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Abstract
The present paper deals with the performance evaluation of an M/M/1 retrial queue with colli-

sions, transmission errors and unreliable server. To the best of our knowledge, there are no works
that have dealt with retrial queues by considering all the above-mentioned aspects (collisions,
transmission errors and unreliable server). This queue can be used as a mathematical model of
several computer systems and telecommunication networks. We apply the generating function
method to derive the joint distribution of the server state and the orbit length in the steady state,
and we obtain some performance measures. Finally, we provide numerical illustrations to show
the effectiveness and the applicability of the model.

Keywords: Retrial queue; Collisions; Transmission errors; Unreliable server; Generating func-
tion.

1 Introduction

Wireless data networks, which are widely used nowadays, are subject to several problems such as
collisions, transmission errors and server breakdowns. These motivate us to devise a stochastic model
that takes into account all the aspects causing packets re-transmission to solve such problems. In
this study, we consider a retrial queueing model which can be used to analyze the random access to
the channel in wireless communications where the server corresponds to the channel radio and the
RF module (Radio Frequency module), and the customers are the nodes packets. However, in the
distributed coordination function (DCF) mode of IEEE 802.11 basic access scheme, the loss and the
re-transmission of packets can be due to either collisions, transmission errors and breakdowns.

In wireless networks, collision takes place when at least two customers access the channel at the
same time. In such a situation, the receivers can not decode any frame (packet) correctly. In this paper,
we consider that the collision occurs when an arriving customer from outside the system namely a
primary customer or a retrial customer (secondary customer) has access directly to the busy server.
In this case, both the arriving customer and the customer in service will be moved to the orbit.

Usually, transmission errors are caused by an erroneous packet or by non-ideal channel conditions.
Co-channel and adjacent channel interferences may also cause transmission errors (see Yeo and
Agrawala (2003) and Yin (2007)). In our model, we consider that the packet is transmitted without
transmission errors with probability γ.

The loss and re-transmission of a packet may be also due to the server failure. The failures
could be caused by natural disasters, hardware failures, as well as from human actions such as cyber
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attacks, which are becoming more and more sophisticated. Failures of radio channel are also due to
the weakness of signal due to interference or fading, etc.

In the literature, we find works on queues with repeated attempts, some of them take into account
collisions and others consider the server failures, but on the best of our knowledge, there is no work
which takes into account transmission errors and the other factors together (retrials, collisions and
server failures) and this is the object of the paper.

In the proposed model, an arriving customer repeats its attempts to enter the service if

1. the server is busy;

2. there is a transmission error;

3. there is a collision;

4. the server breaks down.

Queues with repeated attempts play a vital role in the performance analysis of many telecom-
munication processes, including local and wide area networks, switching systems, shared bus local
area networks, digital cellular mobile networks, etc. The main feature of a retrial queue is to serve
immediately the arriving customer if the server is free. However, if the server is busy, the arriving
customer leaves the service area, joins a virtual group of the blocked customers, called orbit, and tries
to get service again in a random order and at random time intervals (Dragieva (2013)).

Many retrial approaches have been proposed in the literature. The most usual one, described
in the classical theory of retrial queues, is the so-called classical retrial policy where each customer
(packet, call, etc.) in the orbit tries to get the service independently of the others. In this policy the
intervals between successive repeated attempts are exponentially distributed with rate jν, when the
orbit size is j (see Aissani (2008)). Another type of retrial policy, called constant retial policy, is well
known for modeling ALOHA protocol. According to this policy, the time between two successive
repeated attempts is controlled by an electronic device. Thus, the retrial rate is (1 − δ j,0)η, where δ j,0
denotes Kronecker’s delta and j the number of repeated customers (Fayolle (1986)). Artalejo and
Gómez-Corral (1997) have proposed a linear retrial policy. This policy, which is also adopted in the
present paper, combines both the last cited approaches (i.e., classical and constant retrial policies).
Consequently, its rate is (1 − δ j,0)η + jν.

In many situations involving data transmission from diverse sources there can be conflict for a
limited number of channels or other facilities. Uncoordinated attempts by several sources to use a
single server facility can result in ’Collision’ leading to the loss of the transmission. Jonin (1982) and
Falin and Sukharev (1985) have analyzed a type of retrial queueing system with collisions, called
queue with double connections. For this queue, if an arriving customer finds the service facility
busy, interrupts the service of the customer in service, both the arriving customer and the served
customer will join the orbit and the server becomes free immediately. In Choi et al. (1992), the
authors have analyzed a retrial queueing model with collisions and constant retrial rate arising from
unslotted CSMA/CD (Carrier Sense Multiple Access with Collision Detection) protocol. They have
derived the generating function of the limiting distribution of the orbit size when the server is idle.
The service time of a customer consists of two consecutive phases. The collision occurs when the
arriving customer finds the server busy with the first phase of a customer service time. Kim (2010)
has considered a Markovian single server retrial queue with collisions and impatience. Kumar et al.
(2010) have analyzed the feedback retrial queueing system with collisions and linear retrial policy. Wu
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et al. (2011) have analyzed a retrial queueing system with preemptive resume and collisions. Kvach
and Nazarov (2015) have considered the M/M/1/N retrial queue with collisions, while Jailaxmi et al.
(2017) have conducted a performance analysis of an M/G/1 retrial queue with general retrial time,
modified M-vacations and collisions.

In Kim (2010); Kumar et al. (2010); Kvach and Nazarov (2015); Jailaxmi et al. (2017), if an arriving
customer finds the server busy, the collision occurs between the arriving customer and the customer
in service, resulting in the move of both customers to the retrial group. In all of the above mentioned
works, the authors consider the collision as the only cause of unsuccessful transmission and re-
transmission, which is not the case of the real-world communication systems. In this paper, other
aspects causing an unsuccessful transmission and re-transmission are considered.

In many real-life situations the server is subject to unpredictable breakdowns. Therefore, queueing
systems considering server breakdowns may provide a realistic representation of such situations.
This type of systems can be encountered in communication networks, manufacturing and computer
systems. Retrial queues dealing with servers failures and repairs have been introduced by Aissani
(1988) and Kulkarni and Choi (1990). Several other works have been devoted to this field Aissani
(1993, 1994); Anisimov and Atadzhanov (1992, 1994); Artalejo (1994); Sherman and Kharoufeh (2006);
Falin (2010); Saggou et al. (2017). In Falin (2010), an M/G/1 retrial queues with an unreliable server
and general repair times have been considered. The author has found the joint distribution of the
server state, the number of customers in the queue and the number of customers in the orbit in steady
state when both service and repair times have a general distribution. Li et al. (2006) have considered
a BMAP/G/1 retrial queue with a server subject to breakdowns and repairs. They have assumed that
the lifetime of the server is exponentially distributed while the repair time is general. In their work,
the supplementary variable has been used. Li and Zhang (2017) have analyzed an M/G/1 retrial
G − queue with working breakdowns. They have supposed that during the breakdown period, the
service still continues with a lower rate. In order to discuss the probability generating function of
the number of customers in the retrial queue, the supplementary variable technique has been used.
Sherman and Kharoufeh (2006) have analyzed an unreliable M/M/1 retrial queue where the capacity
of the orbit and the normal queue are considered infinite. They have provided stability condition
as well as several stochastic decomposability results. Wu and Lian (2013) have analyzed an M/G/1
retrial G−queue with priority under the Bernoulli vacation schedule subject to the server breakdowns
and repairs using the matrix geometric method. The retrial G − queues with server breakdowns have
been discussed in many papers such as Do (2011), Rakhee et al. (2013), Yang et al. (2013), Gao and
Wang (2014), Bhagat and Jain (2016) and Chen et al. (2016). Several detailed reviews of retrial queues
can be found in the bibliographies of Artalejo (1999, 2010), the survey papers of Yang and Templeton
(1987), Aissani (1988), Falin (1990), Kulkarni and Liang (1997) and Kim and Kim (2016), the books of
Falin and Templeton (1997) and Artalejo and Gómez-Corral (2008).

As stated above, several studies dealing with retrial queueing systems with collisions and retrial
queues with unreliable servers have been considered in the literature. In these studies, the authors
consider in their model of retrial queue only one event namely collisions or server breakdowns,
which constitute their main draw back. In communication systems, retransmitting packets due to
transmission errors caused by an erroneous packet, or non-ideal channel conditions is also one of
the frequent factor in retransmitting data and not much work taking this aspect in their model of
retrial is found in the literature. However, the consideration of retrial queueing systems taking into
account all factors that cause the re-transmission of customers (collisions, transmission errors and
server breakdowns) seems interesting. To the best of our knowledge, there are no works considering
all these aspects together in the literature. To face these issues, an unreliable server retrial queueing
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system with linear retrial rate, collisions of customers and transmission errors is investigated in this
paper. To obtain some performance measures, the generating function method is applied. To assess
our model, we give some numerical examples.

The next section presents the model description. Sect. 3 provides the steady-state probabilities of
the orbit size and the server state, and gives the stability condition of the system. In Sect. 4, some
performances are obtained using steady-state analysis, while in Sect. 5, numerical examples are given
to illustrate the effectiveness of the theoretical results. Finally, the paper is concluded in Sect. 6.

2 Model description

let us consider an M/M/1 retrial queue with collisions, transmission errors, unreliable server and linear
retrial rate. Primary customers arrive from outside the system according to a Poisson process with
rateλ. It is assumed that there is no waiting space and an arriving primary customer enters the service
with probability p or enters and waits in the orbit of infinite size with probability (1−p) and tries to get
served again. The definition of the probability "p" is motivated in modeling random access protocols
in wireless communication networks to reduce collisions, i.e, Consider a communication line with
slotted time, which is shared by several stations. The duration of the slot equals the transmission
time of a single packet of data. If two or more stations are transmitting packets simultaneously, then a
collision takes place, i.e. all packets are destroyed and must be retransmitted. If the stations involved
in the conflict would try to retransmit destroyed packets in the nearest slot, then a collision occurs
with certainty. To avoid this, each station independently of other stations, transmits the packet with
probability p and delays actions with probability (1 − p). Each station introduces a random delay
before next attempt to transmit the packet (see Artalejo and Falin (2002)).

The inter-retrial time of each customer in the orbit is exponentially distributed and independent
of the number of customers applying for the service. We assume that the repeated attempts follow
the linear retrial policy; the probability of a repeated attempt from the orbit during the interval
time (t, t + ∆t) is (η(1 − δ j,0) + jν)∆t + o(∆t), where j is the customers number at time t and δ j,0
denotes Kronecker’s delta. The customer in service could either end service successfully (without
transmission error) and leaves the system with probability γ (0 < γ ≤ 1) or join the retrial group (due
to transmission error) with probability (1 − γ). If the server is busy, the arriving customer (primary
or secondary) collides with the customer in service resulting in both being shifted to the orbit. We
consider that the server is subject to random breakdowns only when a customer is in service and this
according to a poisson process with rate α. Customers whose service is interrupted by a breakdown
have to leave the service zone and join the retrial queue. The repair times are considered exponentially
distributed with repair rate β.

We assume that the service times are independent and follow an exponential distribution with
mean 1/µ. The stochastic processes involved in the system are considered to be mutually independent.

The system is described by the bivariate process Y(t) = {C(t),X(t); t ≥ 0}, where X(t) denotes the
number of customers in the orbit at time t and C(t) denotes the server state defined as

C(t) =


0, when the server is idle at time t;
1, when the server is busy at time t;
2, when the server breaks down and under repair at time t.

It is clear that the process Y(t) is a continuous time Markov chain, irreducible, aperiodic and
time-homogeneous with state space
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S = {(0, j), (1, j), (2, j′)/ j, j
′ ∈ Z+; j

′
, 0}.

3 Analysis of the steady-state distribution

Let P j = lim
t→∞

P{C(t) = 0,X(t) = j}, Q j = lim
t→∞

P{C(t) = 1,X(t) = j}, j ≥ 0 and R j = lim
t→∞

P{C(t) = 2,X(t) = j},
j ≥ 1, be the joint distributions of the server state and the number of customers in the orbit in the
steady state.
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Figure 1: Transition diagram of an M/M/1 retrial queue with collisions, transmission errors, unreliable
server and linear retrial policy.

In order to study the stability of the M/M/1 retrial queue with collisions, transmission errors,
unreliable server and linear retrial policy, we consider the embedded Markov chain defined by
{Xn = X(tn+0), (n ≥ 0)}, with t0 = 0, where tn is the time when the server becomes idle for the nth time
due to the service completion of the nth customer, collision of customers or reparation of the server,
and Xn is the number of customers in the orbit just after tn.

Proposition 1
The embedded Markov chain (Xn)n≥0 is ergodic if and only if

ρ =
λ(2β + α)
βγµ

< 1, (1)

where the parameters λ, β, α and γ are as defined above.

Proof 1
To prove the sufficient condition, we use the criterion based on the theory of mean drift. The most
important result of this theory is the Foster’s criterion (see Pakes (1969) and Tweedie (1975)).
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In our model the limiting mean drift is
lim
k→∞
△k= E[Xn+1 − Xn | Xn = k] = λ(2β + α) − βγµ,∀k > j0, j0 ≥ 0.

(Xn)n≥0 is ergodic if lim
k→∞
△k < 0.

Hence λ(2β + α) < βγµ if and only if λ(2β+α)
βγµ = ρ < 1.

It can also be verified that this condition is necessary for ergodicity.�

Using the balance equations of the Markovian system illustrated in Fig. 1, we obtain

λP0 = γµQ0, (2)
(λ + η + ν)P1 = (1 − p)λP0 + (1 − γ)µQ0 + γµQ1 + βR1, (3)

(λ + η + jν)P j = (1 − p)λP j−1 + (η + ( j − 1)ν)Q j−1 + (1 − γ)µQ j−1 + λpQ j−2 + βR j

+ γµQ j, j = 2, 3, ..., (4)
(α + λ + µ)Q0 = λpP0 + (η + ν)P1, (5)

(α + λ + µ + η + jν)Q j = λpP j + (η + ( j + 1)ν)P j+1 + (1 − p)λQ j−1, j = 1, 2, 3, ..., (6)
(λ + β)R1 = αQ0, (7)
(λ + β)R j = αQ j−1 + λR j−1, j = 2, 3, .... (8)

To solve Eqs. (2)-(8), we use the following partial generating functions:

P(z) =
∞∑
j=0

P jz j, Q(z) =
∞∑
j=0

Q jz j and R(z) =
∞∑
j=1

R jz j, z ∈ [0, 1], (9)

where P(z)
(
respectively Q(z), R(z)

)
is the PGF (Probability Generating Function) of the number of

customers in the orbit when the server is idle (respectively busy, failing and under repair).

By multiplying both sides of Eqs. (2)-(8) by z j and then making a summation, we obtain the
following equations:

νzP
′
(z) + (λ + η − (1 − p)λz)P(z) − ηP0 = (γµ + (1 − γ)µz + λpz2 + ηz)Q(z)

+ νz2Q
′
(z) − ηzQ0 + βR(z), (10)

νP
′
(z) + (λp +

η

z
)P(z) − η

z
P0 = −λ(1 − p)zQ(z) + νzQ

′
(z) − ηQ0 + (λ + α + µ + η)Q(z), (11)

(λ(1 − z) + β)R(z) = αzQ(z). (12)

Multiplying both sides of Eq. (11) by z, then subtracting the obtained equation from Eq. (10) and
finally, summing with Eq. (12), we obtain

λP(z) = (−λz + γµ)Q(z) − λR(z). (13)

The following theorem gives the different probabilities of the server’s state.

Theorem 1
For an M/M/1 retrial queue with collisions, transmission errors, unreliable server and linear retrial
policy, under the stability condition λ(2β+α) < βγµ, we have the following probabilities of the server
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state:

(i) The probability that the sever is busy is

Q(1) =
λ

γµ
. (14)

(ii) The probability that the server breaks down is

R(1) =
αλ
βγµ
. (15)

(iii) The probability that the server is idle is

P(1) = 1 − λ
γµ
− αλ
βγµ
. (16)

Proof 2
(i) For z = 1, Eq. (13) becomes

λ (P(1) +Q(1) + R(1)) = γµQ(1).

Under the stability condition (1), the limiting probability distribution exists, i.e.

P(1) +Q(1) + R(1) = 1,

then, we obtain the probability that the server is busy given in Eq.(14).

(ii) From Eq. (12), for z = 1 and replacing Q(1) obtained previously, we get the probability that
the server breaks down given in Eq.(15).

(iii) To obtain P(1), we first put z = 1 in Eq. (13) and then, we replace Q(1) and R(1) obtained
previously.�

Now, let us consider the probability generating functions of the number of customers in the orbit
when the server is busy, breaks down and under repair, and idle; and the probability generating
functions of the number of customers in the orbit and in the system, which are given in the following
theorem.

Theorem 2
For an unreliable Markovian single server retrial queue with collisions, transmission errors and linear
retrial policy, under the stability condition ρ < 1, we have:
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(i) the probability generating function Q(z) of the orbit size when the server is busy is

Q(z) = z−
η
ν ×

[
λ
γµ

exp
(

(z6 − 1)A
6(γµν(β + λ)2)7

)
exp

(
(z5 − 1)B

5(γµν(β + λ)2)6

)
exp

(
(1 − z4)C

4(γµν(β + λ)2)5

)
× exp

(
(1 − z3)D

3(γµν(β + λ)2)4

)
exp

(
(1 − z2)E

2(γµν(β + λ)2)3

)
exp

(
(1 − z)F

(γµν(β + λ)2)2

)
− λη

νγ
P0

∫ 1

z
exp

(
(z6 − u6)A

6(γµν(β + λ)2)7

)
exp

(
(z5 − u5)B

5(γµν(β + λ)2)6

)
exp

(
(u4 − z4)C

4(γµν(β + λ)2)5

)
× exp

(
(u3 − z3)D

3(γµν(β + λ)2)4

)
exp

(
(u2 − z2)E

2(γµν(β + λ)2)3

)
exp

(
(u − z)F

(γµν(β + λ)2)2

)
u
η
ν−1

×
(γ − λµu)(β + λ − λu)

−(2λ2u − 2λ2u2 − βγµ + αλu + 2βλu − γλµ + γλµu)
du

 ; (17)

(ii) the probability generating function R(z) of the orbit size when the server breaks down and under repair
is

R(z) =
αz

λ(1 − z) + β
z−

η
ν ×

[
λ
γµ

exp
(

(z6 − 1)A
6(γµν(β + λ)2)7

)
exp

(
(z5 − 1)B

5(γµν(β + λ)2)6

)
exp

(
(1 − z4)C

4(γµν(β + λ)2)5

)
× exp

(
(1 − z3)D

3(γµν(β + λ)2)4

)
exp

(
(1 − z2)E

2(γµν(β + λ)2)3

)
exp

(
(1 − z)F

(γµν(β + λ)2)2

)
− λη

νγ
P0

∫ 1

z
exp

(
(z6 − u6)A

6(γµν(β + λ)2)7

)
exp

(
(z5 − u5)B

5(γµν(β + λ)2)6

)
exp

(
(u4 − z4)C

4(γµν(β + λ)2)5

)
× exp

(
(u3 − z3)D

3(γµν(β + λ)2)4

)
exp

(
(u2 − z2)E

2(γµν(β + λ)2)3

)
exp

(
(u − z)F

(γµν(β + λ)2)2

)
× u

η
ν−1

(γ − λµu)(β + λ − λu)

−(2λ2u − 2λ2u2 − βγµ + αλu + 2βλu − γλµ + γλµu)
du

 ; (18)

(iii) the probability generating function P(z) of the orbit size when the server is idle is

P(z) =

(
−z +

γµ

λ
− αz
λ(1 − z) + β

)
z−

η
ν

[
λ
γµ

exp
(

(z6 − 1)A
6(γµν(β + λ)2)7

)
exp

(
(z5 − 1)B

5(γµν(β + λ)2)6

)
× exp

(
(1 − z4)C

4(γµν(β + λ)2)5

)
exp

(
(1 − z3)D

3(γµν(β + λ)2)4

)
exp

(
(1 − z2)E

2(γµν(β + λ)2)3

)
exp

(
(1 − z)F

(γµν(β + λ)2)2

)
− λη

νγ
P0

∫ 1

z
exp

(
(z6 − u6)A

6(γµν(β + λ)2)7

)
exp

(
(z5 − u5)B

5(γµν(β + λ)2)6

)
exp

(
(u4 − z4)C

4(γµν(β + λ)2)5

)
× exp

(
(u3 − z3)D

3(γµν(β + λ)2)4

)
exp

(
(u2 − z2)E

2(γµν(β + λ)2)3

)
exp

(
(u − z)F

(γµν(β + λ)2)2

)
× u

η
ν−1

(γ − λµu)(β + λ − λu)

−(2λ2u − 2λ2u2 − βγµ + αλu + 2βλu − γλµ + γλµu)
du

 ; (19)
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(iv) the probability generating function K(z) for the number of customers in the orbit is

K(z) = (−z +
γµ

λ
+ 1)z

−η
ν

[
λ
γµ

exp
(

(z6 − 1)A
6(γµν(β + λ)2)7

)
exp

(
(z5 − 1)B

5(γµν(β + λ)2)6

)
exp

(
(1 − z4)C

4(γµν(β + λ)2)5

)
× exp

(
(1 − z3)D

3(γµν(β + λ)2)4

)
exp

(
(1 − z2)E

2(γµν(β + λ)2)3

)
exp

(
(1 − z)F

(γµν(β + λ)2)2

)
− λη
νγ

P0

∫ 1

z
exp

(
(z6 − u6)A

6(γµν(β + λ)2)7

)
× exp

(
(z5 − u5)B

5(γµν(β + λ)2)6

)
exp

(
(u4 − z4)C

4(γµν(β + λ)2)5

)
exp

(
(u3 − z3)D

3(γµν(β + λ)2)4

)
exp

(
(u2 − z2)E

2(γµν(β + λ)2)3

)
× exp

(
(u − z)F

(γµν(β + λ)2)2

)
u
η
ν−1

(γ − λµu)(β + λ − λu)

−(2λ2u − 2λ2u2 − βγµ + αλu + 2βλu − γλµ + γλµu)
du

 ; (20)

(v) the probability generating function H(z) for the number of customers in the system is

H(z) =
γµ

λ
z−

η
ν

[
λ
γµ

exp
(

(z6 − 1)A
6(γµν(β + λ)2)7

)
exp

(
(z5 − 1)B

5(γµν(β + λ)2)6

)
exp

(
(1 − z4)C

4(γµν(β + λ)2)5

)
× exp

(
(1 − z3)D

3(γµν(β + λ)2)4

)
exp

(
(1 − z2)E

2(γµν(β + λ)2)3

)
exp

(
(1 − z)F

(γµν(β + λ)2)2

)
− λη

νγ
P0

∫ 1

z
exp

(
(z6 − u6)A

6(γµν(β + λ)2)7

)
exp

(
(z5 − u5)B

5(γµν(β + λ)2)6

)
exp

(
(u4 − z4)C

4(γµν(β + λ)2)5

)
× exp

(
(u3 − z3)D

3(γµν(β + λ)2)4

)
exp(

(u2 − z2)E
2(γµν(β + λ)2)3 exp

(
(u − z)F

(γµν(β + λ)2)2

)
× u

η
ν−1

(γ − λµu)(β + λ − λu)

−(2λ2u − 2λ2u2 − βγµ + αλu + 2βλu − γλµ + γλµu)
du

 ; (21)

where

P0 =
ν
µη

exp
(

−A
6(γµν(β + λ)2)7

)
exp

(
−B

5(γµν(β + λ)2)6

)
exp

(
C

4(γµν(β + λ)2)5

)
exp

(
D

3(γµν(β + λ)2)4

)
× exp

(
E

2(γµν(β + λ)2)3

)
exp

(
F

(γµν(β + λ)2)2

) {
lim
z→0+

∫ 1

z
exp

(
−u6A

6(γµν(β + λ)2)7

)
exp

(
−u5B

5(γµν(β + λ)2)6

)
× exp

(
u4C

4(γµν(β + λ)2)5

)
exp

(
u3D

3(γµν(β + λ)2)4

)
exp

(
u2E

2(γµν(β + λ)2)3

)
exp

(
uF

(γµν(β + λ)2)2

)

× u
η
ν−1

(γ − λµu)(β + λ − λu)

−(2λ2u − 2λ2u2 − βγµ + αλu + 2βλu − γλµ + γλµu)
du


−1

; (22)

A = γλ2(β+λ)4µν2(−λ4(β+λ)4η(α+ 2(β+λ+ γµ))6ν4 − γ4λ4(β+λ)6µ4(−8β− 10λ− 4η+α(−3+ 4p)− (2+ γ)µ+
4p(4(β+λ)+γµ)− 2ν)ν4 + 5(α+ 2(β+λ+γµ))(αη+ 2γηµ+ (β+λ)(α+ 2η+µ−γpµ)+αν+ βν+γλ4(β+λ)4ηµ(α+
4(β+λ)+γµ)(α+2(β+λ+γµ))3ν4+λ(β+λ+ν))−γλ4(β+λ)4µ(α+2(β+λ+γµ))2ν4(6γηµ(α+4(β+λ)+γµ)2+ (α+
2(β+λ+γµ))2(−αβ+ β2 + 3λ2 + (α+ 4λ)η+ 4β(λ+η)− (α+ 4β)λp− 2(β2 +λ2)p+γηµ+ 2(β+λ)(α+µ−γpµ+ ν))+
4(α+2(β+λ+γµ))(2γ(β+λ)ηµ+ (α+4(β+λ)+γµ)(αη+2γηµ+ (β+λ)(α+2η+µ−γpµ)+αν+βν+λ(β+λ+ν))))−
γ3λ4(β+λ)4µ3ν4(4γ(β+λ)2ηµ− (β+λ)2(−1+ 2p)(α+ 2(β+λ+γµ))2 + 4(β+λ)(α+ 4(β+λ)+γµ)(αη+ 2γηµ+ (β+
λ)(α+2η+µ−γpµ)+αν+βν+λ(β+λ+ν))+ (α+4(β+λ)+γµ)2(−αβ+β2+3λ2+ (α+4λ)η+4β(λ+η)− (α+4β)λp−
2(β2+λ2)p+γηµ+2(β+λ)(α+µ−γpµ+ν))+2(β+λ)(α+2(β+λ+γµ))((α+4(β+λ)+γµ)(α+2β+3λ+2η−αp+µ−
p(4(β+λ)+γµ)+ν)+2(−αβ+β2+3λ2+ (α+4λ)η+4β(λ+η)− (α+4β)λp−2(β2+λ2)p+γηµ+2(β+λ)(α+µ−γpµ+
ν))))+γ2λ4(β+λ)4µ2ν4(γηµ(α+ 4(β+λ)+γµ)3 + (β+λ)(α+ 2(β+λ+γµ))3(α+ 2β+ 3λ+ 2η−αp+µ− p(4(β+λ)+
γµ)+ν)+3(α+4(β+λ)+γµ)(α+2(β+λ+γµ))(4γ(β+λ)ηµ+(α+4(β+λ)+γµ)(αη+2γηµ+(β+λ)(α+2η+µ−γpµ)+
αν+βν+λ(β+λ+ν)))+3(α+2(β+λ+γµ))2(2(β+λ)(αη+2γηµ+ (β+λ)(α+2η+µ−γpµ)+αν+βν+λ(β+λ+ν))+
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(α+4(β+λ)+γµ)(−αβ+β2+3λ2+ (α+4λ)η+4β(λ+η)− (α+4β)λp−2(β2+λ2)p+γηµ+2(β+λ)(α+µ−γpµ+ν)))));

B = γλ5(β+λ)7µν5(−η(α+2(β+λ+γµ))5+γ3(β+λ)µ3(−20λ2−16λη+α2(−1+p)+24λ2p+12β2(−1+2p)−8λµ−
5γλµ−4γηµ+16γλpµ−γµ2+γ2pµ2−8λν−γµν−α(4η+β(9−10p)+µ+γµ−2(6λ(−1+p)+γpµ)+ν)−4b(4η+λ(8−
12p)+(2+γ−4γp)µ+2ν))+(α+2(β+λ+γµ))3(4γηµ(α+4(β+λ)+γµ)+(α+2(β+λ+γµ))(αη+2γηµ+(β+λ)(α+2η+
µ−γpµ)+αν+βν+λ(β+λ+ν)))−γµ(α+2(β+λ+γµ))(3γηµ(α+4(β+λ)+γµ)2+(α+2(β+λ+γµ))2(−αβ+β2+3λ2+
(α+4λ)η+4β(λ+η)−(α+4β)λp−2(β2+λ2)p+γηµ+2(β+λ)(α+µ−γpµ+ν))+3(α+2(β+λ+γµ))(2γ(β+λ)ηµ+(α+
4(β+λ)+γµ)(αη+2γηµ+(β+λ)(α+2η+µ−γpµ)+αν+βν+λ(β+λ+ν))))+γ2µ2(4γ(β+λ)ηµ(α+4(β+λ)+γµ)+(β+
λ)(α+2(β+λ+γµ))2(α+2β+3λ+2η−αp+µ−p(4(β+λ)+γµ)+ν)+(α+4(β+λ)+γµ)2(αη+2γηµ+(β+λ)(α+2η+µ−
γpµ)+αν+βν+λ(β+λ+ν))+2(α+2(β+λ+γµ))(2(β+λ)(αη+2γηµ+(β+λ)(α+2η+µ−γpµ)+αν+βν+λ(β+λ+ν))+
(α+4(β+λ)+γµ)(−αβ+β2+3λ2+ (α+4λ)η+4β(λ+η)− (α+4β)λp−2(β2+λ2)p+γηµ+2(β+λ)(α+µ−γpµ+ν)))));

C = −γλ4(β + λ)6µν4(α4(β + λ + ν) + 4(β + λ)4(2λ − (−2 + γ)µ + 2ν) + α3(6β2 + 7λ2 + 4γµν + λ(µ + 2γµ +
7ν) + β(13λ + µ − γ(−3 + p)µ + 7ν)) + α2(12β3 + 18λ3 + 6γ2µ2ν + γλµ((2 + γ)µ + 14ν) + λ2(6µ + 5γµ + 18ν) +
β2(42λ+ (6+ 7γ− 4γp)µ+ 18ν)+ β(48λ2 + 4λ((3+ 3γ− γp)µ+ 9ν)+ γµ((2+ 4γ− 3γp)µ+ 14ν)))+ α(8β4 + 20λ4 +
4γ3µ3ν+ 4γλ2µ(µ+ 3ν)+ 4λ3(3µ+ 5ν)+ 4β3(11λ+ 3µ−γpµ+ 5ν)+γ2λµ2(µ+ 7ν)+β2(84λ2 +γµ((4+ 3γ− 4γp)µ+
12ν)+λ(36µ−8γpµ+60ν))+β(68λ3+γ2µ2(µ−3γ(−1+p)µ+7ν)+γλµ((8+3γ−4γp)µ+24ν)+λ2(−4(−9+γp)µ+60ν))));

D = −γλ3(β + λ)5µν3(α3(β + λ + ν) + 2(β + λ)3(2λ − (−2 + γ)µ + 2ν) + α2(4β2 + 5λ2 + 3γµν + λ(µ + γµ + 5ν) +
β(9λ+ µ− γ(−2+ p)µ+ 5ν))+ α(4β3 + 8λ3 + 3γ2µ2ν+ 4λ2(µ+ 2ν)+ γλµ(µ+ 5ν)+ β2(16λ+ (4+ γ− 2γp)µ+ 8ν)+
β(20λ2 + λ(8 + γ − 2γp)µ + 16λν + γµ(µ − 2γ(−1 + p)µ + 5ν))));

E = γλ2(β+λ)4µν2(−α2(β+λ+ν)−(β+λ)2(2λ+2µ−γµ+2ν)−α(2β2+3λ2+λµ+3λν+2γµν+β(5λ+µ+γµ−γpµ+3ν)));

and

F = γλ(β + λ)3µν(−α(β + λ + ν) − (β + λ)(λ + µ − γpµ + ν)).

Proof 3
(i) By differentiating Eq. (13) with respect to z and substituting into Eq. (10) and using Eq. (12), we
obtain

Q
′
(z) +

1
ω

[
λ4(1 − 2p)z4 + λ3(α(p − 1) − µ + 4pβ + 4pλ − 3λ − 2β + pγµ − 2η − ν)z3

+ λ2((β + λ)(2α − 2γpµ + 2(µ + ν)) + 4β(λ + η) + η(α + 4λ) − 2p(β2 + λ2) + β2 + 3λ2 − αβp
− λp(α + 4β) + ηγµ)z2 − λ(β + λ)((β + λ)(α + 2η − γpµ + µ) + λ(λ + β + ν) + βν + ηα + αν + 2γηµ)z

+ γηµ(β + λ)2
]

Q(z) =
λη(γ − λµz)(β + λ − λz)2

γω
P0, (23)

where ω = −νz (
β + λ(1 − z)

) (
(1 − z)(2λ2z − γλµ) − βγµ + λz(α + 2β)

)
.

The equation given in Eq.(23) is a first order differential equation with second member. It has a singular
point at z = 0, so the domain of solution is (0,1].

Eq.(23) has the same form as the one below:

Q
′
(z) +

az4 + bz3 + cz2 + dz + e
lz4 +mz3 + nz2 + rz

Q(z) = g(z), z ∈ (0, 1], (24)

where

10



a = λ4(1 − 2p);
b = λ3(α(p − 1) − µ + 4pβ + 4pλ − 3λ − 2β + pγµ − 2η − ν);
c = λ2((β + λ)(2α − 2γpµ + 2(µ + ν)) + 4β(λ + η) + η(α + 4λ) − 2p(β2 + λ2) + β2 + 3λ2 − αβ − λp(α + 4β) + ηγµ);
d = −λ(β + λ)((β + λ)(α + 2η − γpµ + µ) + λ(λ + β + ν) + βν + ηα + αν + 2γηµ)
e = γηµ(β + λ)2;
l = −2λ3ν;
m = 4βλ2ν + 4λ3ν + λ2νγµ + λ2αν;
n = −2λ2νγµ − 2βλνγµ − 4λ2βν − 2λ3ν − 2β2λν − λ2αν − βλαν;
r = νγµλ2 + 2λβνγµ + β2νγµ;

g(z) =
λη(γ − λµz)(β + λ − λz)2

γω
P0;

with

ω = lz4 +mz3 + nz2 + rz;

which can be written as

ω = −νz(β + λ(1 − z))((1 − z)(2λ2z − γλµ) − βγµ + λz(α + 2β)).

We note

T(z) =
az4 + bz3 + cz2 + dz + e

lz4 +mz3 + nz2 + rz
,

so, we can write Eq.(24) as follows:

Q
′
(z) + T(z)Q(z) = g(z), z ∈ (0, 1]. (25)

The solution of this equation is as follows

Q(z) = F(z) exp
(
−

∫ z

1
T(x)dx

)
, (26)

where

F(z) =
∫ z

1
g(u) exp

(∫ u

1
T(x)dx

)
du + k.

Substituting F(z) in Eq.(26), we get

Q(z) =
∫ z

1
g(u) exp

(∫ u

1
T(x)dx

)
exp

(
−

∫ z

1
T(x)dx

)
du + k exp

(
−

∫ z

1
T(x)dx

)
. (27)

To determine the constant k, we put z = 1 in Eq.(27) and we use the equation below corresponding to the
probability to have a busy server

Q(1) =
λ
γµ
,

we find
k =

λ
γµ
,

then,

Q(z) =
∫ z

1
g(u) exp

(∫ u

1
T(x)dx

)
exp

(
−

∫ z

1
T(x)dx

)
du +

λ
γµ

exp
(
−

∫ z

1
T(x)dx

)
. (28)

11



We used the power series of T(x) in the neighborhood of 0 to get
∫

T(x)dx. Then, we have

∫
T(x)dx =

e
r

log(|x|) − x6

6r7

(
(am + bl)r5 + (−an2 + (−2bm − 2cl)n − cm2 − 2dlm − el2)r4

+(bn3 + (3cm + 3dl)n2 + (3dm2 + 6elm)n + em3)r3 + (−cn4 + (−4dm − 4el)n3 − 6em2n2)r2

+(dn5 + 5emn4)r − en6
)
− x5

5r6

(
(an + bm + cl)r4 + (−bn2 + (−2cm − 2dl)n − dm2 − 2elm)r3

+
(
cn3 + (3dm + 3el)n2 + 3em2n)r2 + (−dn4 − 4emn3)r + en5

)
+

x4

4r5

(
ar4 + (−bn − cm − dl)r3

+(cn2 + (2dm + 2el)n + em2)r2 + (−dn3 − 3emn2)r + en4
)
+

x3

3r4 (br3 + (−cn − dm − el)r2

+(dn2 + 2emn)r − en3) +
x2

2r3

(
cr2 + (−dn − em)r + en2

)
+

x
r2 (dr − en) + o(x6) + constant. (29)

We rewrite this integral as follows∫
T(x)dx =

e
r

log(|x|) − x6

6r7 A − x5

5r6 B +
x4

4r5 C +
x3

3r4 D +
x2

2r3 E +
x
r2 F + constant, (30)

where

A = (am + bl)r5 + (−an2 + (−2bm − 2cl)n − cm2 − 2dlm − el2)r4 + (bn3 + (3cm + 3dl)n2 + (3dm2 + 6elm)n + em3)r3 +
(−cn4 + (−4dm − 4el)n3 − 6em2n2)r2 + (dn5 + 5emn4)r − en6;

B = (an+bm+cl)r4+ (−bn2+ (−2cm−2dl)n−dm2−2elm)r3+ (cn3+ (3dm+3el)n2+3em2n)r2+ (−dn4−4emn3)r+ en5;

C = ar4 + (−bn − cm − dl)r3 + (cn2 + (2dm + 2el)n + em2)r2 + (−dn3 − 3emn2)r + en4;

D = br3 + (−cn − dm − el)r2 + (dn2 + 2emn)r − en3;

E = cr2 + (−dn − em)r + en2;

and

F = dr − en.
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and we have

exp
(
−

∫ z

1
T(x)dx

)
= z−

e
r exp(

z6 − 1
6r7 A) exp(

z5 − 1
5r6 B) exp(

1 − z4

4r5 C) exp(
1 − z3

3r4 D) (31)

× exp(
1 − z2

2r3 E) exp(
1 − z

r2 F);

exp
(∫ u

1
T(x)dx

)
= u

e
r exp(

1 − u6

6r7 A) exp(
1 − u5

5r6 B) exp(
u4 − 1

4r5 C) exp(
u3 − 1

3r4 D) (32)

× exp(
u2 − 1

2r3 E) exp(
u − 1

r2 F).

Substituting the equation corresponding to exp
(
−

∫ z

1 T(x)dx
)
, exp

(∫ u

1 T(x)dx
)

and g(u) in Eq.(28), and after
simplifications, we get the probability generating function Q(z) of the orbit size when the server is busy.

(ii) By substituting Eq.(17), obtained in (i), in Eq.(12), we obtain the probability generating function R(z)
of the orbit size when the server breaks down and under repair.

(iii) By substituting Eq.(17) and Eq.(18), obtained in (i) and (ii) respectively, into (13), we obtain the prob-
ability generating function P(z) of the orbit size when the server is idle.

(iv) The probability generating function for the number of customers in the orbit denoted by K(z) is de-
fined as K(z) = P(z)+Q(z)+R(z). Substituting expressions for P(z), Q(z) and R(z), we get K(z) given in Eq. (20).

(v) The probability generating function for the number of customers in the system, defined as
H(z) = P(z) + R(z) + zQ(z), is given in Eq. (21).

It can be noted that, as z → 0+, Q(0) = Q0 < ∞ and z−
η
ν diverges. Thus, from (17), we obtain the steady-

state joint probability P0 that the server is idle and no customers are in the orbit.�

4 System characteristics

The following theorem summarizes some important characteristics of an unreliable single server
retrial queue with collisions, transmission errors and linear retial rate.

Theorem 3
For a Markovian single server retrial queue with collisions, transmission errors, unreliable server and
linear retial rate, under the stability conditionλ(2β+α) < βγµ, we have the following performances:

(i) The mean number of customers Lq in the orbit is

Lq = − λ
γµ
− η
ν
+

A
(γµν(β + λ)2)7 +

B
(γµν(β + λ)2)6 −

C
(γµν(β + λ)2)5 −

D
(γµν(β + λ)2)4

− E
(γµν(β + λ)2)3 −

F
(γµν(β + λ)2)2 −

µηβ

ν
(

γ − λµ
βγµ − αλ − 2λβ

)P0. (33)
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(ii) The mean number of customers Ls in the system is

Ls = −η
ν
+

A
(γµν(β + λ)2)7 +

B
(γµν(β + λ)2)6 −

C
(γµν(β + λ)2)5 −

D
(γµν(β + λ)2)4

− E
(γµν(β + λ)2)3 −

F
(γµν(β + λ)2)2 −

µηβ

ν
(

γ − λµ
βγµ − αλ − 2λβ

)P0. (34)

(iii) The mean waiting time Wq in the orbit is

Wq = − 1
γµ
− η
λν
+

A
λ(γµν(β + λ)2)7 +

B
λ(γµν(β + λ)2)6 −

C
λ(γµν(β + λ)2)5 −

D
λ(γµν(β + λ)2)4

− E
λ(γµν(β + λ)2)3 −

F
λ(γµν(β + λ)2)2 −

µηβ

λν
(

γ − λµ
βγµ − αλ − 2λβ

)P0. (35)

(iv) The mean waiting time Ws in the system is

Ws = − η
λν
+

A
λ(γµν(β + λ)2)7 +

B
λ(γµν(β + λ)2)6 −

C
λ(γµν(β + λ)2)5 −

D
λ(γµν(β + λ)2)4

− E
λ(γµν(β + λ)2)3 −

F
λ(γµν(β + λ)2)2 −

µηβ

λν
(

γ − λµ
βγµ − αλ − 2λβ

)P0. (36)

(v) The probability R of having an empty system is

R =
ν(λ + γµ)
µ2ηγ

exp
(

−A
6(γµν(β + λ)2)7

)
exp

(
−B

5(γµν(β + λ)2)6

)
exp

(
C

4(γµν(β + λ)2)5

)
exp

(
D

3(γµν(β + λ)2)4

)
× exp

(
E

2(γµν(β + λ)2)3

)
exp

(
F

(γµν(β + λ)2)2

) {
lim
z→0+

∫ 1

z
exp

(
−u6A

6(γµν(β + λ)2)7

)
exp

(
−u5B

5(γµν(β + λ)2)6

)
× exp

(
u4C

4(γµν(β + λ)2)5

)
exp

(
u3D

3(γµν(β + λ)2)4

)
exp

(
u2E

2(γµν(β + λ)2)3

)
exp

(
uF

(γµν(β + λ)2)2

)

× u
η
ν−1

(γ − λµu)(β + λ − λu)

−(2λ2u − 2λ2u2 − βγµ + αλu + 2βλu − γλµ + γλµu)
du


−1

. (37)

(vi) The interrupted frequency N of the service caused by collisions is

N = (λp + η)
λ
γµ
− νλ
γµY

[
λ4(1 − 2p) + λ3(α(p − 1) − µ + 4pβ + 4pλ − 3λ − 2β + pγµ − 2η − ν)

+ λ2((β + λ)(2α − 2γpµ + 2(µ + ν)) + 4β(λ + η) + η(α + 4λ) − 2p(β2 + λ2) + β2 + 3λ2 − αβp
− λp(α + 4β) + ηγµ) − λ(β + λ)((β + λ)(α + 2η − γpµ + µ) + λ(λ + β + ν) + βν + ηα + αν + 2γηµ)

+ γηµ(β + λ)2
]
+
νβ2λη(γ − λµ )

γY
P0, (38)

where Y = −νβ(−βγµ + λα + 2λβ).

14



(vii) The mean busy period E(L) of the system is

E(L) =
1
λ

(
µη

ν
exp

(
A

6(γµν(β + λ)2)7

)
exp

(
B

5(γµν(β + λ)2)6

)
exp

(
−C

4(γµν(β + λ)2)5

)
exp

(
−D

3(γµν(β + λ)2)4

)
× exp

(
−E

2(γµν(β + λ)2)3

)
exp

(
−F

(γµν(β + λ)2)2

) {
lim
z→0+

∫ 1

z
exp

(
−u6A

6(γµν(β + λ)2)7

)
exp

(
−u5B

5(γµν(β + λ)2)6

)
× exp

(
u4C

4(γµν(β + λ)2)5

)
exp

(
u3D

3(γµν(β + λ)2)4

)
exp

(
u2E

2(γµν(β + λ)2)3

)
exp

(
uF

(γµν(β + λ)2)2

)
u
η
ν−1

×
(γ − λµu)(β + λ − λu)

−(2λ2u − 2λ2u2 − βγµ + αλu + 2βλu − γλµ + γλµu)
du

 − 1

 . (39)

Proof 4
The mean number of customers Lq (respectively Ls) in the orbit (respectively in the system) given in (i)

(respectively in (ii)) under the steady-state condition are obtained by differentiating (20)
(
respectively

(21)
)

with respect to z and evaluating at z = 1.

The mean waiting time Wq (respectively Ws) in the orbit (respectively in the system) give in (iii)
(respectively in (iv)) is related to the mean number of customers Lq (respectively Ls) in the orbit
(respectively in the system) by the Little formula (Little (1961)), Lq = λWq and Ls = λWs.

The probability R of having an empty system, given in (v), is obtained by summing the two proba-
bilities P0 and Q0 given by (2) and (22).

(vi)The steady-state interrupted frequency N of the service caused by collisions given in Eq. (40),
represents the sum of the interrupted frequency caused when the arriving customer from outside the
system (primary customer) enters directly to the busy server and the interrupted frequency due to
retrial of the customer from the orbit when the server is busy. Then

N = λpQ(1) +
∞∑
j=0

Q j(η + jν), (40)

which can be rewritten as

N = (λp + η)Q(1) + νQ′(1). (41)

By replacing Q(1) and Q′(1), given respectively by (14) and (3), we obtain N given in Eq. (38).

(vii) The busy period of the system, L, starts with the arrival of a primary customer who finds
the system empty and ends at the first departure epoch in which the system becomes empty again.
From the regenerative processes theory, it is easy to get the following formula:

E(L) = 1
λ (P−1

0 − 1).

Using (22), we obtain E(L) given in Eq.(39).�
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5 Numerical illustrations

In this section, we give some numerical illustrations to show the effect of the variation and the impact
of some parameters on the system performances.

In communication systems, it is interesting to determine the proportion of time that the channel
is free and no packets need to be re-transmitted, i.e., no station ask for transmitting through this
channel. Then, we first consider the variation of the steady state joint probability P0, that the channel
is idle and no packets in the orbit, according to different system parameters. In Figs. 2-7, we present
the variation of the probability P0 against the retrial rate ν, for three values of γ (γ = 0.3, γ = 0.5 and
γ = 0.7), where γ represents the probability that the packet is transmitted without error. Its values
correspond to the channel conditions and packet state (erroneous packet or not).

As it is shown, the probability P0 increases when the retrial rate ν increases for any value of γ.
However, P0 increases considerably as the probability γ increases. When the probability γ becomes
small, the number of packets that need re-transmission due to transmission errors become more
important. This generates a large mass of packets in the orbit and consequently a low probability of
having an empty orbit.

Really, the retrial rate is based on the stations number that try to transmit through the same
channel. Then, it is very important to see the evolution of P0 for different retrial rate η. Figs. 2-4 show
the influence of η on the evolution of P0. We notice that for a high retrial rate (η = 5), values of P0 are
more important, this can be explained by the fact that the higher rate η gives more chance to packets
from the orbit to be transmitted.

In queueing systems with failures, the repair rate is one of the most important parameters. In
telecommunication networks, it can interpret the ability of the system to resume service after an
interruption. In Figs. 5-7, we show the impact of the repair rate β on P0, while the other parameters
are fixed. From these figures, we notice, as expected, that P0 increases with increasing the repair rate
β, for any value of γ.

Figure 2: P0 as function of ν for λ = 0.05,
η = 1.5, µ = 2, α = 10, β = 10, p = 0.

Figure 3: P0 as function of ν for λ = 0.05,
η = 3, µ = 2, α = 10, β = 10, p = 0.
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Figure 4: P0 as function of ν for λ = 0.05,
η = 5, µ = 2, α = 10, β = 10, p = 0.

Figure 5: P0 as function of ν for λ = 0.05,
p = 0, µ = 2, α = 5, β = 3, η = 2.

Figure 6: P0 as function of ν for λ = 0.05,
p = 0, µ = 2, α = 5, β = 4, η = 2.

Figure 7: P0 as function of ν for λ = 0.05,
p = 0, µ = 2, α = 5, β = 5, η = 2.

Recent communication protocols try to minimize collisions but cannot avoid them completely.
Calculating the number of service interruptions due to collisions is very beneficial for evaluating
these protocols. Then, we illustrate in Fig. 8 how the steady-state interrupted frequency N of the
service caused by collisions varies when the probability p increases, for two values of the arrival rate
λ (λ = 0.05 and λ = 0.2). We observe that N increases according to the probability p. This effect is
less visible when the arrival rate λ is small. Indeed, there is not a great influence on the frequency N
because the service rate is high (µ = 2) compared to the arrival rate λ (λ = 0.05). These conditions
allow the channel to serve packets without having a lot of arrivals from outside the system and reduce
considerably the collisions.

As shown in Figs. 9-11, the number of packets needing re-transmission (Lq) is reduced when the
retrial rate become large, this fact is also visible when increasing the probability p.
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Figure 8: N versus p for γ = 0, 5,
η = 3, µ = 2, ν = 1.5, α = 1.5 and β = 3.

Figure 9: Lq versus ν for p = 0,
λ = 0.1, η = 1.5, µ = 10, α = 0.01, β = 0.5.

Figure 10: Lq versus ν for p = 0.5,
λ = 0.1, η = 1.5, µ = 10, α = 0.01, β = 0.5.

Figure 11: Lq versus ν for p = 1,
λ = 0.1, η = 1.5, µ = 10, α = 0.01, β = 0.5.

Figure 12: E(L) versus ρ for p = 0,
η = 3, ν = 1.

Figure 13: E(L) versus ρ for p = 0.5,
η = 3, ν = 1.
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Figure 14: E(L) versus ρ for p = 1,
η = 3, ν = 1.

Figs. 12-14, represent the variation of the mean busy period E(L) of the system according to ρ (the
utilization factor) for three values of p (p=0, p=0.5, p=1). We observe that E(L) increases according to
ρ, this characteristic is reduced when primary packets join directly the channel (p = 1) compared with
the case where packets are transmitted with a probability p = 0 or p = 0.5. This appears significantly
in the case when the system approaches the saturation (ρ ≃ 1).

Really, this is explained by the fact that when p = 1, packets have more chance to be transmitted
without passing through the orbit and thus reduce the number of retrial packets.

6 Conclusion

In this paper, we have investigated an unreliable Markovian single server retrial queue with colli-
sions, transmission errors and linear retrial policy. This queueing model can be used for performance
evaluation of channel random access in communication systems. To that end, we have used the
Markov process theory to derive the steady-state equations. We have applied the generating function
method to obtain the joint steady-state probability generating functions of the server state and the
orbit length, and we have also computed essential characteristics. Finally, we have presented numer-
ical illustrations for several system characteristics based on given numerical values for the system
parameters. The obtained numerical results confirm the effectiveness of our analytical research.
Several future works could be drawn from our results. First, It is possible to work on some system
parameters like (µ, p, β) to obtain a desired value of P0. Then, one can develop an adaptive algorithm
for the management of the probability p to according to a fixed E(L) value. It is also It is also interesting
to consider our result to emerge to cognitive radio management.
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