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File ArithProducts-03.tex This note provides accurate truncated formulae with explicit error terms to compute Euler products over primes in arithmetic progressions of rational fractions. It further provides such a formula for the product of terms of the shape F p1{p, 1{p s q when F is a twovariable polynomial with coefficients in C and satisfying some restrictive conditions..

Introduction and results

Our primary concern in this paper is to evaluate Euler products of the shape ź p"arqs

ˆ1

´1 p s ẇhen s is a complex parameter satisfying s ą 1. Such computations have attracted some attention as these values occur when s is a real number as densities in number theory. D. Shanks in [START_REF] Shanks | On the conjecture of Hardy & Littlewood concerning the number of primes of the form n 2 `a[END_REF] (resp. [START_REF] Shanks | On numbers of the form n 4 `1[END_REF], resp. [START_REF] Shanks | Lal's constant and generalizations[END_REF]) has already computed accurately an Euler product over primes congruent to 1 modulo 8 (resp. to 1 modulo 4, resp. 1 modulo 8). His method has been extended by S. Ettahri, L. Surel and the present author in [START_REF] Ettahri | Fast multi-precision computation of some Euler products[END_REF] in an algorithm that converges very fast (double exponential convergence) but this extension covers only some special values for the residue class a, or some special bundle of them; it is further limited to real values of s.

We will use logarithms, and since the logarithm of a product is not a priori the sum of the logarithms, we need to clarify things before embarking in this project. First, the log-function corresponds in this paper always to what is called the principal branch of the logarithm. We recognize it because its argument vanishes when we restrict it to the real line and we consider it undefined on the non-positive real numbers. The second point is contained in the next elementary proposition. Proposition 1. Associate to each prime p a complex number a p such that |a p | ă p and a p ! ε p ε for every ε ą 0. We consider the Euler product defined when s ą 1 by:

(1)

Dpsq "

ź pě2 ˆ1 ´ap p s ˙´1 . É
In this same domain we have

(2) log Dpsq " ÿ pě2 ÿ kě1 a k p kp ks .
This is simply because, by using the expansion of the principal branch of the logarithm in Taylor series, namely ´logp1 ´zq " ř kě1 z k {k valid for any complex z inside the unit circle, we find that Cpsq " ´řpě2 logp1 ´ap {p s q verifies exp Cpsq " Dpsq, so that Cpsq is indeed a candidate for log Dpsq. The second remark is that Dpsq approaches 1 when s goes to infinity while our choice for log Dpsq indeed approaches 0 and no other multiple of 2iπ. These two remarks are enough justification of this proposition.

Remark 1.1. To be axiomatically correct, we should specify that our definition of log Dpsq depends a priori on the chosen product representation, and thus on the choice of the coefficients pa p q pě2 . However, since the development in Dirichlet series is unique, we find that the coefficients in (2) are uniquely defined; this implies in particular that our definition does nor depend on the chosen product representation (as it is unique!).

We assume here that the values of the Dirichlet L-series Lps, χq may be computed with arbitrary precision when s ą 1. Our aim is thus to reduce our computations to these ones. Here is an identity to do so.

Theorem 2. Let a be prime to the modulus q ě 1 and let p G q be the group of Dirichlet characters modulo q. We have If finding this identity has not been immediate, checking it is only a matter of calculations that we reproduce in Section 2. A partial identity of this sort has already been used by K. Williams in [START_REF] Williams | Mertens' theorem for arithmetic progressions[END_REF] and more recently by A. Languasco and A. Zaccagnini in [START_REF] Languasco | On the constant in the Mertens product for arithmetic progressions. II. Numerical values[END_REF][START_REF] Languasco | On the constant in the Mertens product for arithmetic progressions. I. Identities[END_REF], and [6, (2-5)] is a related formula. It is worth noticing that, with our conventions, we have the obvious log L P ps, χq " log Lps, χq ´ÿ păP logp1 ´χppq{p s q.

This leads to the next immediate corollary.

Corollary 3. Let a be prime to the modulus q ě 1 and let p G q be the group of Dirichlet characters modulo q. Let further two integer parameters P ě 2 and L ě 2 be chosen. We have ź pěP, p"arqs

ˆ1

´1 p s ˙" exp ˆYP ps; q, a|Lq `O˚ˆ1 P L s ˙˙. and Y ps; q, a|Lq is defined by (4).

We obtained in [START_REF] Ettahri | Fast multi-precision computation of some Euler products[END_REF] an approximation that is much better but only valid for rational fractions with real coefficients and some residue classes.

One can write a similar theorem for the Euler product

ź pěP, pPA ˆ1 ´F p1{p s q Gp1{p s q ˙.
Extension to two variables rational fractions. The general form of Euler products that one has to treat in practice are of the shape ź pěP, p"arqs p1 `Rpp, p s qq where R is a rational fraction of two variables. When s takes a specific rational value, typically 2, 3{2 or 4{3, this question reduces to the above one though each values of s requires a new rational fraction; this covers most of the cases when we have to compute a single special constant. In the general case however, for instance when s " 2 `i, such a trick fails. The theoretical understanding of this situation is also limited even for q " 1. For instance, if the case of a rational fraction of one variable is covered by the theorem of T. Esterman in [START_REF] Estermann | On Certain Functions Represented by Dirichlet Series[END_REF] and extended by G. Dalhquist in [START_REF] Dahlquist | On the analytic continuation of Eulerian products[END_REF], no such result is known in the general situation. This question has been addressed in the context of enumerative algebra, for instance by M. du Sautoy and F. Grünewald in [START_REF] Sautoy | Zeta functions of groups: zeros and friendly ghosts[END_REF]. The lecture notes [START_REF] Sautoy | Zeta functions of groups and rings[END_REF] of Esterman's work; for instance, one may consider Euler products of the shape Rpp s1 , p s2 q (with the hope of being able to specify s 1 ), see for instance [START_REF] Delabarre | Extension of Estermann's theorem to Euler products associated to a multivariate polynomial[END_REF] by L. Delabarre, but these results do not apply to our case.

We are able to handle some rational fractions by reducing them to the case treated in the next theorem.

Theorem 5. Let s be a complex number with s " σ ą 1. Let pa q ďk be a sequence of complex numbers and pu q ďk and pv q ďk be two sequences of real numbers. We assume that u σ `v ą 0 and we define A " maxp1, maxp|a |qq. Let q be a modulus, a be an invertible residue class modulo q and P ě 2kA and L ě k be two integer parameters. We have

ź pěP, p"arqs ˆ1 ´ÿ 1ď ďk a p u s`v ˙" exp ´pZ `Iq where (5) Z " ÿ m1,...,m k ě0, 1ďm1`...`m k ďL M pm 1 , . . . , m k q ÿ f ďF κ f p ś ďk a m q f Y P ´ÿ ďk m pu s `v q; q, a|L
where M pm 1 , m 2 , . . . , m k q is defined at (18), κ f is defined at (23), Y ps; q, a|Lq is defined by (4) and finally where

(6) |I| ď 2 k ¨AL k!P L ˆpL `kq k `1 `log L `3kA L ˙.
Hence this theorem provides us with an exponentially decreasing error term. More complicated terms may be handled through this theorem by writing 1 `F pp, p s q Gpp, p s q " pF `Gqpp, p s q p As`B p As`B Gpp, p s q " ˆ1 `pF `Gqpp, p s q ´pAs`B p As`B ˙ˆ1 `Gpp, p s q ´pAs`B p As`B ˙´1 .

This would function when G has a clearly dominant monomial. It typically works for Gpp, p s q " p 2s pp 2 `1q but fails for Gpp, p s q " p 2s pp `1q. Our most important additional tool, namely Lemma 11, may be used to obtain results on analytic continuation, but since we use logarithms elsewhere, the general effect is unclear. We however provide the next example:

(7) Dpsq " ź pě2 ˆ1 `1 p s ´1 p 2s´1 ˙.
Lemma 11 gives us the decomposition

Dpsq " ź m1,m2ě0, m1`m2ě1 ź pě2 ˆ1 ´p´1q m1 p pm1`2m2qs´m2
˙Mpm1,m2q .

We check that M p1, 0q " M p0, 1q " 1 and that M pm, 0q " M p0, mq " 0 when m ě 2, whence

Dpsq " ζp2s ´1q ζp2sq ζpsq

ź m1,m2ě1 ź pě2 ˆ1 ´p´1q m1 p pm1`2m2qs´m2
˙Mpm1,m2q .

(2) L. Delabarre, 2013, "Extension of Estermann's theorem to Euler products associated to a multivariate polynomial". Lemma 6. Let Hptq " 1 `a1 t `. . . `aδ t δ P Crts be a polynomial of degree δ.

Let α 1 , . . . , α δ be the inverses of its roots. Put s H pkq " α k 1 `. . . `αk δ . The s H pkq satisfy the Newton-Girard recursion [START_REF] Sautoy | Zeta functions of groups: zeros and friendly ghosts[END_REF] s F pkq `a1 s F pk ´1q `. . . `ak´1 s F p1q `ka k " 0,

where we have defined a δ`1 " a δ`2 " . . . " 0. We define

(11) b H pkq " 1 k ÿ d|k µpk{dqs H pdq.
Lemma 7. Let F and G be two polynomials of Crts. We assume that Gp0q " 1 and that F p0q " 0. Let β ě 1 be larger than the inverse of the roots of G and of G ´F . When z is a complex number such that |z| ă β and |1 ´pF {Gqpzq| ă 1. We have

(12) log ˆ1 ´F pzq Gpzq ˙" ÿ jě1
`bG´F pjq ´bG pjq ˘logp1 ´zj q.

Proof. We adapt the proof of [8, Lemma 1]. We write pG ´F qptq " ś i p1 ´αi tq. We have pG ´F q 1 ptq pG ´F qptq "

ÿ i α i t 1 ´αi t " ÿ kě1 s G´F pkqt k´1 .
This series is absolutely convergent in any disc |t| ď b ă 1{β where β " max j p1{|α j |q.

We may also decompose pG ´F q 1 ptq{pG ´F qptq in Lambert series as pG ´F q 1 ptq pG ´F qptq "

ÿ jě1 b G´F pjq jt j´1 1 ´tj
as some series shuffling in any disc of radius b ă minp1, 1{βq shows. The comparison of the coefficients justify the formula [START_REF] Shanks | Lal's constant and generalizations[END_REF]. We may do the same for G instead of G ´F (or use the case F " 0). We find that

G 1 ´F 1 G ´F ´G1 G " ´pF 1 G ´F G 1 q GpG ´F q " ´pF 1 G ´F G 1 q G 2 ÿ kě0 ˆF G ˙k.
and by formal integration, this gives us the identity ´ÿ kě1 pF {Gqptq k k " ´ÿ jě1 `bG´F pjq ´bG pjq ˘logp1 ´tj q.

This readily extends into a equality between analytic function in the domain where |pF {Gqpzq ´1| ă 1 and |z| ă β. The lemma follows readily.

Here is now [4, Lemma 17], though for polynomials with complex coefficients.

Lemma 8. We use the hypotheses and notation of Lemma 6. Let β ě 2 be larger than the inverse of the modulus of all the roots of Hptq. We have

|b H pkq| ď 2 deg H ¨βk {k.
And we finally recall [START_REF] Ettahri | Fast multi-precision computation of some Euler products[END_REF]Lemma 18] that yields an easy upper estimates for the inverse of the modulus of all the roots of F ptq in terms of its coefficients. Proof of Theorem 4. The proof requires several steps. We start from Lemma 7, i.e. from the identity [START_REF] Shanks | On the conjecture of Hardy & Littlewood concerning the number of primes of the form n 2 `a[END_REF] log ˆ1 ´F pzq Gpzq ˙" ÿ jě2 `bG´F pjq ´bG pjq ˘logp1 ´zj q, in the domain |z| ă β and |1 ´pF {Gqpzq| ă 1. The fact that the term with j " 1 vanishes comes from our assumption that F p0q " F 1 p0q " 0. To control the rate of convergence, we notice that By Lemma 8, we know that |b G´F pjq ´bG pjq| ď 4 maxpdegpG ´F q, deg Gqβ j {j. Therefore, for any bound J, we have ( 14)

ÿ jěJ`1 |t j ||b G´F pjq ´bG pjq| ď 4 maxpdegpG ´F q, deg Gq |tβ| J`1 p1 ´|tβ|qpJ `1q ,
as soon as |t| ă 1{β. Furthermore, we deduce that | logp1 ´zq{z| ď logp1 1{2q{p1{2q ď 3{2 when |z| ď 1{2 by looking at the Taylor expansion. We thus have [START_REF] Witt | Treue Darstellung Liescher Ringe[END_REF] log ˆ1 ´F pzq Gpzq

˙" ÿ 2ďjďJ `bG´F pjq ´bG pjq ˘logp1 ´zj q `I1
where |I 1 | ď 6 maxpdegpG ´F q, deg Gq|zβ| J`1 {p1 ´|zβ|q. Now that we have the expansion (15) at our disposal for each prime p, we may combine them. We readily get

ÿ pěP, p"arqs log ˆ1 ´F p1{pq Gp1{pq 
˙" ÿ 2ďjďJ `bG´F pjq ´bG pjq ˘ÿ pěP, p"arqs logp1 ´1{p j q `I2 , where I 2 satisfies

|I 2 | ď 6 maxpdegpG ´F q, deg Gq ÿ pěP β J`1 p1 ´β{P qpJ `1q 1 p J`1 ď 6 maxpdegpG ´F q, deg Gqβ J`1 p1 ´β{P qpJ `1q ˆ1 P J`1 `ż 8 P dt t J`1 ď 6 maxpdegpG ´F q, deg Gqpβ{P q J β p1 ´β{P qpJ `1q ˆ1 P `1 J ˙,
since P ě 2 and J ě 3. We now approximate each sum over p by using Corollary 3 and obtain

ÿ pěP, p"arqs log ˆ1 ´F p1{pq Gp1{pq 
˙" ÿ 2ďjďJ `bG´F pjq ´bG pjq ˘YP pj; q, a|Lq `I3

where I 3 satisfies

|I 3 | ď ÿ 2ďjďJ |b G´F pjq ´bG pjq| 1 P Lj `|I 2 | ď ÿ 2ďjďJ 4 maxpdeg F, deg Gq β j j 1 P Lj `|I 2 |.
Therefore (and since r ě 2)

(16) |I 3 | 2 maxpdeg F, deg Gq ď β 2 pβ{P q 2L 1 ´β{P `3pβ{P q J β p1 ´β{P qpJ `1q ˆ1 P `1 J ˙,
and the choice J " 2L ends the proof.

Proof of Theorem 5

Lemma 10. We have `dN

1 dm 1 1 ,¨¨¨,dm 1 k ˘ě `N1 m 1 1 ,¨¨¨,m 1 k ˘d.
Proof. The coefficient `dN 1 dm 1 1 ,¨¨¨,dm 1 k ˘is the number of partitions of a set of dN 1 elements in parts of dm 1 1 , ¨¨¨, dm 1 k elements. The product partitions are partitions.

In [START_REF] Witt | Treue Darstellung Liescher Ringe[END_REF], Witt proved a generalization of the Necklace Identity which we present in the next lemma.

Lemma 11. For k ě 1, we have

(17) 1 ´k ÿ i"1 z i " ź m1,...,m k ě0, m1`...`m k ě1 p1 ´zm1 1 ¨¨¨z m k k q M pm1,...,m k q ,
where the integer M pm 1 , . . . , m k q is defined by

(18) M pm 1 , . . . , m k q " 1 N ÿ d| gcdpm1,m2,...,m k q µpdq pN {dq! pm 1 {dq! ¨¨¨pm k {dq!
with N " m 1 `. . . `mk . We have M pm 1 , . . . , m k q ď k N {N .

Proof. Only the bound needs to be proved as the identity may be found in [START_REF] Witt | Treue Darstellung Liescher Ringe[END_REF]. Each occuring multinomial is not more than `N m1,¨¨¨,m k ˘by Lemma 10. The multinomial Theorem concludes.

Proof of Theorem 5. Let Π be the product to be computed. By employing Lemma 11, we find that 1 ´ÿ 1ď ďk a p u s`v " ź m1,...,m k ě0, m1`...`m k ě1

ˆ1

´cpm 1 , m 2 , . . . , m k q p ř ďk m pu s`v q ˙Mpm1,...,m k q , with cpm 1 , . . . , m k q given by (19) cpm 1 , m 2 , . . . , m k q " ź ďk a m .

Each coefficient cpm 1 , . . . , m k q is not more, in absolute value, than A N , where m 1 `. . . `mk " N . Note that, for each , we have pu s `v q ą 1, so that ř ďk m pu s `v q ě m 1 `. . . `mk " N . It thus seems like a good idea to truncate the infinite product in (20) according to whether m 1 `¨¨¨`m k " N ď N 0 or not for some parameter N 0 ě k that we will choose later. We readily find that, when p ě 2A,

ˇˇˇl og ź m1,...,m k ě0, m1`...`m k ąN0 ˆ1 ´cpm 1 , m 2 , . . . , m k q p ř ďk m pu s`v q ˙Mpm1,...,m k q ˇˇď 3 2 ÿ m1,...,m k ě0, m1`...`m k ąN0 M pm 1 , . . . , m k q A N p N ď 3 2 ÿ N ąN0 ˆN `k k ˙pkAq N N p N
as the number of solutions to m 1 `. . . `mk " N is the N -th coefficient of the power series 1{p1 ´zq k which happens to be equal to p1{k!q d dz k 1{p1 ´zq. We next check that, with N " N 0 `n `1, we have pn `1 `N0 `kq ď pN 0 `n `1q 2 since N 0 ě k, and thus

`N`k k N `n`k k ˘" pn `1 `N0 `kqpn `N0 `kq ¨¨¨pn `N0 `2q pn `kqpn `k ´1q ¨¨¨pn `1q ¨pN 0 `n `1q ď ˆN0 `k k ˙.
Hence, when p ě 2kA, we have 

ÿ N ąN0 ˆN `k k ˙pkAq N N p N " pkAq N0`1 p N0`1 ˆN0 `k k ˙ÿ ně0 ˆn `k k ˙pkAq n p n ď ˆN0 `k k ˙pkAq N0`1 p N0`1
| log I 1 | ď 2 k 3 2 ˆN0 `k k ˙pkAq N0`1 P N0 ˆ1 P `1 N 0 ˙. (21) 
We next note the following identity

ÿ kě1 d k kp kw " ÿ f ě1 κ f pdq f ÿ gě1 1 gp f gw where (23) κ f pdq " # c when f " 1, c f ´cf´1 when f ą 1. (22) 
We truncate identity (22) at f ď F where F is an integer, getting

ÿ kě1 d k kp kw " ÿ f ďF κ f pdq f ÿ gě1 1 gp f gw `O˚ˆ´ÿ f ąF maxp1, |d|q f f log ´1 ´p´f w ¯˙.
We next use ´logp1 ´xq ď 3x{2 when 0 ď x ď 1{2. We assume that p w ď 1{2 and p w ě 2 maxp1, |d|q to get We then raise that to the power M pm 1 , m 2 , . . . , m k q and sum over the m i 's, getting, on recalling (5), We now take F " L. The error term is bounded above by (since P ě 2kA)

´ÿ f ąF maxp1, |d|q f f log ´1 ´p´f w ¯ď 3 2 ÿ f ąF maxp1, |d|q f f p f w ď 3 
kA L P L ˆ2k k! p1 `log Lq `3 ¨2k A k!pL `1qP ˆ1 `P L ˙˙.
We select N 0 " L and we gather our estimates to end the proof.

  Gqχpaq log L P p s, χ d q where(3) L P ps, χq " ź pěP p1 ´χppq{p s q ´1.

Lemma 9 .

 9 Let HpXq " 1 `a1 X `. . . `aδ X δ be a polynomial of degree δ. Let ρ be one of its roots. Then either |ρ| ě 1 or 1{|ρ| ď |a 1 | `|a 2 | `. . . `|a δ |.

( 8 )

 8 P.[START_REF] Moree | Approximation of singular series constant and automata. With an appendix by Gerhard Niklasch[END_REF], "Approximation of singular series constant and automata. With an appendix by Gerhard Niklasch." (4) S. Ettahri, O. Ramaré, and L. Surel, 2019, "Fast multi-precision computation of some Euler products".

( 15 )

 15 E.[START_REF] Witt | Treue Darstellung Liescher Ringe[END_REF], "Treue Darstellung Liescher Ringe".

Π{I 1 "

 1 exp ´Z `O˚ˆÿ m1,...,m k ě0, 1ďm1`...`m k ďN0 M pm 1 , . . . , m k qA N F p1 `log F q P LN `ÿ m1,...,m k ě0, 1ďm1`...`m k ďN0 3M pm 1 , . . . , m k qA N pF `1q pF `1qP pF `1qN ˆ1 `P F N ˙˙* .

  Theorem 4. Let F and G be two polynomials of Crts. We assume that Gp0q " 1 and that F p0q " F 1 p0q " 0. Let β ě 2 be larger than the inverse of the roots of G and of G´F . Let P ě 2β be an integer parameter. Then, for any integer parameter L ě 2, we have

	where							
	(4)		Y P ps; q, a|Lq "	ÿ ďL	1 ÿ d|	µpdq	ÿ χP p Gq	χpaq ϕpqq	log L P p s, χ d q
	and where f " O ˚pgq means |f | ď g.		
	Extension to one variable rational fractions. Once we have such an approximation,
	we can reuse the machinery of [4] to reach Euler products of the shape
						ź	p1 `Rpp s qq
					pěP,		
					p"arqs		
	where R is a rational fraction.				
	ź pěP,	ˆ1	´F p1{pq Gp1{pq	˙" exp ˆÿ	
	p"arqs						
	(14) K. S. Williams, 1974, "Mertens' theorem for arithmetic progressions".
	(5) A. Languasco and A. Zaccagnini, 2009, "On the constant in the Mertens product for arith-
	metic progressions. II. Numerical values".		
	(7) A. Languasco and A. Zaccagnini, 2010, "On the constant in the Mertens product for arith-
	metic progressions. I. Identities".				
	(6) A. Languasco and A. Zaccagnini, 2010, "Computing the Mertens and Meissel-Mertens con-
	stants for sums over arithmetic progressions".

2ďjďJ `bG´F pjq ´bG pjq ˘YP pj; q, a|Lq `Iẇ here the integers b G´F pjq and b G pjq are defined in Lemma 6, |I| ď 8 maxpdegpG ´F q, deg Gqβ 2 pβ{P q 2L

  maxp1, |d|q F `1 pF `1qp pF `1q w .We approximate the sum of the logs by Corollary 3 and get

	which simplifies info		
	ź pěP,	ˆ1	p ´cpm 1 , m 2 , . . . , m k q ř ďk m pu s`v q	"
	p"arqs							
		exp	´" ÿ f ďF	κ f pcpm 1 , m 2 , . . . , m k qq f	pěP, ÿ	log ´1 ´p´f	ř	ďk m pu s`v q	3A
									p"arqs
									N pF `1q pF `1qP pF `1qN ˆ1	`P F N	˙*.
	ź pěP,	ˆ1	p ´cpm 1 , m 2 , . . . , m k q ř ďk m pu s`v q	"
	p"arqs							
			exp	´" ÿ f ďF	f κ f pcpm 1 , m 2 , . . . , m k qq	Y P	ďk ´ÿ	m pu s `v q; q, a|L Ō˚ˆA
							N F p1 `log F q P LN	`3A N pF `1q pF `1qP pF `1qN ˆ1	`P F N	˙˙*	.
	We have reached			
	ź pěP,	ˆ1	p ´cpm 1 , m 2 , . . . , m k q ř ďk m pu s`v q	"
	p"arqs							
		exp	´" ÿ f ďF	κ f pcpm 1 , m 2 , . . . , m k qq f	pěP, ÿ	log ´1 ´p´f	ř	ďk m pu s`v q
									p"arqs
									˙˙*

Ō˚ˆ3 maxp1, |cpm 1 , m 2 , . . . , m k q|q F `1 pF `1qP pF `1q ř ďk m pu σ`v q ˆ1 `P F ř ďk m pu σ `v q

This writing offers an analytic continuation of Dpsq to the domain defined by s ą 1{2. This analysis can be extended to

ẇhen C 1 and C 2 are integers. In general, Lemma 11 transfers to problem to the analytic continuation of ś p p1 ´c{p s q for some c but even the case c " ? 2 is difficult.

Proof of Theorem 2 and its Corollary

Proof of Theorem 2. We have to simplify the expression We readily check that, when h ě 1 and p are fixed, we have Here ωp q denotes the number of prime factors of (without multiplicity). We use the simplistic bounds 2 ωp q ď and σ ´1 ě 2. This yields the upper bound P 2P Lσ pP σ ´1q which is no more than 1{P Lσ . We finally recall that e x ´1 ď 8 7 x when x P r0, 1{4s as the function pe x ´1q{x is non-decreasing (its expansion in power series has non-negative coefficients).

Proof of Theorem 4

We first need to extend [START_REF] Ettahri | Fast multi-precision computation of some Euler products[END_REF]Lemma 16] to cover the case of polynomials with complex coefficients. The ancestor of this Lemma is [8, Lemma 1].

(4) S. Ettahri, O. Ramaré, and L. Surel, 2019, "Fast multi-precision computation of some Euler products". (8) P. Moree, 2000, "Approximation of singular series constant and automata. With an appendix by Gerhard Niklasch."