S Ettahri

Olivier Ramaré

L Surel

Fast and precise computation of some Euler products

published or not. The documents may come

Fast and precise computation of some Euler products

Introduction

At the beginning of our query lie two constants, namely

α 3 " 1 2 1{2 3 1{4 ź p"2r3s ˆ1 ´1 p 2 ˙´1{2 (1)
and

α 1 " 3 1{4 ? π 2 5{4
logp2 `?3q 1{4 Γp1{4q ź p"5,7,11r12s

ˆ1 ´1 p 2 ˙´1{2 .
(2) {eq:12} {eq:12}

Both occur in number theory as densities. The number of integers n of the shape n " x 2 ´xy `y2 , where x and y are integers (these are the so-called Loeschian numbers, see sequence A003136 of the [START_REF] Inc | The On-Line Encyclopedia of Integer Sequence[END_REF]), is given by N pxq " α 3 xp1 `op1qq ? log x .

(3) {eq:1} {eq:1}

This accounts for our interest in the first constant. The second one occurs because the number of Loeschian numbers that are also sums of two squares (see sequence A301430 of the [START_REF] Inc | The On-Line Encyclopedia of Integer Sequence[END_REF]) is given by

N 1 pxq " α 1 xp1 `op1qq ? log x .
The question we address here is devising a fast manner to compute the intervening Euler products. From sequence A301429 of the [START_REF] Inc | The On-Line Encyclopedia of Integer Sequence[END_REF], we know that α 3 " 0.638909 . . . but we would like (much!) more digits. Similarly the constant α 1 " 0.30231614235 We prove here that s a matter of fact, our method is more general and allows one to compute Euler products of the shape ź pPA mod q p1 ´p´s q for any s with s ą 1 and some subsets A of pZ{qZq ˆ. The history of such formulae for scientific computations starts with D. Shanks in [7, equation (15)]. D. Shanks's approach has been put in a general context by P. Moree & D. Osburn in [3, equation (3.2)]. As a matter of fact, an accurate value of α 3 already follows from this paper, but not the one for α 1 . The formulae we prove have a wider reach, though they fail to exhaust the problem. A subset A of pZ{qZq ˆis said to be a lattice-invariant class is all its elements generate the same subgroup (see Definition 3.1 below). Here is a consequence of our approach.

Theorem 1.2. Let q be some modulus and A be a lattice-invariant class of pZ{qZq ˆ. For every s ą 1, the product ź p mod qPA p1 ´p´s q can be computed in double-exponential time.

This theorem applies in particular to ś p"1rqs p1 ´p´s q and to ś p"´1rqs p1 ṕ´s q and this is enough to compute α 1 and α 3 . We end this paper with numerical examples.

The material of this paper has been used to write the script LatticeInvariantEulerProducts.sage which we shorten below in LIEP.sage and which can be found on the second author website. We give some details about this script when developing the proof below.

Precise statement of the main result

Let q ą 1 be a modulus. We set G 0 be a subgroup of G " pZ{qZq ˆand G K 0 be the subgroup of characters that take the value 1 on G 0 . Let s ą 1 be a real number.

Remark 1.3. We assume that s is a real number while in fact, any complex value with real part ą 1 would do. We do so because our prsentation relies on logarithms and this allows us to use the confortable notation of linear analys. If we skip this step and stick to the multiplicative setting, all our estimates still hold true.

Let P ě 2 be a parameter. We shall compute directly what happens for the primes ă P . We define accordingly L P ps, χq " ź pěP p1 ´χppq{p s q.

(4)

{eq:11} {eq:11}

We define, for any positive integer t:

γ s pG 0 , tq " log ź χPG K 0 L P pts, χq. (5)
{defgammaGzerot} {defgammaGzerot}

The parameter P has disappeared from our notation and the reader may stick with P " 2. When s is a real number, the number ś χPG K 0 L P pts, χq is indeed a positive real number, essentially because, when χ belongs to G K 0 , so does χ. We denote the set of lattice-invariant clases by G 7 and the set of cyclic subgroups by G . Both sets are in an obvious one-to-one correspondence. We consider the vector Γ s ptq " pγ s pG 0 , tqq G0PG .

(6) {defGammaoft} {defGammaoft}

The vector Γ s ptq has cyclic subgroups as indices for its rows. The rather formal expression is computed by the function GetFormalExpGamma of the script LIEP.sage from the values of the Hurwitz zeta function; by "rather formal", we mean that we have not yet introduced the notion of interval arithmetic and that we did not take the logarithm of the value yet; the numerical computations will deliver complex numbers with a negligible imaginary part, which we have to convert to a real number before applying the logarithm function. We next define When v " 0, we use d 1 . . . d v " 1 and N d1 ¨¨¨N dv " Id.

V

A general mechanism

Let us start by presenting the mechanism of Shanks is a somewhat general setting.

{shanks} Lemma 2.1. Let P be a set of prime numbers and let f be a function from P to t˘1u. For every s with s ą 1, we have

ź pPP, f ppq"´1 p1 ´p´s q 2 " ś pPP p1 ´p´s q ś pPP p1 ´f ppqp ´sq ź pPP, f ppq"´1 p1 ´p´2s q.
Proof. The proof is straighforward. We simply write ź pPP, f ppq"´1 p1 ´p´s q 2 1 ´p´2s "

ź pPP, f ppq"´1 1 ´p´s 1 `p´s " ź pPP, f ppq"´1 1 ´p´s 1 ´f ppqp ´s " ź pPP 1 ´p´s 1 ´f ppqp ´s as required.
Shanks's method is efficient to deal with product of primes belonging to a coset modulo a quadratic character. We generalize it as follows. {dede} Lemma 2.2. Let q ą 1 be a modulus. We set G 0 be a subgroup of G " pZ{qZq ând G K 0 be the subgroup of characters that take the value 1 on G 0 . For any integer b, we define xby to the the subgroup generated by b modulo q. We have

ź χPG K 0 L P ps, χq " ź G0ĂKĂG ź pěP, xpyG0"K ´1 ´p´|K{G0|s ¯´|G{K|
and, for any element a R G 0 of order 2, we have

ź χPG K 0 L P ps, χq χpaq " ź G0ĂKĂG, aPK ź pěP, xpyG0"K ˆp1 ´p|K{G0|s{2 q 2 1 ´p´|K{G0|s
˙´|G{K| where Ĝ is the set of characters of G.

Case G 0 " t1u of the first identity is classical in Dedekind zeta function theory, and can be found in [START_REF] Serre | Cours d'arithmétique[END_REF]Proposition 13] in a rephrased form. Case a ‰ 1 will not be required for the general theory. It may however lead quickly to the required result.

Proof. We note that ś χPG K 0 p1 ´χppqzq χpaq " ś ψP Ĥ p1 ´ψppqzq f pψq when xpy " H and where f pψq "

ÿ χPG K 0 , χ|H"ψ χpaq.
(12) {eq:6} {eq:6}

The condition χ P G K 0 can also be written as χ|G 0 " 1, hence we can assume that ψ|pH X G 0 q " 1. We write

ź χPG K 0 p1 ´χppqzq χpaq " ź ψ 1 P { HG0, ψ 1 |G0"1 p1 ´ψppqzq f 1 pψ 1 q where f 1 pψ 1 q " ÿ χPG K 0 , χ|HG0"ψ χpaq.
(13) {eq:76} {eq:76}

When a does not belong to HG 0 , this sum vanishes; otherwise it equals |G{pHG 0 q|ψ 1 paq.

The characters of HG 0 that vanish on G 0 are essentially the characters on the cyclic group pHG 0 q{G 0 . We thus have ź

ψ 1 P { HG0, ψ 1 |G0"1 p1 ´ψppqzq " 1 ´z|pHG0q{G0| .
When a 2 " 1rqs and a R G 0 , and since pHG 0 q{G 0 is cyclic, of (even) order h say, the characters are given by χpp x q " epcx{hq since p is a generator and where c ranges t0, ¨¨¨, h ´1u. We thus have, when a P H, ź

ψ 1 P { pHG0q{G0 p1 ´ψ1 ppqzq ψ 1 paq " ź c mod h p1 ´epc{hqzq epc{2q " ź 0ďdďph´2q{2 p1 ´ep2d{hqzq ź 0ďdďph´2q{2 p1 ´epp2d `1q{hqzq ´1 " 1 ´zh{2 1 ´pep1{hqzq h{2 " 1 ´zh{2 1 `zh{2 " p1 ´zh{2 q 2 1 ´zh .
The reader will readily complete the proof by setting K " HG 0 .

Examples

Let us select for G 0 the kernel of a given quadratic character χ 1 . The subgroup K can take only two values, G 0 or G. We thus get Lps, χ 1 qLps, χ 0 q " ź χ1ppq"1 p1 ´p´s q 2 ź χ1ppq"´1 p1 ´p´2s q

[6] J.-P. Serre, 1970, Cours d'arithmétique.

which gets converted into Lps, χ 1 qLps, χ 0 q " Lps, χ 0 q 2 ź χ1ppq"´1

p1 ´p´s q ´2 ź χ1ppq"´1 p1 ´p´2s q (14) {myshanks} {myshanks}
which is what follows from Lemma 2.1. In the same situation, let a be outside G 0 . The only choice for K is K " G. We find that Lps, χ 0 q{Lps, χ 1 q " ź χ1ppq"´1 p1 ´p´s q 4 p1 ´p´2s q 2 which gets converted into Lps, χ 0 q{Lps, χ 1 q " ź χ1ppq"´1 p1 ´p´s q 2 p1 ´p´2s q " ź χ1ppq"´1

1 ´p´s 1 `p´s which is rather trivial.

Products obtained

We want to compute Euler products of the shape ź pPA mod q p1 ´1{p s q for s ą 1 and some subset A of pZ{qZq ˆ. Computing Lps, χq is easier as it can be reduced to sums over integers is some arithmetic progressions. Equation (14) reduces the computations of ś pPA mod q p1 ´1{p s q to the one of ś pPA mod q p1 1{p 2s q, and we can continue the process. We soon reach ś pPA mod q p1 ´1{p 2 N s q with a large enough N which can be approximated by 1`Op2 ´2N s q. The object of this section is to devise a setting to understand which sums we relate together. {li} {mono} Definition 3.1. Two elements g 1 and g 2 of the abelian group G are said to be lattice-invariant if and only if they generates the same group.

The map between the cyclic subgroups of G and the lattice-invariant-classes which, to a subgroup, associates the subset of its generators, is one-to-one.

The function GetLatticeInvariantClasses of the script LIEP.sage gives the two lists: the one of the cyclic subgroups and the one of their generators, ordered similarly and in increasing size of the subgroup.

Any two elements of pZ{qZq ˆequivalent according to it cannot be distinguished by using the formulae of Lemma 2.2. Conversely, the question is to know whether we are indeed able to distinguish each class.

We set G " pZ{qZq ˆ. Let G 7 be the set of all lattice-invariant-equivalence classes. To each class b, we attach the enumerable collection of symbols px r b q rě1 . We shall replace each of them according to

x r b Þ Ñ log ź p`qZPb, pěP `1 ´p´s ˘. (15
)
{eq:9} {eq:9}

We consider the module of finite formal combinations ÿ bPG 7 , rě1 α b,r x r b with coefficients α b,r P Z and indeterminates x r b . The superscript r is not a power. We consider the following special elements. Let G 0 Ă K Ă G be two subgroups such that K{G 0 is cyclic. We define gpG 0 , K, tq "

ÿ bPG 7 ,bG0"K x t|K{G0| b . (16
) {eq:5} {eq:5}
With that, we find that γpG 0 , tq "

ÿ G0ĂKĂG |G{K|gpG 0 , K, tq. (17
) {basicrel} {basicrel} 4
Iterating the formulae

The first identity of Lemma 2.2 gives us as many identities as there are subgroups G 0 ; we know by Definition 3.1 that the number of lattice-invariant-classes equals the one of cyclic subgroups. It turns out that it is enough to restrict our attention to cyclic subgroups G 0 . Let G be the subset of such subgroups, which we order by inclusion. On recalling (6), we may then rewrite (17) in the form Γptq "

ÿ d||G| M d V s pdtq (18) {initeq} {initeq}
where (this is the case K " G 0)

M 1 ˇˇi"G0,j"b " # |G{K| if b Ă G 0 , 0 otherwise, (19
) {eq:20} {eq:20}
and, where, when d ą 1 (i.e. G 0 Ĺ K), we have

M d ˇˇi"G0,j"b " # |G{bG 0 | if |bG 0 |{|G 0 | " d, 0 otherwise. (20
) {eq:19} {eq:19}
Equation (18) gives us a relation between M 1 V s ptq and M d V s pdtq for several d's that are strictly larger than 1. Our roadmap is to invert the matrix M 1 and to iterate this formula. We compute explicitely M ´1 1 by using some generalised Moebius inversion, which we first put in place.

The Moebius function associated to G

We follow closely the exposition of Rota in [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF]. On the algebra of functions f on couples pK, Lq of points of G such that K Ă L (the so-called incidence algebra, see [5, Section 3]), we define the convolution product pf ‹ gqpK, Lq " ÿ KĂHĂL f pK, HqgpH, Lq.

[5] G.-C. [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF], "On the foundations of combinatorial theory. I. Theory of Möbius functions". Lemma 4.2. The coefficients of a product N d1 N d2 ¨¨¨N dv are at most (in absolute value) equal to |G 7 | v´1 , where G 7 is the set of lattice-invariant classes (which is also the number of cyclic subgroups of G).

End of the proof of Theorem 1.4

The formula (27) with t " 1 contains most of our proof.

The number of possible d's is at most the number of divisors of exp G minus 1, so at most dpexp Gq. The coefficients of a typical product N d1 ¨¨¨N dv are of size at most |G 7 | v´1 , we divide each coefficient by d 1 ¨¨¨d v which is at least z, and we have at most dpexp Gq v v-tuples pd 1 , . . . , d v q. As a consequence, each coordinate, says y, of the vector 7 |dpexp Gq ˘r z max Dě2 r }V s pDtq}. We deal similarly with the coordinates of the vector

ÿ 1ďvďr p´1q v ÿ d1¨¨¨dv´1ďz, d1¨¨¨dv´1dvąz N d1 d 1 . . . N dv d v V s pd 1 . . . d v tq satisfies |y| ď r `|G
p´1q r ÿ d1¨¨¨drďz N d1 d 1 . . . N dr d r V s pd 1 . . . d r tq
except that the denominator d 1 ¨¨¨d r is not especially larger than z; we however select z " 2 r to ensure this condition. So, on combining both, we see that in the dictionary ComputedProductNdsM1Inverse. Since the list rd 1 , ¨¨¨, d v s cannot be a key for sur a dictionary, we replace it in the function encode by the string "d 1 Ad 2 A¨¨¨d v A".

› › › › V s p1q ´ÿ 0ďvďr´1 p´1q v ÿ d1¨¨¨dvď2 r N d1 d 1 . . . N dv d v M ´1 1 Γ s pd 1 . . . d v q › › › › ď 2r ˆ|G 7 |dpexp
A final and very efficient time-saver is to be introduced: when ds is very large, we directly replace Lpds, χq by an approximation of 1.

Concerning the general structure, the function GetStructure computes all the algebraical quantities that we need: the list of cyclic subgroups, the one of lattice-invariant classes, the exponent of our group, its character group, the set of invertible classes and, for each cyclic subgroup, the set of characters that are trivial on it.

Once the script is loaded via load('LatticeInvariantEulerProducts.sage'), a typical call will be GetVs(12, 2, 100, 300) to compute modulo 12 the possible constants with s " 2, asking for 100 decimal digits and using P " 300. The output is self explanatory. The number of decimal digits asked for is roughly handled and one may lose precision in between, but this is indicated at the end. A more precise treatment would first check the output and if the precision attained would not be enough, increase automatically this parameter. We prefer to let the users do that by themselves. For instance the call GetVs(12, 2, 1010, 300) produces only 628 accurate digits, but the call GetVs(12, 2, 1500, 300) produces after almost four times more time 1262 decimals digits. The digits presented when WithLaTeX" 1 are always accurate, so, in the first case, only 628 digits would be printed and 1262 in the second case.

There are two subsequent optional parameters Verbose and WithLaTeX. The first one may take the values 0, 1 and 2; when equal to 0, the function will simply do its job and return the list of the invariant classes and the one of the computed lower and upper values. When equal to 1, its default value, some information on the computation is given. At level 2, more informations is given, but that should not concern the casual user. When the parameter Verbose is at least 1 and WithLaTeX is 1, the values of the constants will be further presented in a format suitable for inclusion in a L A T E X-file. For instance, the call GetVs(12, 2, 100, 300, 1, 1) is the one used to prepare this document.

Some results

In this part, we exhibit some results for s " 2 and small q's. We decided to produce 100 decimal digits each time. Each computation took at most half a minute and we selected uniformly P " 300.

 The parameter r is not very large, typically between 2 and 8. Since in (11), several products d " d 1 ¨¨¨d v are equal, we store the computed values of Γ s pdtq in the dictionary ComputedGammas in the function GetVs of the script LIEP.sage. We do the same for the products N d1 ¨¨¨N dv M ´1

	5 Notes on the implementation
							1
		Gq Dě2 ˇˇlog 2 ˙r max ź pPA, ´1 `1 ´p´f ˘ˇˇď 1 `P f P f .
			pěP			
	Proof. We use					
		log	ź pPA, `1 ´p´f ˘"	´ÿ pPA,	ÿ kě1	1 kp kf
			pěP		pěP	
	hence, by using a comparison to an integral, we find that
	ˇˇlog	ź pPA, `1 ´p´f ˘ˇˇď ÿ něP	1 n f ď	1 P f	`ż 8 P	dt t f
		pěP				

r }V s pDq}. (28)

To complete the proof, we simply need a bound for max Dě2 r }V s pDq} and such a bound is provided by the next lemma. Lemma 4.3. Let A be a subset of the G " pZ{qZq ˆ. Let f ą 1 be a real parameter. We have

We consider the G -zeta function which is defined by

This function is shown to be invertible in the above algebra and its inverse is called the G -Moebius function, denoted by µ G . By definition, we have the two Moebius inversion formulas: We end this reminder with a formula giving the value of µ G pK, Hq.

Computing µ G pK, Hq

Let C p pK, Hq be the number of chains of length p going from K to H, i.e. the number of p `1-uples Inverting the matrix M 1 {compL} Proposition 4.1. The matrix M 1 is invertible and the coefficients of its inverse are given by

Proof. We find that

We

Our proposition is proved.

The function GetM1Inverse of the script LIEP.sage computes M ´1 1 .

The recursion formula

We start from (18) and deduce that

We readily find that N d " dM ´1 1 M d is given by (10).

Proof. Indeed we have

This is exactly what we have written in (10).

As a consequence, we see that only the d that divides the exponent of G. The function GetNds of the script LIEP.sage computes pN d q d .

Unfolding the recursion

Let z ě 1 and r ě 1 be two parameters. We have

where d 1 , . . . , d r are all divisors of exp G excluding 1. We can incorporate the last summand in the one before by considering as the value for s " 0.

Proof. Let us prove this formula by recursion. Case r " 1 is just (26). Let us see precisely what happens for r " 2. We start from

which we rewrite as

We use again this equation on V s pd 1 tq when d 1 ď z, and z{d 1 rather than z, getting To go from r to r `1, we select the divisors d r that are such that d 1 d 2 ¨¨¨d r ď z and employ (26) on V s pd 1 ¨¨¨d r tq.