precision in between,
but this is indicated at the end. A more precise treatment would first check
the output and if the precision attained would not be enough, increase auto-
matically this parameter. We prefer to let the users do that by themselves. For
instance the call GetVs (12, 2, 1010, 300) produces only 628 accurate digits,
but the call GetVs(12, 2, 1500, 300) produces after almost four times more
time 1262 decimals digits. The digits presented when WithLaTeX= 1 are always
accurate, so, in the first case, only 628 digits would be printed and 1262 in the
second case.

There are two subsequent optional parameters Verbose and WithLaTeX. The
first one may take the values 0, 1 and 2; when equal to 0, the function will simply
do its job and return the list of the invariant classes and the one of the computed
lower and upper values. When equal to 1, its default value, some information
on the computation is given. At level 2, more informations is given, but that
should not concern the casual user. When the parameter Verbose is at least 1
and WithLaTeX is 1, the values of the constants will be further presented in a
format suitable for inclusion in a I¥TEX-file. For instance, the call

GetVs(12, 2, 100, 300, 1, 1)

is the one used to prepare this document.

6 Some results
In this part, we exhibit some results for s = 2 and small ¢’s. We decided to

produce 100 decimal digits each time. Each computation took at most half a
minute and we selected uniformly P = 300.

12



Modulo 3

H (1 —p~2)71 = 1.03401 48754 14341 88053 90306 44413 04762 85789 65428 48909
p=1[3] 98864 16825 03842 12222 45871 09635 80496 21707 98262 05962 - - -

H (1 —p~2)71 = 1.41406 43908 92147 63756 55018 19079 82937 99076 95069 39316
p=2[3] 21750 39924 96242 39281 06992 08849 94537 54858 50247 51141 - - -

Modulo 4

[] (1=p»)~" = 1.05618 21217 26816 14173 79307 65316 21989 05875 80425 46070
p=1[4] 80120 04306 19830 27928 16062 22693 04895 12958 37291 59718 - - -

H 1- 1772)71 = 1.16807 55854 10514 28866 96967 37064 04040 13646 79021 45554
p=3[4] 79928 40563 68111 38106 59377 71094 66904 07472 79588 48702 - - -

Modulo 5

H (1—p~2)71 = 1.01091 51606 01019 52260 49565 84289 51635 31275 34474 41032
p=1[5] 78381 4478708264 60620 03940 19317 65092 17713 39087 38209 - - -

H (1 —p~2)~1 = 1.55437 60727 20889 22081 75902 82565 55177 56056 30147 34257
p=2,3[5] 4007250077 94457 39239 00871 38641 44091 80733 87878 70683 - - -

H (1 —p~2)71 = 1.00496 03239 22297 55899 37496 24810 25076 10886 10742 29796
p=4[5] 54153 2535041957 83218 23111 55915 45344 82860 11269 00178 - - -

Modulo 7

H (1 —p~2)71 = 1.00222 95338 19740 42627 18638 82440 54416 83422 51833 01832
p=1[7] 79790 08537 95406 43291 50318 83415 39590 59797 47221 82235 - - -

H (1 —p~2)~1 = 1.34984 62584 24863 74985 86354 19845 81943 27190 25780 55506
p=2,4[7] 37166 83604 83648 81410 33325 99543 93007 87688 11385 81977 - - -

H (1 —p~2)~1 = 1.18274 25972 09647 13108 58784 06326 06418 41454 09923 02135
p=3,5[7] 98060 91576 08267 05876 38542 18908 26041 77900 01774 19544 - - -

H (1 —p~2)~1 = 1.00705 20326 03654 52429 40083 99736 08430 52698 73698 58258
p=6[7] 78850 06093 35453 09488 18343 08755 41108 64586 07373 90204 - - -
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Modulo 8

H (1 —p~2)71 = 1.00483 50650 34191 18655 96551 47589 47548 58058 94319 12665

p=1[8] 2433594429 82900 54799 74898 69404 37759 00902 57396 16131 - - -
]_[ (1 —p~2)71 = 1.13941 87787 53762 35338 45125 46766 30793 81051 30107 10362
p=3[8] 61455 18198 30982 41101 68549 80783 85991 69241 91778 51482 - - -
H (1—p~2)71 = 1.05109 99867 25307 17314 11652 76738 77788 69209 70907 44411
p=5[8] 17294 30277 73004 13438 62260 40465 37645 49362 47222 05107 - - -
]_[ (1 —p~ %)~ = 1.02515 03755 35690 45801 58878 05005 52355 11894 33731 56551
P=18] 18373 75763 76764 33000 02995 14586 30251 80286 39950 93606 - - -
Modulo 9
]_[ (1 —p~2)71 = 1.00403 38350 51288 79798 24781 19858 91827 40795 64970 36679
p=1[9] 36445 41466 37267 39469 92239 23126 66372 93919 69658 67842 - - -
]_[ (1 —p~2)~1 = 1.02986 05881 94067 42193 37664 74782 44214 16682 92769 27452
p=4,7[9] 73207 14817 70307 86916 69892 47036 00965 30253 12905 58265 - - -
]_[ (1 —p~2)~1 = 1.40783 70712 90808 40749 73657 22905 08432 39804 43009 44237
p=4,7[9] 40720 14524 97906 23053 87855 38578 70189 74375 81953 76990 - - -
]_[ (1 —p~2)71 = 1.00442 33235 64563 73391 73441 85781 21579 37352 73638 30955
p=8[9] 56280 50892 89398 89075 19700 52740 02286 05779 32565 16286 - - -
Modulo 11
]_[ (1 —p~2)~1 = 1.00232 82408 97736 52733 78057 92469 42582 04345 78064 14205
p=1[11] 83982 33031 85907 92992 24880 67695 76044 58944 51196 15620 - - -
]_[ (1 —p~2)~1 = 1.17640 19228 83643 95880 33414 33345 34827 96940 97368 30486
p=3,4,5,9[11] 16665 34684 14997 26780 56538 00773 03065 73130 57662 69651 - - -
H (1 —p~2)~1 = 1.38240 11442 86238 42027 75000 43769 81637 89094 66912 37304
p=2,6,7,8[11] 4762019574 19754 57218 30125 55995 29700 83532 41364 44524 - - -
]_[ (1 —p~2)~1 = 1.00079 37707 14740 00680 22344 89849 48242 62521 98050 34012
p=10[11] 64066 25514 76917 65166 82435 21918 91527 18353 68455 84322 - - -
Modulo 12
H (1—p~2)~1 = 1.00761 32452 14144 96559 45395 42226 07374 36651 26958 68527
p=1[12] 45643 01998 09609 77426 73644 88547 67836 44849 33202 14325 - - -
]_[ (1 —p~2)~1 = 1.04820 19053 78977 39250 51304 63281 36174 16812 89837 18149
p=5[12] 90001 13571 41001 64738 59094 95187 94893 09617 76977 21642 - - -
]_[ (1 —p~2)~1 = 1.02620 21484 34059 19863 35581 85010 26060 28936 85994 49429
p=7[12] 66639 85216 99350 23670 85667 49199 08664 69711 36008 63206 - - -
]_[ (1—p~2)71 = 1.01177 86384 68011 52312 67190 96158 71334 79259 11961 40490
p=11[12] 98220 06644 81223 19559 87175 39371 09183 34305 1786241782 - - -
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Modulo 13

H (1 —p~2)~1 = 1.00065 68661 98289 66605 74722 84730 65103 24737 50365 90184
p=1[13] 05159 27092 48866 57922 38005 08700 9171086513 17616 09196 - - -

H (1 —p~2)71 = 1.12706 12740 31738 17588 59892 83155 15629 26278 07968 11746
p=3,9[13] 82779 67965 70450 70290 07193 03711 22677 99924 94356 98502 - - -
H (1 —p~2)71 = 1.04384 79529 58163 65554 40607 78295 27290 54540 06610 44072
p=5,8[13] 1083256178 04912 84183 53532 90965 05901 10590 78096 19725 - - -
H (1 —p~ %)~ = 1.00628 51384 49121 21016 97949 85276 52774 02943 27367 61695
p=4,10[13] 62341 94965 66031 00088 80143 94131 68766 62368 89868 86315 - - -
H (1 —p~2)~1 = 1.38005 21668 42131 56025 87780 51917 60220 78300 01261 32132
7145202278 31109 86101 82228 60818 00993 59554 83705 63152 - - -

(1- p_2)_1 = 1.00019 47228 43353 67566 71300 08739 85014 82395 69148 48279
40388 1131705577 95031 73324 84500 62196 13236 95450 44607 - - -

Modulo 15

H (1 —p~2)71 = 1.00148 97422 73492 93694 01590 74709 94741 86204 16057 84703
p=1[15] 39056 96965 27900 69768 31015 93499 57569 20627 49312 46472 - - -
H (1 —p~ )71 = 1.00317 84702 52335 21553 03385 74605 13341 60876 38887 06373
p=4[15] 99726 98300 94166 44951 29890 77512 51898 54937 99553 73817 - - -
H (1 —p~2)~1 = 1.00941 13980 00770 01550 89289 87201 77757 07722 90866 70412
p=11[15] 16926 38886 93678 57069 72491 86135 73076 88296 92897 11517 - - -
(1 —p~2)~1 = 1.00177 62085 28901 80614 36146 02808 40796 91353 09274 51496
50189 63697 10472 98862 81970 33771 62313 65210 99539 20779 - - -
H (1 —p~2)71 = 1.34246 04555 75815 20935 38219 61912 33400 63700 39854 01914
p=2,8[15] 89581 22207 92416 73586 96682 97806 80125 69488 81498 50864 - - -
H (1 —p~ )71 = 1.02920 54527 13850 30813 47218 56152 24186 80527 04739 70305
P=7,13[15] 2451759610 07321 59017 16749 03353 09603 86166 91723 02744 - - -

p=14[15]

Modulo 16

H (1—p~2)71 = 1.0037812963 11174 37713 11351 57040 29912 37432 41715 47512
p=1[16] 58825 42256 35367 55019 06798 95994 89800 21007 81973 43643 - - -
H (1 —p~ %)~ = 1.02325 48779 01073 97853 55761 58294 87207 77486 14958 00981
p=7[16] 4823142083 87589 50311 26921 49019 48194 65496 71178 11340 -
H (1—p~2)71 = 1.00104 97998 50572 71636 94193 27915 29477 99415 64430 03051
p=9[16] 11770 36575 50177 59023 63659 02494 18529 79978 84276 50040 - - -
H (1—p~2)~1 = 1.00185 24182 16883 23320 82998 60789 73812 61209 24826 80727
p=15[16] 98647 97998 43453 46728 16095 21879 11383 12968 15980 55553 - - -
H (1 —p~ )71 = 1.13941 87768 04159 78365 16336 31967 81864 56473 61983 14189
p=3,11[16] 29444 68291 73201 89509 29669 31553 38592 46601 11751 23656 - - -
H (1 —p~ %)~ = 1.05109 99847 01455 13922 37935 04670 04872 53144 42898 28568
p=5,13[16] 56916 17813 30298 25358 17313 32680 61853 91602 73863 21989 - - -
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