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Abstract—Data Centers (DCs) need to periodically configure
their servers in order to meet user demands. Since appropriate
proactive management to meet demands reduces the cost, either
by improving Quality of Service (QoS) or saving energy, there is
a great interest in studying different proactive strategies based
on predictions of the energy used to serve CPU and memory
requests. The amount of savings that can be achieved depends
not only on the selected proactive strategy but also on user-
demand statistics and the predictors used. Despite its importance,
it is difficult to find theoretical studies that quantify the savings
that can be made, due to the problem complexity. A proactive
DC management strategy is presented together with its upper
bound of energy cost savings obtained with respect to a purely
reactive management. Using this method together with records
of the recent past, it is possible to quantify the efficiency of
different predictors. Both linear and nonlinear predictors are
studied, using a Google data set collected over 29 days, to evaluate
the benefits that can be obtained with these two predictors.

Index Terms—Data center management, Proactive manage-
ment, Machine Learning, Prediction, Energy cost.

I. INTRODUCTION

In its ”10 predictions for the data center and the cloud in
2019” [1], the Network World journal observes that due to
the increasing demand in processing power, Data Center (DC)
growth will continue, and machine learning techniques will
play a major role in DC management, by optimizing the DC
resources through continuous monitoring and adjustment. This
periodic adjustment of active machines to serve job requests is
made necessary by the high dynamicity of the jobs submitted
to the DC. The main features of the strategy proposed in this
paper can be summarized as follows:
• This strategy is based on prediction and reaction. The

prediction consists in anticipating the energy required to
serve the users requests that will arrive in the next time
period, whereas the reaction consists in correcting the
prediction error made over the previous period.

• The proposed strategy keeps the balance between demand
and supply in one period for perfect prediction and at
most two periods in the case of mismatches.

• The goal of this study is to quantify the energy cost reduc-
tion brought by this DC management. This reduction is
evaluated by the Relative Error cost Saving (RES) defined
as the relative difference between proactive and reactive
costs. Then, optimal predictors, linear and nonlinear, are
derived in order to maximize RES. Moreover, the upper

bound of RES is analytically obtained. This upper bound
can help the DC manager to select the predictors used.

• Numerical simulations with data collected from a real DC
show that the proposed strategy used with two predictors,
one linear and the other nonlinear, gets an improvement
up to 70% with respect to a purely reactive action.

The original contribution of this paper is twofold. The first
one lies in the direct prediction of the energy consumed in the
next time interval, based on the recent past, whereas classical
approaches predict resource requests. We first compute the
energy consumed by the resources used: the magnitude of the
resources multiplied by the time they are used. The energy
prediction is made based on these measurements in a recent
past horizon. The studies cited in the state-of-the-art 1) predict
the resource requests, 2) use a placement algorithm to dispatch
the requests, 3) deduce which machines to turn on or off, and
finally 4) deduce the energy consumed. We directly predict
the energy consumed. The second original contribution of
the paper is to consider that the impact of overestimation
and underestimation can be different. Hence, minimizing the
absolute value of the prediction error does not necessarily
maximize the energy cost saving.

The remainder of this paper is organized as follows: Sec-
tion II presents a brief state-of-the-art about DC management
based on prediction. Section III defines our framework for
modeling and predicting energy consumption in a DC. It also
introduces the methodology proposed. Section IV shows how
to evaluate the energy consumed by the DC in past time inter-
vals and how to predict the energy consumed in the next time
interval, taking into account the heterogeneity of machines.
The upper bound of the relative energy cost saving that can
be achieved by a predictive DC management, is computed
in Section V. Section VI and Section VII explain how to
obtain the optimal linear predictor and the optimal nonlinear
predictor, respectively. Section VIII deals with practical issues
related to a real DC. In Section IX, all the theoretical results
are applied to a real Google DC. Section X discusses the
results obtained. Finally, Section XI concludes this paper.

II. RELATED WORK

Modeling energy consumption in DCs has been the focus
of numerous studies. In their in-depth survey [3], Dayarathna
et al. studied 200 models hierarchically organized into two
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branches. The software-centric branch deals with Applica-
tions (e.g. MapReduce), OS and Virtualization, and Machine
Learning, whereas the hardware-centric branch distinguishes
between the power conditioning system, the cooling system,
optical networks, network devices, and servers. A server
consists of network interfaces, server storage (e.g. SSD, HD),
memory, processors which may be single core or multi-core,
and specialized (e.g. GPU) or not. They observed that energy
consumption has been studied intensively at the lower levels
but much less at the DC level. In addition, the most frequent
energy model for servers is the linear model, where the energy
consumed by the server varies linearly with its workload [4],
[5], [6]. This model is also adopted in this paper.

Google made publicly available a set of traces collected in
one of its DCs over a period of 29 days [7], [2]. This DC data
set has been extensively studied by researchers [8], [9], [10],
[11], [12]. The analysis of this data set can help researchers
i) to make valid assumptions, ii) design more accurate models
of jobs, tasks and machines, and iii) propose more efficient
job scheduling algorithms. The ultimate goal is to improve
DC management by means of machine learning. The two most
widely used machine learning techniques are classification and
prediction.

Classification has been used for machine configuration
in [12], where a machine configuration is defined as a vector
whose first component denotes the CPU capacity and the
second one the memory capacity. Classification has also been
applied to jobs. For instance, the K-Means method allows the
authors of [11] to distinguish between short jobs which are
the most frequent ones and the lowest resource consumers,
medium jobs which are frequent ones and the largest memory
consumers, and long jobs which are the least frequent ones
and the largest CPU consumers.

Prediction allows DC managers to take their decisions based
on the prediction of the future value of a time series. The
smaller the prediction error, the more accurate the manage-
ment decision. The simplest predictors are linear ones. Linear
predictors estimate the parameters of a linear model using a
set of observed values such that the prediction is computed
as a linear combination of the previous observations and
possibly their prediction errors. The most famous family of
linear predictors is Auto Regressive Moving Average with
Exogenous signal (ARMAX). Liu et al. [13] show that the
Moving Average (MA), the Auto Regressive (AR), and the
Weighted Moving Average (WMA) predictors give smaller
prediction errors with lower complexity compared to Neural
Networks. Prevost et al. [14] reach the same conclusion: AR is
far superior to neural networks in predicting the load demand
in DCs. ARMA predictors are also used to predict the number
of job arrivals in the next 30 minutes, with a Mean Absolute
Percentage Error (MAPE) close to 0.38 [15]. Several variants
of ARMA predictors (e.g. integrated, fractional, seasonal) have
been compared with an exponential smoothing predictor and
a predictor based on singular spectrum analysis [16]. They are
applied to predict CPU, RAM, and network consumptions for
the next hour.

However, when data are generated by unknown models, it
is preferable to use predictors that do not make any a priori

assumptions on the model. Cao et al. [17] use random forests
to predict the workload of servers in a DC and automatically
detect overload. The nearest-neighbour method is a popular
nonlinear approach [18], [19]. It is based on the observations
of states and their subsequent evolution. To predict a new, not
previously observed, state the method finds the most similar
states in the observation data set and builds its prediction
from them. Since it is unlikely to find the same state, the
method finds some closest states and predicts the average of
their behavior. Assumptions like smooth variation of the states,
and enough amounts of available data are needed. Sometimes,
instead of predicting the average of the k nearest neighbours,
a weighted average is computed where the observation weight
decreases when its distance to the expected state increases.
This weighting function is called the kernel [20]. In our
approach, the concept of conditional probability is used as
in [20], [21].

Several authors have investigated different solutions to im-
prove energy efficiency in cloud computation. For instance,
Wolke et al. in [22] showed that with typical workloads of
transactional business applications, dynamic resource alloca-
tion based on live migration technology does not increase
energy efficiency compared to static allocation of VMs (Virtual
Machines) to servers. Here, we can note that DCs do not
support only business applications. As a consequence, the
workload is more heterogeneous and varies more over time.
That is why we will focus on dynamic approaches based on
prediction.

Delimitrou et al. proposed Quasar [23] to increase re-
source utilization in clusters, while providing high application
performance. Quasar is in charge of monitoring workload
performance to adjust resource allocation and assignment
if required. Instead of expressing their resource requests,
users only express performance constraints for each workload
type (e.g. latency-critical, Hadoop framework, single node).
By means of classification techniques, Quasar estimates the
application performances when the number of servers, the
server type, the amount of resources within a server, and
the interference of other workloads vary. It uses the results
of this classification to jointly perform resource allocation
and assignment. The authors show that with Quasar, resource
utilization is improved by 47% while the performance target
of each workload type is met. It can be noticed that Quasar
does not use load prediction to manage the cluster.

In [24], Zhang et al. propose to apply the Dynamic Capacity
Provisioning (DCP) to clouds. DCP dynamically adjusts the
number of active machines to reduce energy consumption,
while maintaining short scheduling delays to increase user
satisfaction. In their model, time is divided into intervals
of equal duration, and control decision about the number
of machines to turn on or off is made at the beginning of
each time interval, based on the usage of resources (CPU and
memory) predicted by ARIMA. All machines are assumed to
have the same capacities in memory and CPU. The authors
show that their solution reduces by up to 18.5% the energy
consumption in the Google data center considered [7]. In our
paper, we adopt a similar approach based on time intervals.

In [25], Zhang et al. extend the Dynamic Capacity Provi-
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sioning (DCP) approach to clouds with heterogeneous work-
loads and heterogeneous machines. The heterogeneous work-
load is divided into multiple task classes with similar char-
acteristics in terms of resource and performance objectives.
First, tasks are classified according to their CPU and memory
requests with k-Means. Since the task execution duration is
known only when the task is finished, each task is first assumed
to be short and if not, its duration is re-evaluated to long.
DCP is formulated as an optimization problem that considers
machine and workload heterogeneity as well as reconfigura-
tion costs. Using predictions (ARIMA) of resource requests,
an online control algorithm based on the Model Predictive
Control framework that solves the optimization problem at
runtime is used. The authors show that their solution, called
Harmony, can reduce energy consumption by 28% with regard
to solutions that do not take into account the heterogeneity of
both the workload and the machines.

In [26], Dabbagh et al. propose an energy-efficient resource
provisioning framework for cloud data centers. They first
identify categories of requests by means of k-Means clustering,
where all requests of the same category have similar character-
istics. Then, with one Wiener filter per request category, they
predict the number of requests per category that will arrive
in the next time interval. The requested resources associated
with each request of any given category are assumed to be
close to the requested resources of the centroid of the category
considered. These estimations are used to compute the number
of machines that must be on to serve the requests. Finally,
unneeded machines are put to sleep in order to improve
energy-efficiency. The authors evaluate their framework on
the same Google data set as that used in this paper. They
show that, in the case of a perfect prediction, up to 100
megajoules per minute can be saved by turning off unused
machines. However, real 50 MegaJoules per minute can be
used by keeping on some amount of extra machines in the
case of mismatch to reduce user dissatisfaction.

The last two studies, [25] and [26] have the same final
goal as ours, i.e., to improve energy efficiency in DCs by
turning off the unused machines. However, they differ in the
way the goal is to be reached. Both [25] and [26] predict
the amount of resource requests in the next time interval
to decide the number of machines that will be needed. The
diverse applications with different priorities, performance and
resource requirements together with the heterogeneity of both
machines and workloads are taken into account to decide the
number and capabilities of machines to serve the demand. In
[25] an ARIMA model structure is used to predict the amount
of requests while in [26], a Wiener adaptive filter scheme is
employed. In this paper, our approach is different, since i) it is
the energy consumed which is predicted and not the resource
requests, and ii) the number of machines is computed from
optimal linear and nonlinear predictors in order to maximize
the energy cost saving and not to minimize the prediction error
as in [26] or a quadratic cost taking into account the error and
the reconfiguration cost as in [25]. Thus, instead of keeping
a threshold of extra machines on, we design predictors that
optimize this margin based on maximizing energy savings.

As a conclusion, there is an abundant bibliography on

DC management using proactive actions based on predicting
user requests. Many studies have proposed different types of
predictions for different horizons. However, to the best of our
knowledge, there are no studies evaluating the upper bound
of the energy cost savings that can be achieved using this
technique. And this is the main contribution of this paper.

III. FRAMEWORK FOR DC MODELING

A. Concepts

The following concepts are used in the paper:
• Job: Each job consists of one or more tasks which are

defined by the users. It enters the DC and leaves it after
its execution.

• Task: Each task is run on a single physical machine, after
having requested resources.

• Resource Request: In this paper, two types of resources
are considered: CPU and memory. A resource request
is composed of 1) the resource requested (i.e. CPU or
memory), 2) the amount of each resource requested.

• Job Scheduling: After having requested resources, a task
waits to be scheduled. The scheduler takes into account
the resources requested by the task and their availability
on the machine selected to run this task.

• Job Execution: Once scheduled, the job runs until com-
pletion, which can be normal (i.e. success) or abnormal
(i.e. aborted by the user or the DC). Then, it leaves the
DC.

B. Notations and assumptions

Notations are summarized in Table I.
For the energy cost saving evaluation, the following assump-

tions are used:
• Assumptions with regard to jobs: Job requests have an

additive deterministic component and a stochastic compo-
nent. As regards the stochastic component, the following
assumptions hold:

– A0 Job arrivals are random.
– A1 Amounts of requested resources are random.
– A2 Request durations are random.

• Assumptions with regard to energy:
– A11 When a job is waiting to be scheduled, it does

not consume any energy.
– A12 CPU and memory resources are allocated for

the job execution duration.
– A13 All machines belonging to the same configu-

ration have the same CPU and memory capacities,
as well as the same instruction execution time and
energy consumption parameters.

• Assumptions with regard to machines and DC manage-
ment:

– A21 DC management is in charge of maintaining
the number of machines on in any configuration
c proportional to the amount of resources used or
predicted on machines of this configuration. This is
done by turning the necessary machines on or off
according to the workload.
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TABLE I
NOTATIONS.

Name Meaning
DC mgt T DC management period

(second) also called sampling interval

Resource ti arrival time of the ith resource request
request
r(ti, ri, τi)

ri amount of resources requested by the ith
resource request

τi duration for the ith resource request
Consumed
Energy

y(k) Energy consumed by the DC in the time
interval (k − 1)T ≤ t < kT ,
computed at time kT , with k ≥ 1

(Joule) yc(k) Same as y(k), but applied to machine
configuration c only

Predicted en-
ergy

ŷ(k) Prediction done one-step ahead at time
(k − 1)T of y(k)

(Joule) ŷc(k) Same as ŷ(k), but applied to machine
configuration c only

Prediction er-
ror

e(k) Error of prediction ŷ(k) done for step k,
known at time kT , e(k) = y(k)− ŷ(k)

(Joule) ec(k) Same as e(k), but applied to machine
configuration c only

Machines c a machine configuration
mc(t) number of machines with configuration c

that are on at time t
rc(t) Amount of resources used on machines

of configuration c and not yet released at
time t ≥ 0

Power P (t) Power consumed by the DC at time t
(Watt) Pc(t) Power consumed by configuration c at

time t
Pidle,c Power consumed at null load by a ma-

chine of configuration c
Ppeak,c Power consumed at 100% load by a ma-

chine of configuration c
ηc Power variation coefficient as a function

of load for a machine of configuration c
(dimensionless) µc Coefficient relating the number of ma-

chines of configuration c to the resources
used by configuration c

Energy cp Proactive cost of one Joule
cost cr Reactive cost of an underestimation of

one Joule
(dollar) Jβ,T Energy cost using proactive management

Lβ,T Energy cost using only reactive manage-
ment

RESβ,T Relative Energy Cost Saving
UBβ,T Upper Bound of RESβ,T

(dimensionless) β β = 2cp/cr − 1, with β ∈ [−1, 1]

– A22 DC management is done periodically with pe-
riod T .

– A23 The energy cost for proactively serving a request
is less than or equal to the energy cost for serving it
reactively, i.e. cp ≤ cr.

These assumptions are valid in most DCs, and in particular
in the Google data center whose data set is used in this paper
(see Section IX).

C. Methodology
Assuming that job requests are expressed as a multiple of

resource allocation units, let y(k) be the total amount of energy
consumed during time interval t ∈ [(k− 1)T, kT ), where k is
an integer ≥ 1 and is called a step. The cost of this energy
can be expressed as the sum of two components:
• The first component is the cost of the energy made

available at step k according to the prediction computed

from past information until step k−1. This energy is de-
noted by ŷ(k). Both the prediction and the corresponding
proactive actions are done at time (k − 1)T for step k.
Since this energy is available at step k, its cost is called
a proactive cost and it is equal to cpŷ(k), where cp is the
proactive cost of one Joule.

• The second component is the cost of the energy for
serving the prediction error e(k) = y(k) − ŷ(k). We
distinguish two cases. In the case of energy overestima-
tion, some energy has been wasted and has already been
paid for with a cost equal to the proactive cost. In the
case of underestimation, a reactive action is carried out
at time kT . It is important to note that this action is
performed a posteriori with a cost greater than or equal
to the proactive cost. Its cost is called a reactive cost and
is equal to crmax(0, y(k)−ŷ(k)), where cr is the reactive
cost of an underestimation of one Joule. The reactive cost
can include a penalty due to user dissatisfaction because
he/she has to wait in the case of energy underestimation.
When overestimation occurs (see Fig.1), the penalty is
already included in the proactive cost paid with the
overestimation and used in the interval. We then have
cp ≤ cr. Hence, the reactive action is applied only in
the case of underestimation (see Fig.1). Therefore, the
prediction error taken into account in the reactive cost is
equal to max(0, e(k)) = max(0, y(k)− ŷ(k)).

Fig. 1. Costs paid in the case of over-estimation (left part) and under-
estimation (right part): in the case of overestimation, only the proactive cost
is paid, whereas in the case of underestimation, both the proactive and the
reactive costs are paid.

For example, let us assume that at step k the energy actually
consumed is y(k) = n, whereas the predicted value is ŷ(k) =
n+m. Thus, the total cost for providing energy y(k) is equal
to the proactive action cost cpŷ(k) = cp(n + m) plus the
reactive action cost cr|m| only if m < 0. Fig. 2 shows an
example of the energy consumed in steps k and k + 1, the
predictions, the prediction errors, and the energy costs. The
DC management proceeds as follows: the amount of energy
needed at step k is 32, whereas the prediction was 27. As an
amount of energy of 27 was available at time (k − 1)T with
proactive cost, an additional amount of 5 must be provided
at time kT with a reactive cost. The total cost at step k is
27cp + 5cr. At step k + 1, the energy required to serve the
new requests is 40. The cost for the 5 additional amounts of
energy due to the prediction error for the previous period has
already been charged during the previous one. The additional
amount of energy assigned proactively to the new period is
available at time kT for step k + 1. It is given according to
the prediction of 42, paid with a proactive cost (even if only
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40 instead of 42 are used). No reactive cost is paid in the case
of overestimation (i.e. a negative prediction error, here equal
to 40− 42 = −2).

The total cost assigned to this period is 42cp.

Fig. 2. Example of energy values and cost to serve requests using proactive
and reactive actions.

Note that when the energy consumed remains constant from
one step to the next, i.e. y(k−1) = y(k), there is no proactive
management. In this case, this is equivalent to considering
that the prediction is just the last value, i.e. ŷ(k) = y(k − 1).
Thus, in order to evaluate the energy saving with regard to the
reactive management when using proactive actions, one must
analyze the difference between the total cost achieved at step
k when using intelligent predictors and the one obtained by
using the last value as a prediction.

Knowing achievable savings by proactive actions is ex-
tremely important, since it allows the DC manager to de-
termine which is the most appropriate strategy as well as
providing the best management guidelines for the data center.
This paper sets out a methodology to analyze the energy cost
saving bounds when using predictors.

Since in most DCs [2], machines of different generations
and capacities coexist, our evaluation of the upper bound of
energy cost saving takes into account machine heterogeneity.
This evaluation is carried out in four steps:
• Step 1: To simplify the modeling process, classify ma-

chines into configurations such as all machines of the
same configuration have the same features (e.g. memory,
CPU, instruction execution time, energy consumption
parameters).

• Step 2: Compute yc(k) the energy consumed by machine
configuration c in each time interval [(k − 1)T, kT ) in
the recent past. In this past time interval, we know the
arrival time of each request served by machines with
configuration c, the requested resources and, if finished,
we also know its exact duration. Otherwise, we take
the duration up to the end of time interval T . We then
compute yc(k) the energy consumed by c in the time
interval [(k−1)T, kT ) as explained in Section IV-A. We
proceed similarly for each time interval in the recent past.
We iterate on each machine configuration existing in the
DC, taking into account machine heterogeneity.

• Step 3: Compute the Relative Energy cost Saving (RES)
using proactive decisions, according to the definition
given later.

• Step 4: Maximize RES using recent past data for predic-
tions ŷc for each machine configuration c. Considering

admissible predictors as predictors that give a value
of RES > 0, compute the upper bound UB for any
admissible predictor. Intuitively, UB is the best RES that
can be obtained on any data set by admissible predictors.

We then apply this methodology to the data set [2] collected
in an operational DC. For this DC, the cost savings obtained
using these predictors are evaluated. More precisely, we:
• Compute the optimal predictors that maximize the rel-

ative cost saving. Among the optimal predictors, we
distinguish linear predictors and nonlinear predictors.
Linear predictors are the most well-known ones. Among
them, the Auto Regressive Moving Average (ARMA)
predictor is the most popular and the most often used
with a parameter tuning based on the Recursive Least
Squares (RLS) prediction error. It is worth noting that
the ARMA model is equivalent to the ARIMA model.
We use a procedure called Iterative Reweighted Least
Squares (IRLS) together with RLS to minimize RES.
The nonlinear predictor is based on the minimization
of the conditional expected value of yc(k), given past
samples yc(k−1), yc(k−2), . . . , yc(k−N) for machine
configuration c.

• Compare the performance obtained by the optimal pre-
dictors with respect to the upper bound. In this paper, we
compare two optimal predictors: the linear optimal one
and the nonlinear optimal one.

IV. PROACTIVE AND REACTIVE COSTS

A. Computation of the energy consumed to serve requests

For the sake of simplicity, we first focus on the single-
resource case. All requests concern the same resource which
is either CPU or memory. Later in the paper, the result is
extended to the case of multiple resources.

Let r(ti, ri, τi) denote any request that arrives in the DC
at time ti, requiring an amount of resource ri for a duration
τi. It can be represented as a rectangular pulse with amplitude
ri of duration τi and zero out of this range, see Fig 3 for
an illustrative scheme. The amount of resource consumed by
r(ti, ri, τi) is equal to:{
ri if ti ≤ t ≤ ti + τi
0 otherwise

The area under the pulse represents the energy consumed
to serve the request. For example, in Fig 3, several requests
arriving at various times are depicted. Notice that since the
user does not know which machine will serve his request, he
cannot express the amount of requested resource relatively to
the capacity of this machine. Hence, ri denotes an absolute
amount of resource, for example 3 Mbytes of memory.

Most DCs have heterogeneous machines from several gener-
ations. Each machine can be characterized by its configuration
represented by the pair (CPU, memory) which denotes the
CPU and memory capacities of the machine.

The amount of resource used at time t on machines with
configuration c in the DC, denoted by rc(t), is given by the
following equation (see also Fig 3 for an illustrative scheme):

rc(t) =
∑
i

αc ri (1)
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where:

αc =

 1 if the request r(ti, ri, τi) is served at time t
by a machine with configuration c,

0 otherwise.
(2)

Taking into account machine heterogeneity, we express
Pc(t) the power consumed at time t ∈ [(k − 1)T, kT ) by
any configuration c as the sum of the power consumed by the
machines with configuration c that are on. For each machine
that is on, we adopt the linear power model, which has been
extensively used by many authors, [4], [5], [6], [30], where
the power consumed by a machine at time t is expressed as
the sum of the power consumed at null load and the power
proportional to the machine load. Taking into account that
all machines of the same configuration have the same CPU
and memory capacities, instruction execution time as well as
energy consumption parameters (Assumption A13), we get:

Pc(t) = Pidle,cmc(t) + ηc
rc(t)

Capc
. (3)

where Pidle,c denotes the power consumption at null load
of a machine with configuration c; mc(t) is the number of
machines with configuration c that are on at time t; ηc is
its power variation coefficient as a function of the load for
any machine with configuration c; Capc is the capacity of the
resource considered on any machine with configuration c. It is
expressed in absolute; rc(t) denotes the amount of resources
used at time t on machines with configuration c.

Since the number of machines with configuration c that are
turned-on is proportional to the workload on configuration c,
according to Assumption A21, we can write mc(t) = µc

rc(t)
Capc

,
where µc is the proportionality coefficient relating the number
of machines of configuration c to the resource utilization
factor. Hence,

Pc(t) = (Pidle,cµc + ηc)
rc(t)

Capc
(4)

The energy consumed by configuration c to serve the
requests in the time interval [(k − 1)T, kT ) is:

yc(k) =

∫ kT

(k−1)T
Pc(t)dt (5)

yc(k) =
(
Pidle,cµc + ηc

) ∫ kT

(k−1)T

rc(t)

Capc
dt. (6)

The total energy consumed by the DC in the time interval
[(k − 1)T, kT ) is expressed as:

y(k) =
∑

c∈Conf

yc(k) (7)

where Conf is the set of configurations in the DC.

B. Extension to the multi-resource case

The results obtained so far apply to the scalar case of single-
resource requests, such as either CPU or memory. The energy
consumed given by Equation 6 is the sum of two terms: the
energy consumed at null load by the machines that are on, plus

Fig. 3. Requests processed by any given configuration. r(ti, ri, τi) = Request
arriving at random time ti with an amount of requested resources ri for a
duration τi in black. r(t) = Total amount of resources used in [(k−1)T, kT ),
in red. y(k) = Energy consumed in the interval T to serve requests. ŷ(k) =
Energy predicted, and y(k − 1) = last value.

the energy consumed by these machines as a function of their
workload. This formula can be extended to the multi-resource
case, with the following changes:
• The utilization of each resource consumes energy. We

assume that this energy varies linearly with the resource
utilization factor, as the CPU does. However, the coeffi-
cient η varies according to the resource considered.

• In addition, the energy consumed by all resources is
summed up over all the resources used.

• The number of machines that should be powered on in the
interval [(k−1)T, kT ) is determined by the resource with
the largest utilization factor rb,c(t)

Capb,c
for t ∈ [(k−1)T, kT ).

This resource is called the bottleneck resource as in [24]
and denoted b.

Finally, we get:

yc(k) =
(
Pidle,cµc + ηb,c

) ∫ kT

(k−1)T

rb,c(t)

Capb,c
dt

+
∑

u 6=b, u∈Rc

ηu,c

∫ kT

(k−1)T

ru,c(t)

Capu,c
dt

(8)

where rb,c(t) is the amount of the bottleneck resource b
used at time t in configuration c; Capb,c is the capacity of
the bottleneck resource b on any machine of configuration
c; Rc denotes the set of resources present on machines of
configuration c; ru,c(t) is the the amount of the resource u
used at time t in configuration c; Capu,c is the capacity of
the resource u on any machine of configuration c.

C. Computation of the energy cost to serve requests

If the requested resource is available, the request is served
immediately. Otherwise, it has to wait until a machine becomes
available. If none becomes available in the current time inter-
val, it needs to wait until the next time interval, in which the
DC configuration will take into account the underestimation
made in the previous time interval.

The cost of the energy consumed by configuration c to serve
the requests can be written as the sum of two components.
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One is the energy cost of requests served proactively, cpŷc(k),
and the other is the cost of the requests served reactively,
cr(yc(k)−ŷc(k)), when yc(k) > ŷc(k). The cost of the energy
in the proactive service of requests is less than or equal to
the reactive one (cp ≤ cr). For instance, job migrations and
server overload can be reduced, and the number of powered-
on servers can be optimized. Then, by predicting the energy
consumed by configuration c to serve requests, we expect to be
able to better manage a DC and effectively reduce the global
energy cost. As a consequence, the cost saving is strongly
related to the energy prediction accuracy because the energy
cost to proactively serve the requests is lower than or equal
to that of serving them reactively. Thus, the total cost for
configuration c is:

Cc(k) = cpŷc(k) + cr max(0, yc(k)− ŷc(k)) (9)

The total cost for the DC is:

C(k) =
∑

c∈Conf

Cc(k). (10)

As max(0, yc(k) − ŷc(k)) can be written
1
2 (yc(k)− ŷc(k) + |yc(k)− ŷc(k)|), and defining
β = 2cp/cr − 1 as a linear function of the ratio cp/cr
representing the relative impact of the proactive and reactive
costs, the expected value of the total energy cost for
configuration c is:

Cc = E [cpŷc + cr max(0, yc − ŷc)] (11)

= E
[
cpŷc +

cr
2

(yc − ŷc) +
cr
2
|yc − ŷc|

]
(12)

=
cr
2

(
βE [ŷc] + E [yc] + E [|yc − ŷc|]

)
. (13)

We define Jβ,T,c by Cc = cr
2 Jβ,T,c, leading to:

Jβ,T,c = βE [ŷc] + E [yc] + E [|yc − ŷc|] (14)

E [yc] and E [ŷc] stand for the expected values of random
variables yc and ŷc, respectively. Since cr ≥ cp, the coefficient
β ≤ 1. Since cp ≥ 0, β ≥ −1. Therefore, β ∈ [−1, 1].

Note that in the case of perfect prediction, ŷc(k) = yc(k),
the energy cost of configuration is purely proactive. Then,
taking into account that 1) the cost, Jβ,T,c, can be reduced
by using good predictions and 2) the cost, Lβ,T,c, due to the
last value prediction, ŷc(k) = yc(k − 1) has a purely reactive
cost, we are interested in evaluating the ratio between both as
a useful index of cost reduction when using proactive man-
agement. We define the cost reduction index for configuration
c by:

mean cost for c with proactive management
mean cost for c without proactive management

=
Jβ,T,c
Lβ,T,c

(15)
Jβ,T,c
Lβ,T,c

=
βE [ŷc] + E [yc] + E [|yc − ŷc|]

(1 + β)E [yc] + E [|dc|]
(16)

where dc(k) = yc(k)− yc(k− 1). Note that in the expression
of this cost reduction index, neither cp nor cr needs to be
known, but only β.

D. Computation of the Relative Energy cost Saving

Let us define the Relative Energy cost Saving RESβ,T,c for
configuration c using proactive action as

RESβ,T,c =
Lβ,T,c − Jβ,T,c

Lβ,T,c
. (17)

The greater RESβ,T,c is, the higher the cost reduction is. By
replacing the expressions of Lβ,T,c and Jβ,T,c we obtain:

RESβ,T,c =
E [|dc|] + βE [ec]− E [|ec|]

(1 + β)E [yc] + E [|dc|]
(18)

where ec(k) = yc(k)− ŷc(k).
The total relative energy saving of the DC, denoted as

RESβ,T is given by:

RESβ,T =
Lβ,T − Jβ,T

Lβ,T
. (19)

Since Lβ,T =
∑
Lβ,T,c and Jβ,T =

∑
Jβ,T,c, for all c ∈

Conf , we get:

RESβ,T =
∑

c∈Conf

Lβ,T,c
Lβ,T

RESβ,T,c. (20)

Finally, we obtain:

RESβ,T =
∑

c∈Conf

E [|dc|] + βE [ec]− E [|ec|]
(1 + β)E(y) +

∑
c∈Conf E(|dc|)

. (21)

E. Optimal predictor for configuration c

An optimal predictor for configuration c is a predictor that
maximizes the Relative Energy cost Saving RESβ,T,c, or
equivalently minimizes Jβ,T,c to achieve the best energy cost
savings.

Optimal predictor for config c = arg min
ŷc

{
Jβ,T,c

}
(22)

Note that the optimal predictor for any given configuration
c is the one that minimizes the cost Jβ,T,c which is different
from the cost minimizing the Mean Square Error MSE as
shown below:

Jβ,T,c ≡ βE [ŷc] + E [yc] + E [|yc − ŷc|] (23)
= βE [yc]− βE [ec] + E [yc] + E [|ec|] (24)
= (1 + β)E [yc] + E [|ec|]− βE [ec] (25)

Then, since E [|ec|] ≥ βE [ec], it follows:

arg min
ŷc
{Jβ,T,c} = arg min

ŷc
{E [|ec|]− βE [ec]} (26)

6= arg min
ŷc

{
E [e2c ]

}
= MSE (27)

However, when ec = 0 both coincide.
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V. UPPER BOUND OF THE RELATIVE ENERGY COST
SAVING

We want to establish the upper bound on the relative energy
cost savings that can be obtained, whatever the predictor
considered. Notice, however, that this bound depends on the
data set considered.

Let yc be a second order stationary random process [21].
Suppose we wish to predict the value of the sample yc(k) using
a linear combination of infinite past samples yc(k−1), yc(k−
2), . . . . The optimal one-step-ahead prediction error (i.e. mini-
mizing E [e2c ]) is an uncorrelated sequence with constant Power
Spectrum Density (PSD). The minimum mean-squared error
(MMSE) is given by the Szegö-Kolmogorov theorem which
states that:

MMSE = E [e2c ] = exp
(∫ 2π

0

ln Φ(jω)dω)
)
, (28)

where j is the complex number meeting j2 = −1, ω is the
frequency in radians per second and Φ(jω) is the PSD of
yc(k), [27].

The simplest upper bound for configuration c is obtained
when the prediction error is null. However, this property is
never met by a realistic predictor. That is why we propose
a realistic upper bound that can be reached by a predictor.
To find this upper bound, we need to consider the maximum
of βE [ec] − E [|ec|] in Eq.(18). Since E [ec] ≤ E [|ec|], the
maximum is obtained when ec(k) is the positive constant value
for all k, see Fig. 4. Since E [ec] = E [|ec|] = E [e2c ]

1/2 = γc,
where γc is MMSE given by Eq. 28, we get the following
value for the upper bound UBβ,T,c of RESβ,T,c:

UBβ,T,c =
E [|dc|]− (1− |β|)γc

(1 + β)E [yc] + E [|dc|]
(29)

The upper bound at the DC level, denoted as UBβ,T , can
be written as the upper bound of RESβ,T :

UBβ,T =
∑

c∈Conf

Lβ,T,c
Lβ,T

UBβ,T,c. (30)

Finally, we obtain:

UBβ,T =
∑

c∈Conf

E [|dc|]− (1− |β|)γc
(1 + β)E(y) +

∑
c∈Conf E(|dc|)

. (31)

In the subsequent sections, we compare linear and nonlinear
predictors that maximize RESβ,T,c on any given configuration
c.

A numerical comparison is carried out in Section VIII using
experimental data collected from a Google DC that allow us
to obtain the maximum levels of cost reduction in each case.
Thus, the performance of different predictors can be quantified
for the DC considered.

VI. LINEAR PREDICTORS DESIGN

We first consider the optimal linear predictor that minimizes
the cost Jβ,T , given by Eq.14. The expected value is approxi-
mated using N sufficiently large past sampled data as follows:

E
[
βŷ+ |y− ŷ|

]
≈ 1

N

N∑
i=1

[
βŷ(i) + |y(i)− ŷ(i)|

]
= JL1 (32)

Fig. 4. Admissible values of βE[e]− E[|e|] in the shaded area.

Since ŷ > 0 we can write the cost above using vector-norm
notation,

JL1
= ‖R1/2ŷ‖1 + ‖Q1/2(y− ŷ)‖1 (33)

where ‖y‖p is the Lp-norm of vectors defined as follows:

‖x‖p =

(
N∑
i=1

|x(i)|p
)1/p

, (34)

where x(i) denotes the ith component of vector x. Q = β
and R = 1, but in general they can be positive definite
diagonal matrices that will be redefined later. The measured
and predicted vectors are given by:

y =


y(k)

y(k − 1)
...

y(k −N)

 ; ŷ =


ŷ(k)

ŷ(k − 1)
...

ŷ(k −N)

 ; (35)

We are interested in obtaining the coefficients of the fol-
lowing ARMA(na, nc) predictor, where na and nc denote
the orders of the past values of y(k) and e(k), respectively:

ŷ(k) = ϕ(k)θ (36)

where θ is the vector of parameters to be found such that the
prediction error is:

y(k)− ŷ(k) = e(k). (37)

The regressor ϕ(k) and the parameter vector θ have the
following structures:

ϕ(k) =



y(k − 1)
...

y(k − na)
e(k − 1)

...
e(k − nc)



T

; θ =



a1
...
ana
c1
...
cnc


. (38)

where T means transposed. Both the prediction and the error
vectors are given by ŷ = Φθ and e = y − ŷ, respectively,
where

Φ =


ϕ(k)

ϕ(k − 1)
...

ϕ(k −N)

 ; e =


e(k)

e(k − 1)
...

e(k −N)

 . (39)
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The procedure for obtaining optimal θ that minimizes the
quadratic cost JL2 is more often used than the procedure mini-
mizing the cost JL1 . The former is obtained using the Ordinary
Least Squares (OLS) procedure. The quadratic cost leads to
a convex minimization procedure ensuring the uniqueness of
the solution with nice convergence properties. The cost JL2

can be written using matrix algebra as follows:

JL2
= ‖R1/2ŷ‖22 + ‖Q1/2(y− ŷ)‖22 (40)
= (Φθ)TR(Φθ) + (y− Φθ)TQ(y− Φθ)

= yTQy− 2yTQΦθ + θTΦT (Q+R)Φθ. (41)

For online computation, the optimal parameters θ that
minimizes this cost are obtained by using the well known
Recursive Least Squares method (RLS). It is also possible
to use the RLS to solve the cost JL1 . It consists in choosing
appropriate matrices Q and R together with the RLS, and
is called Iterative Reweighted Least Squares (IRLS) method,
[28]. To this end, the following iteration is proposed:

min
θ
{JL1} = lim

j→∞
min
θ

{
‖R1/2

j−1ŷj‖22 + ‖Q1/2
j−1(y− ŷj)‖22

}
(42)

where

Rj = diag [β/(ŷj(k)), . . . , β/(ŷj(k −N)]), (43)

Qj = diag [1/|ej(k)|, . . . , 1/|ej(k −N)|], (44)

where ej = y− ŷj obtained from RLS in the jth iteration. By
iterating the procedure, at convergence we obtain ej = ej−1
which is the minimum of JL1

we are seeking. Convergence
properties of the algorithm for L1 are given in [28].

In the following, we use JL1 to find the optimal linear
predictor.

VII. NONLINEAR PREDICTORS DESIGN

In this approach, instead of being constrained by a linear-
predictor, we are interested in finding the optimal predictor
ŷ(k) = g(X) which is a nonlinear function of previous
samples, included in the vector X = [y(k−1), y(k−2), . . .],
such that the expected value of cost E [J ], defined in (11), is
minimum. We rewrite the cost conveniently as:

J(y,X) = βg(X) + |y − g(X)| (45)

Fig. 5. Sampled p(y|X) from the set of training data.

Taking into account that y and X are a stochastic variable
and a stochastic vector, respectively, with joint density function
p(y,X), the expected value of the cost at each step k can be
written in terms of the conditional probabilities as follows,
[21]:

E [J ] =

∫ ∞
X=0

∫ ∞
y=0

J(y,X) p(y,X) dy dX

=

∫ ∞
X=0

p(X)

∫ ∞
y=0

J(y,X) p(y|X) dy dX,

where p(y|X) is the density of y, conditioned to a given X
and p(X) is the density of X . Since p(X) is always non-
negative, therefore it is sufficient to minimize the conditional
expectation given by the inner summation. By performing the
derivative with respect to g(X) and equating to zero, the
following condition for the minimum holds:∫ ∞

y=0

(β − sign(y − g(X))) p(y|X) = 0 (46)

where g(X) is considered non negative for all X . Given a
vector X∗ = [y∗(k − 1), y∗(k − 2), . . . , y∗(k − n)], where n
is the number of previous samples considered, the conditional
distribution p(y|X∗) is obtained by finding in a set of training
samples all the vectors X = [y(k−1), y(k−2), . . . , y(k−N)]
that match X∗ and then forming a subset with the correspond-
ing value y(k) for each. We obtain the subset as shown in a
simple example in Figure 5, where X = y(k − 1). Using the
selected subset of y, the optimal predictor, g(X), that fulfills
(46) is:

β

∫ ∞
y=0

p(y|X)dy =

∫ ∞
y=0

sign(y − g(X)) p(y|X)dy

⇒ β = −
∫ g(X)

y=0

p(y|X) dy +

∫ ∞
y=g(X)

p(y|X) dy

β = 1− 2

∫ g(X)

y=0

p(y|X) dy.

Given N samples of y, with conditioned density p(y|X∗),
ordered from the smallest to the largest, the optimal nonlinear
predictor g(X∗) is the sample at position N(1− β)/2.

The nonlinear predictor is based on the estimation of the
conditional probability density p(y|X). The values of y are
associated to vectors X which are obtained by selecting them
in a previously stored database. As this process consumes
calculation time, it is preferable to associate each value of y
to previously defined groups of vectors X . These groups are
formed by vectors that are close to each other, for example,
the vectors whose Euclidean norm is less than a certain pre-
established value. This value will depend on the amount of
data in the database. Thus, if the database has a large amount
of available data, the smaller the bins will be and the greater
will be the precision in determining p(y|X).

VIII. APPLICATION TO A REAL DC

A. Choice of possible values for T

The parameter T is the DC reconfiguration period. It is
the length of the time interval upon which the prediction is
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made. It is chosen by the manager of the DC. Many approaches
which use proactive actions, for instance [25] and [26], define
such a time interval, as seen in the state-of-the-art presented
in Section II. In our analysis we are interested in evaluating
how this reconfiguration time affects the energy cost savings
when proactive actions are used.

The value of T is a trade-off: small values of T make
the DC management more adaptive to workload changes,
whereas large values of T decrease the management overhead.
However, switching a machine off and on has a cost. Hence,
the minimum value of T , denoted Tmin can be obtained as
in [26] by considering the smallest time interval for which
switching off a machine and then switching it on in the next
time interval has a null energy cost. In other words, the energy
cost saving obtained by switching off the machine is equal to
the switching costs (i.e. one switching off followed by one
switching-on) for T = Tmin.

Too large a value of T is not desirable either, as the delay to
serve the requests may become far too large. If the predicted
value is underestimated, some users might have to wait for too
long until the next configuration time. If the predicted value is
overestimated, extra energy is consumed for too long. Hence,
the maximum value of T , denoted Tmax, is determined by
the maximum waiting time acceptable by users.

B. Choice of possible values for cp, cr and β

The total energy cost arises from the management of the
DC, and it is equal to the sum of the energy cost associated
with each configuration. We recall that a configuration groups
all machines in the DC having the same features (i.e. CPU,
memory, instruction execution time, energy consumption pa-
rameters). We assume that the energy cost associated with
each configuration in the DC is known by means of a detailed
billing by the energy provider. Fig 2 in Section I depicts an
example for a given machine configuration.

The energy cost of any configuration c at step k is equal
to Cc(k), and it has two parts. The proactive part of the cost
is cpŷc(k) and the reactive part is cr max{0, yc(k) − ŷc(k)},
where cp and cr are coefficients ≥ 0. The maximum is
considered since in the case of overestimation there is no
reactive cost. The energy cost of c at step k is the sum
of both components. We then have Cc(k) = cpŷc(k) +
cr max{0, yc(k)−ŷc(k)}. Note that there is always a proactive
cost, no matter which predictor is used. For example, for a
purely reactive action the proactive cost is cpyc(k− 1). Since
ec(k) = yc(k)− ŷc(k), the total energy cost C is:

C = cp
∑

c∈Conf

E [ŷc] +
cr
2

∑
c∈Conf

(E [|ec|+ E [ec]) (47)

The value of the coefficients cp and cr can be obtained
from historical records, since the true and estimated energies,
and also the total energy cost in each time interval T are
known. For N consecutive time intervals in the recent past,
the following formulation holds: C(1)

...
C(N)

 = cp

 ŷ(1)
...

ŷ(N)

+
cr
2

 |e(1)| − e(1)
...

|e(N)| − e(N)

 (48)

where C(k) denotes the total energy cost for time interval
[(k − 1)T, kT ).

In this system of equations, the only unknowns are the
coefficients cp and cr. Then, the coefficients are computed
using the least squares method.

The coefficients cp and cr should be chosen appropriately
according to the case.

1) Energy saving based on proactive strategy: In this case,
the energy cost per Joule (i.e. price in US dollars for one
Joule) has the same value for both the prediction and the error.
Coefficients cp and cr are equal or equivalently β = 2cp/cr−
1 = 1. The total energy cost is given by:

C =
1

2

∑
c∈Conf

(E(ŷc) + E(|ec|) + E(ec)) (49)

2) Quality-of-service-aware energy saving: In the previous
case, the only way that user satisfaction is taken into account
is by means of the maximum acceptable value of T . Here,
the energy cost is artificially increased by some penalties that
represent the cost induced by user dissatisfaction caused by
long waiting times.

Since the delay in serving the jobs is increased by the
prediction error in the case of underestimation, it is reasonable
to represent a better quality of service by considering cr > cp.
For example, jobs with short scheduling delays are charged
more expensively than the delayed ones. β can be considered
as a DC management parameter that can be tuned to maximize
profit by using proactive actions.

Moreover, value cp/cr (or β) can be different during night,
day, priority, etc. This can be taken into account by the DC
management to minimize the energy cost.

IX. APPLICATION TO THE GOOGLE DATA SET

The results reported in this paper have been obtained using
the Google data set described in [2] and collected in an
operational data center over a period of 29 days.

A. Machine configurations

According to our methodology, we first classify machines
into configurations, where machines of the same configuration
have the same features. This classification is given by Table II.
Notice that the CPU capacity is normalized with regard to
the most powerful CPU, whereas the memory capacity is
normalized with regard to the largest memory.

TABLE II
THE MACHINE CONFIGURATIONS IN THE GOOGLE DC.

Config CPU Memory Percentage
capacity capacity of machines

1 0.5 0.5 53.45%
2 0.5 0.25 30.73%
3 0.5 0.75 7.97%
4 1 1 6.31%
5 0.25 0.25 0.98%
6 0.5 0.125 0.43%
7 0.5 0.03 0.039%
8 0.5 1 0.031%
9 1 0.5 0.023%

10 0.5 0.06 0.007%
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Notice that the first six configurations correspond to more
than 99.87% of machines in the DC. Furthermore, in this
Section, we focus on a single resource: the CPU. Table II
shows that 92.65% of machines have the same CPU capacity
of 0.5 (see the configurations in bold). That is why in the
following, we consider a single configuration with a CPU
capacity of 0.5.

B. Energy parameters used

The energy parameters used for the Google DC are those
given in [26], where the power consumed by a machine in
configuration c increases linearly from Pidle,c = 300 W to
Ppeak,c = 600 W, when its workload increases from 0% to
100%. The linear increase with the workload has already been
observed in [30]. We define Eo,c,T as the energy consumed
by any machine of configuration c at its peak load during T .
We then have:

Eo,c,T = Ppeak,cTCapc (50)

By applying Eq. 6 to a single machine of configuration c
with a workload equal to its capacity during T and consuming
a power Ppeak,c, we deduce:

Ppeak,c =
Pidle,cµc + ηc

Capc
(51)

yc(k) = Ppeak,c

∫ kT

(k−1)T
rc(t)dt. (52)

C. Acceptable range for T

From the Google data set, we identified that an acceptable
value for T is in the range Tmin = 60 seconds to Tmax =
3600 seconds (i.e. 1 hour). The exact computation of Tmin
done in [26] gives 47 seconds. As [26], a conservative value of
Tmin = 60 seconds is taken for this study. For the maximum
value, we take Tmax = 3600s, which is a great value of T ,
if we want to minimize user dissatisfaction. However, such a
value is useful to study the evolution of the relative energy
cost savings when T increases.

D. Computation of the energy consumed in the past time
intervals and its prediction

We compute the energy consumed in the past time intervals
of length T , as explained in Section IV-A.

We apply the proposed methodology to evaluate the im-
provements of using proactive management compared to reac-
tive management. Our methodology allows us to know what
the benefits would be of using the proposed predictors as well
as the upper bound of these benefits.

We select a linear predictor represented by an ARMA
model. Two parameters, na the order of the AutoRegressive
model and nc the order of the Moving Average model, have to
be identified. Starting with na = 1 and nc = 0, the F -test [29]
based on the Mean Squared Error (MSE) is applied to decide
whether the order should be increased. The recursive algorithm
used by the linear predictor works on a sliding window of na
past samples. We also select a nonlinear predictor based on

Fig. 6. True relative energy consumed versus its linear and nonlinear
predictions for T = 3600s and β = −0.8.

Fig. 7. True relative energy consumed versus its linear and nonlinear
predictions for T = 60s and β = −0.8.

the conditional probability. For the nonlinear predictor, the
prediction for step k + 1, done at the end of step k, uses the
entire set of past samples.

Fig. 6 and Fig. 7 depict the relative energy consumed by
the DC, its prediction by the Linear Optimal predictor and the
NonLinear Optimal predictor for T = 3600 s and T = 60 s.
Notice that the choice of the optimal predictor depends on the
value of β.

For T = 3600 s, the nonlinear predictor, which is the best
predictor in this case, tends to estimate a value higher than the
true energy to avoid reactive cost. This is similar to the safety
margin of [26]. However, in our case, this overestimation is
optimized to minimize the resulting cost.

For T = 60 s, both predictors behave similarly.

E. Evaluation of the upper bound

The evaluation of the upper bound UB is performed accord-
ing to Equation 29, for different sets of admissible β ∈ [−1, 1]
and T ∈ [60, 3600] seconds, using the energy needed to serve
the CPU requests. The results are depicted in Figure 8. The
possible savings are between 1% and 85% depending on the
values of β and T . It can be seen that the highest values are
found for decreasing values of β and increasing values of T .
This is due to the fact that when β ≤ −0.5, the proactive
cost becomes very small compared to the reactive cost; hence,
the upper bound increases considerably. For β = 0, we can
observe in the upper bound of RESβ,T (see Eq. 29) that the
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prediction error e(k) is similar to the difference d(k), therefore
the relative energy cost saving RESβ,T is low in the case of
the Google data set studied. However, for β 6= 0, it is possible
to obtain benefits by using biased predictors, as shown by the
term βE [e] in Eq. (18).

Fig. 8. Upper bound in the interval β = [−1, 1] and T ∈ [60, 3600] seconds.

F. Computation of the relative energy cost saving
The evaluation of RESβ,T is performed for different sets

of admissible β and T using the energy needed to serve the
CPU requests, leading to the results depicted in Fig. 9 for
the Linear Optimal predictor and Fig. 10 for the NonLinear
Optimal predictors. With both predictors, energy cost savings
are obtained only for values of β ≤ −0.5. Notice also that the
NonLinear Optimal predictor gets much closer to the upper
bound than the Linear Optimal predictor.

Fig. 9. RES for CPU requests using linear LO optimal predictor in the
interval β = [−1, 1] and T ∈ [60, 3600] seconds.

Small values of T ∈ [60, 3600] give lesser values of
RESβ,T , but the relative energy cost savings strongly depend
on the value of β. For values of β varying from −0.4 to
−1, RESβ,T increases from 0 to 0.85. Although RESβ,T
increases with larger values of T , we consider no value larger
than 3600 seconds to minimize user dissatisfaction caused
by a long waiting time before job execution in the case of
underestimation.

Fig. 10. RES for CPU requests using nonlinear optimal NLO predictor in
the interval β = [−1, 1] and T ∈ [60, 3600] seconds.

We first consider the case T = 60 s and make β vary
in the interval [−1, 1]. Fig. 11 depicts the performance of
the Linear and NonLinear predictors together with the upper
bound. Relative energy cost savings are achieved for values
of β > 0.5 or < −0.5. For values of β > 0.5, there is a
benefit of less than 5%. For values of β < −0.5, the benefit is
higher and increases when β is getting closer to −1 to reach
58% for the Linear predictor and only 50% for the NonLinear
predictor. In both cases, the Linear predictor used performs
better than the NonLinear one.

Fig. 11. RESβ,T for nonlinear optimal NLO, linear optimal LO and Upper
bound UB in the interval β ∈ [−1, 1] and T = 60 seconds.

We now consider the case T = 3600 s and β ∈ [−1, 1]. The
same performance is depicted in Fig. 12. Again, we notice
that there is an interval for which there is no benefit over
last value prediction: this is when β belongs to [−0.2, 0.2].
Unlike the previous case, the NonLinear predictor obtains
better energy cost savings. For β = 1, it reaches 8%, whereas
the Linear predictor we used does not get better than 3%. For
β = −1, the NonLinear predictor reaches 73%, whereas the
Linear predictor reaches only 19%.
G. Conclusion on the Google dataset

This example shows that by applying the methodology
proposed, it is possible to improve costs achieved by Google
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Fig. 12. RESβ,T for nonlinear optimal NLO, linear optimal LO and Upper
bound UB in the interval β ∈ [−1, 1] and T = 3600 seconds.

by up to 85%, strongly depending on the value of β. This ex-
ample highlights the importance of knowing the upper bound,
because it helps the DC manager to position the predictor with
regard to the upper bound. If the current predictor is near the
upper bound, it is suitable for DC management.

X. DISCUSSION

A. Impact of β and T

The previous section showed that the value of β has a strong
impact on the relative energy cost savings one can get. Our
results show that for β ∈ [−0.2, 0.2], there are no energy cost
savings with respect to the last value. However, the value of β
is computed from external data (energy cost, user satisfaction,
etc.) and cannot be changed.

In this data set, a strong dependency between β = 2cp/cr−1
and the benefits of the proactive action has been observed.
More generally, there exists a trade-off between energy savings
and quality of service (QoS). If one tries to improve the QoS,
more energy is spent and vice-versa. In this example, we show
that when T increases, the energy cost savings will be higher
due to the proactive action, but the QoS gets worse because
some jobs will take much longer, and vice versa. If short
response times are sought, small values of T are needed. Even
though, the value of T has a small impact on the relative
energy cost savings, it should be carefully chosen by the DC
manager. To summarize, the value chosen for T is obtained by
successive refinements. First, it should belong to the interval
[Tmin, Tmax], as said in Section IX.C. Second, as previously
pointed out, it is a trade-off between energy saving and QoS.
Third, for a given value of β, the value of T chosen by the
DC manager maximizes the value of RESβ,T for the predictor
considered. Hence, according to the results of this study (Fig. 9
and Fig 10), this value optimizes the energy saving for the
quality of service required.

B. Dynamic capacity provisioning based on energy prediction

The basic principle of energy saving in a DC lies in turning
off machines which are not being used during a time greater
than or equal to Tmin. More generally, how to provide

dynamic capacity provisioning [25] when only the energy that
should be consumed in the next time interval is predicted. If
the predicted energy is higher than the energy consumed in the
previous time interval, some machines may have to be turned
on. On the other hand, if the predicted energy is less than the
energy consumed in the previous time interval, some machines
may have to be turned off. We define mc(k), the minimum
number of machines on in configuration c to consume the
energy ŷc(k). In the single resource case, we have:

mc(k) =

⌈
ŷc(k)

Eo,c,T

⌉
. (53)

According to Eq. 53, the number of machines that have to
be switched on or off for step k is equal to |mc(k)−mc(k−
1)|, where mc(k − 1) is the number of machines on in step
k− 1. If mc(k)−mc(k− 1) > 0, these machines have to be
turned on. If mc(k) −mc(k − 1) = 0, no change is needed.
If mc(k− 1)−mc(k) > 0, these machines have to be turned
off.

In the case of multiple resources, the energy consumed by
each resource present in configuration c is predicted. More
precisely, we predict for each resource the part of the energy
consumed which is proportional to the utilization factor of
this resource: the second term of the sum in Eq 3. We deduce
which resource is the bottleneck resource. We then compute
the number of machines needed to provide this energy.

C. Mitigation of the impact of underestimation

If the prediction leads to an underestimation, user requests
have to wait until a machine becomes available. This is a
large factor of user dissatisfaction. In this paper, we assume
that the corrective action is done at the beginning of the next
time interval.

To mitigate the effect of underestimation, Dabbagh et
al. [26] propose two solutions. The first one tries to avoid
underestimation, by adding a safety margin to the prediction of
the number of machines. This solution may lead to overestima-
tion which is not energy efficient. To limit overestimation, the
safety margin is dynamically tuned according to the prediction
error.

The goal of the second solution is to limit the DC la-
tency to recover from this underestimation. To react more
promptly (e.g. every 10s for a time interval T=60s), every
T/10 for instance, an underestimation check is done. If some
underestimation is detected, some machines are turned on to
reduce user waiting time. In our case, the cost minimization
performed during the search of the optimal predictor within
a given predictor family (e.g. Linear, NonLinear) determines
the optimal value to have the greatest energy saving. This is
an important difference of our approach compared with [26].

XI. CONCLUSION

The purpose of this paper is to evaluate the energy cost
savings that can be achieved by a proactive DC management.
Such a management consists in periodically configuring the
DC by turning some servers on or off to provide an amount
of energy equal to the sum of i) the predicted energy to
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serve the user requests that will arrive in the next period, and
ii) the energy needed to correct the error on the prediction
made for the previous period. The predicted energy has a
proactive cost, whereas the corrective energy has a reactive
cost. Two predictors are proposed: a linear one based on
the ARMA model and a nonlinear one using the conditional
probability density function. These predictors maximize the
relative energy cost saving.

We determined the tight upper bound of the relative energy
cost savings valid in all cases. Knowing the upper bound
makes it possible to decide on the suitability or not of using
proactive action. If a choice must be made between different
possible proactive strategies, both costs and savings change.
Therefore, this paper proposes a methodology that helps to
choose the best strategy (i.e. that maximizes the savings)
between possible proactive strategies.

The methodology proposed is generic and can be applied to
any DC that meets the assumptions made in this paper. These
assumptions are realistic and can be met by many data centers.
As an example, we have used the data set collected over 29
days in an operational data center of Google. By applying this
methodology on the Google data, an improvement up to 85%
can be obtained, leaving room for multiple optimizations.

The relative energy cost saving that depends on the DC
considered have been computed. Using the predictors analyzed
with this data set, we find that the relative saving of the
proactive action increases for β near to −1. This would make it
possible to decide between possible proactive action strategies
in this Google DC.
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