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Abstract

Based on our experiments, we propose a statistical modeling approach of the in vitro interactions between biological objects and

materials. The objective of this paper is to provide basic principles for developing more ambitious experiments comparing the

simultaneous influence of more than one or two parameters on various observations, taking advantage of convenient statistical and

mathematical techniques for the treatment of measured data. Analyzing some examples of our own experiments, the essential features

needed for modeling cell/material interaction studies are presented. Firstly, we describe the initial process of designing appropriate

experiments that allow for comprehensive modeling. In the second part, we illustrate the different applications of a specific statistical

modeling technique, the bootstrap protocol, on either the amplification of data, the elimination of correlation existing between measured

parameters or, out of a set of parameters, identification of the most relevant parameter for further statistical analysis. Finally, based on

recent statistical analysis tools such as the bootstrap, we illustrate the relative influence of biological and physical parameters in

phenomenological studies of cell/material interactions.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, many efforts have been undertaken to improve
bone regeneration by the use of cellular or none-cellular
implants. In vitro studies of bone cell responses to artificial
materials are the basic tools to determine the material
surface/tissue interactions on a cellular level [1,2]. Classi-
cally, the majority of these in vitro investigations focus
either on cell attachment after some hours or on prolifera-
tion during some days of culture. The effects of materials
composition, as well as the effects of their surface
e front matter r 2005 Elsevier Ltd. All rights reserved.
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chemistry or surface topography on cell adhesion and
proliferation have been largely studied on bone-derived
cells [3–11]. The material composition always influences
cell attachment [4,6,7], whereas variations of surface
chemistry of titanium-based substrates following surface
treatments like anodization have generally little influence
on osteoblasts attachment capacity [10,11]. Likewise,
Ahmad et al. [12] described a not significant difference of
osteoblastic cell attachment between Grade 1 and Grade 4
pure titanium. On the contrary, the surface roughness of
titanium substrates is known to have a considerable effect
on osteoblastic cell attachment as well as on cell adhesion,
proliferation and differentiation [4,5,13–19]. Attachment is
generally increased on rough surfaces (Ra41 mm) pro-
duced for example by sandblasting compared to smooth
ones [13,20–24] but sometimes no effects are described
[9,25].
Different groups perform complementary and sometimes

controversial studies to elucidate the interactions between
cells and various materials (Fig. 1). One group prefers to
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analyze the interaction of one isolated cell with a substrate.
Then, specific methods like atomic force microscopy,
magnetic twisting cytometry or micropipette aspiration
[2,26] are used to quantify the cell adhesion strength.
Another group focuses on the interactions of a population
of cells with the material. Other specific methods like fluid
shearing in flow cells, centrifugation, ultrasounds, enzy-
matic detachment are used to quantify adhesion strength
[27–33]. However, these interactions are analyzed directly
after the first minutes or first hours of cell–material contact
[34,35]. The objective in this second approach is to
exclusively consider short-term adhesive events occurring
between cells and a given surface before cell proliferation
begins and before cell/cell interactions are established.
Finally, in a third approach, authors consider all together,
short-term adhesive events or long-term adhesion, prolif-
eration and differentiation phases [3,10,11,15–19,21,33,36].
We esteem this third approach as more valuable since it
allows to approximate the in vivo situation. One of its
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For several years we have become interested in improv-
ing titanium-based implant surface topography [15–18,33].
Our objective is to understand, using in vitro experiments,
the relation between surface properties of metallic materi-
als and their biological activities. Similar to other authors
interested in interactions between osteoblasts and bone-
replacing materials, we believe that the differences found in
the early stage responses of cells cannot predict the cell’s
behavior after longer periods [40]. For this reason, we have
attempted to develop an original in-vitro long-term culture
model permitting the formation of a cell/material interface
close to the implant/tissue interface existing in vivo during
the first days of contact. Hence, our model involves human
primary bone cells cultured on metallic substrates for
contact times ranging from some hours to several weeks.
Our objective was to obtain during this time the in vitro
formation of an elaborated cell/material interface. In fact,
we actually were able to form a complex osteoblast/
extracellular matrix/substrate interface [16]. The extracel-
lular matrix was composed of fibronectin, type I collagen
and non-collagenous proteins like osteopontin or osteo-
nectin [16]. This extracellular matrix is comparable to that
obtained during the first days of tissue–implant interface
formation in vivo [41], demonstrating the ‘‘in vivo-like’’
character of the interface formed in our in vitro model.

Together with this original culture model, we developed
a new progressive detachment method based on trypsin-
EDTA allowing the quantification of the cell/material
adhesion strength over 3 weeks of culture. Thus, we had
access to an evaluation of the ‘‘enzymatic’’ force necessary
to detach the cells from the substrate analogous to that
done with a mechanical method based on fluid flow or
centrifugation [27,29]. With this detachment method, we
consider that a lower number of detached cells reflect a
higher adhesion. The more the cells resist trypsin detach-
ment, the lower the number of cells detached, the higher
the number of adherent cells. The trypsin-based cell
removal is related to maturation of cell–material interface
and especially to the maturation of the extracellular matrix
synthesized by cells [42] but also to cell–cell protein
contacts notably as they approach confluence. Indeed,
cell–cell contacts also influence cell release even after
cell–surface contacts are destroyed.

Therefore, the long-term adhesion we measure with our
model represents the strength of the cell–material interface
formed during 3 weeks of culture, involving at once the
extracellular matrix proteins synthesized by the cells
themselves and the cell–cell contacts (Fig. 1). From this
model we are also able to quantify the short-term adhesion
after 24 h when the extracellular matrix has not yet been
synthesized and the proliferation of cells by calculating the
total number of cells detached at each culture time [43].
The approach, which will serve as an example throughout
this paper, was developed in our laboratories during the
last 2 years.

Now, an experiment design has to be built to quantify
the effect of different variables on cell interactions with
materials. An experimental problem is to select the
variables to design experiments and then to proceed to
parametric statistical analyses. Two kinds of approaches
can be performed: the first one consists in building a
particular type of experimental design called ‘‘screening
experimental design’’ [44] that allows to retain variables
that plays a role without taking account the interaction
between variables. This kind of experimental design allows
to treat a high number of parameters with a minimal set of
experiments (for example Plackett–Burman design in 12
experiments for up to 11 experiments). This kind of
experimental design is not really used to quantify
statistically an effect but rather to detect which variable
plays a role in the statistical process. As a consequence, it
will be used to select variables when nothing is known
about the accuracy of the parameters. The second one
consists in quantifying precisely the effect and also the
interactions between variables. However, in this case, the
variables that play a major role have to be known. This can
be achieved from a previous study, from published review
papers or from theoretical considerations with high
confidence level. In this case, a classical experimental
design has to be built. This last approach was used for our
study. This study concerned the behavior of human
osteoblasts cultured on 30 different metallic substrates
presenting three different compositions (pure titanium,
titanium alloy Ti6Al4V, stainless steel), two surface
chemistries (with or without gold-palladium coating), six
surface morphologies (obtained by sand-blasting, electro-
erosion, polishing, machine-tooling, acid-etching, com-
pared to smooth plastic) and two roughness amplitudes
(0.85 and 2.35 mm) (Table 1). An analysis of three
biological parameters (short-term adhesion, long-term
adhesion and proliferation) was performed on these
substrates and the three biological parameters were
correlated with four physico-chemical parameters describ-
ing the surface chemistry of the substrates (material
composition, presence or absence of a gold-palladium
coating), the surface topography (roughness amplitude)
and a combination of the surface chemistry and the surface
topography (process used to prepare the surfaces). Each
surface was tested at least 8 times, 396 curves of
detachment were established and more than 2000 data
were processed. For more details on the experimental
procedure see [33,43].
An extensive statistical analysis of the obtained data

allowed us to study for example the influence of surface
topography on cell short-term adhesion, long-term adhe-
sion or proliferation, the relative influence of surface
topography and surface chemistry on the same cellular
parameters, the correlation between the three biological
parametersy. This approach using statistical modeling is
essentially original with respect to studies of cell/material
interactions field and more generally in the biology field
(Fig. 1). Some comments have to be done concerning this
biological model. This model concerns specifically attach-
ment-dependent cell types. It is based on the use of human
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Table 1

Experiments design of 30 different substrates used in the cell culture model

Ra (mm) Pure titanium (T) Titanium alloy (V) Stainless steel (I)

C NC C NC C NC

Sand-blasting (S) 0.85 TS0N (9) VS0N (9) IS0N (9)

2.35 TS1O (9) TS1N (18) VS1N (9) IS1O (9) IS1N (18)

Electro-erosion (E) 0.85 TE0O (9) TE0N (18) VE0O (9) VE0N (18) IE0O (9) IE0N (9)

2.35 TE1O (9) TE1N (18) VE1O (8) VE1N (18) IE1O (8) IE1N (15)

Polishing (P) 0.7 TPN (12) VPO (9) VPN (21) IPO (9) IPN (21)

Machine-tooling (U) 0.7 TU0N (12)

0.7 TX0N (12)

Acid-Etching (A) 0.7 TAO (9) TAN (18)

ThermanoxTM 0 THER (33)

Number in brackets represents the number of times where experiments were repeated. C means that surfaces are covered by a thin film of Au-Pd. NC: non-

covered surfaces.
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primary bone cells, which display a very high adhesion
potential and a low proliferation rate. Moreover, these cells
are able to synthesize in vitro a high amount of
extracellular matrix proteins. This model could not be
used with permanent cell lines characterized by a very high
proliferation potential and a low adhesion capacity.
However, our objective in this paper is to describe a new
approach for studying cell/material interactions and this
approach could be applied to other in vitro models with
totally different measured parameters. The basis of this
approach is to have to one’s disposal quantitative
measurements of parameters describing at once surface
state of materials (roughness, chemistry, energyy) and
biological response to material surface (adhesion, prolif-
eration, integrin expression profiles, rates of matrix
synthesis, morphology, expression of phenotypic mar-
kersy). Our objective in this paper is to describe this type
of approach and to provide the reader with the basic
principles for developing more ambitious experiments
comparing the simultaneous influence of more than one
or two parameters on various observations, taking
advantage of convenient statistical and mathematical
techniques for the treatment of measured data. Analyzing
some examples of our own experiments, the essential
features needed for the modeling of cell/material interac-
tion studies are presented. In the first part of this article, we
will describe the experimental design, which must be at the
root of modeling. In the second part, we will illustrate the
use of a mathematical modeling technique to eliminate
correlation existing between measured parameters. As an
example, we will show how we proceeded to de-correlate
adhesion and proliferation occurring in our long-term
culture model.

After the mathematical treatment of data, it is essential
to select some essential parameters among the very large
number of identifiable biological or material parameters
relevant during the cell/material interactions. The para-
mount objective of our statistical modeling is to accurately
represent the biological and material properties by a
limited number of reliable and reproducible quantitative
parameters. It is useless to introduce coefficients, which
cannot provide any information beyond statistical noise.
For that purpose, specific analytical methods can be used
to determine among all the parameters those that have the
higher influence, i.e., those parameters that emerge from
the noise of the measurement. In a third part of this paper,
we will illustrate one of these methods, the bootstrap
protocol, which is an intensive computer statistical
technique allowing on one hand an increase in the amount
of data available by re-sampling and on the other hand to
determine the more robust parameters for further statistical
analysis [45,46].
In the end, statistical analysis of the relative influence of

biological and physical parameters can be performed,
permitting a phenomenological approach of the cell/
material interactions based on an extensive statistical
analysis. Finally, an example of this type of approach will
be briefly described at the end of this paper.

2. Experiment design

At the moment, since the majority of the studies in the
field concern rarely more than one surface parameter and
one cellular parameter, extensive statistical analysis of
results is not needed. However, the need for more complex
statistical analysis appears for experiments with several
surface and cell parameters. When statistical correlations
between physical and biological parameters like cellular
adhesion strength, surface roughness and surface energy,
for example, are desired [47], the need for an appropriate
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experimental design becomes essential. Contrary to clinical
studies, where data and parameters are statistically
analyzed a posteriori using data-mining techniques like
factor analysis (e.g. principal component analyses), we
advocate in the biology field to rather proceed to
experiment designs a priori when the influence of several
parameters on several measurement variables must be
studied.

Before the final design of an experiment, one needs to do
some preliminary experiments in order to obtain crucial
information including the variability between experiments,
the physical parameters having the most influence on
biological parameters or the possible correlations between
parameters. When all this information has been obtained,
it becomes then possible to determine the minimal number
of repetitions of experiments (or runs) needed. The
duration of the experiment and the definitive number of
samples as well as the definitive quantity of cells can be
calculated. The total number of runs needed must be
calculated globally but in considering the possibility of
additional experiments, which could become necessary
because of experimental problems like, for example,
contamination of some cell cultures.

On the materials aspect, it is essential to provide also for
a sufficient number of samples for all experiment time-
scales even if it will last several months or years. All
samples should be stored in controlled conditions in order
to limit variation with time between the samples tested at
the beginning and at the end of the experimental time
length. On cellular aspects, the same requirement can be
applied since no variation in the cellular phenotype was
acceptable over the month or years that last the whole
experiment. This is one reason for the wide use of
permanent cell lines for these types of experiments since
they are more stable with both time and passages than
primary cells. However, the use of permanent cell lines for
the study of cell/material interactions is highly criticizable
since these cell lines do not display all necessary phenotypic
characters of cells associated with implants in vivo. For this
reason, we chose, several years ago, to develop studies with
primary human osteoblasts prepared from iliac crests of
young patients undergoing orthopedic surgery. In order to
have sufficient amounts of cells for all experiments, we
produced extensive in vitro amplification of cells from the
same patient during two passages. These cells were then
further frozen in liquid nitrogen to be used for cell/material
studies after not more than one passage after thawing.

Finally, after the decision of the experiment design, it is
essential to proceed to a randomization of runs since it is
difficult to avoid that cells in culture vary in their
phenotype with time in culture, time in liquid nitrogen or
with passages or that the surface chemistry of substrates
evolves with time. Thus, such randomization has the
objective to reproduce randomly the same experiment
(i.e., the same levels of studied parameters) at different
times during the experimental time frame and finally avoid
bias of the results when they are time-correlated or when
they depend on a particular culture environment. Selection
of all the samples or a random part of samples must be
tested in each run in order to average the influence of time.

3. Mathematical development for eliminating experimental

bias

Sometimes, various biological parameters are experi-
mentally linked to each other. For example, the prolifera-
tion capacity of most attachment-dependent cells is a
function of their adhesion capacity. This is especially true
for proliferative cells like permanent cell lines or bacteria,
where determination of cell adhesion strength is disturbed
by their simultaneous proliferation. This was also our case
when we studied the adhesion strength of cells over 21 days
in culture. This may bias statistical treatment of the
adhesion data. Hence, the need of means to eliminate this
physical bias became crucial.
In our model, during the 3 weeks of formation of the

cell/ECM/material interface, the cells will proliferate until
they attain confluence. As a consequence, trypsin will
detach both initially deposited cells and cells having
proliferated. If no proliferation occurs, the measure of
adhesion versus time in culture characterizes the real
adhesion kinetic. However, a bias emerges when prolifera-
tion occurs during culture time: new proliferating cells are
included in the counting process and that will diminish the
real average adhesion time in culture. It was thus essential
to introduce a model that allowed de-coupling of the effect
of the proliferation rate on the assessment of long-term
adhesion before the statistical treatment of data. Firstly, we
determined several models for cell proliferation including
the major types of proliferation, and secondly we devel-
oped a mathematical approach based on differential
equations to get around the statistical artifact distinguish-
ing the measure of adhesion and proliferation.

3.1. Models for proliferation

First of all, it is essential to provide an analytical
expression of the osteoblast number versus the time in
culture. Let us note the following parameters: t the culture
time, P(t): the number of cells at time t (in cells per cm2).
Five models of proliferation can be described. We

retained different kinds of models based on continuous
growth model [48] that correspond to five types of
proliferation met in our biological experiments. Among
all mathematical models that could simulate each type of
proliferation, the model with a minimum set of parameters
was retained to have a good statistical robustness in
parameter estimations. That allowed us to choose from
experimental data, with a high confidence level, the
appropriate model corresponding to each proliferation
type.

Model 1: The material is not biocompatible and the cells
deposited on the substrate will die i.e. will not be counted
after the trypsination process. The density of cells will then
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decrease with time in culture.

PðtÞ ¼ a0 expða1tÞ; a1o0, (1)

where a0 is the initial number of cells and a1 is a constant
term quantifying the intensity of cell death.

Model 2: The cell’s proliferation is so rapid that
confluence is reached within the first days. Thus, we could
statistically have an increase in cellular density but this
could lead to two situations. Either the cells immediately
get the maximal adhesion potential and then adhesion is
constant or adhesion still increases. In both situations, the
proliferation rate is constant and the cells are more
numerous than at the initial inoculation time.

PðtÞ ¼ a2;8t with PðtÞ4Pð0Þ 8t40, (2)

where a2 is the amount of cell at confluence.
Model 3: The cells proliferate so slowly that confluence is

not attained at the end of culture. Then, we are in a
classical proliferation model without any constraints and
the usual model is the exponential one.

PðtÞ ¼ a3 expða4tÞ; a440, (3)

where a3 is the initial number of cells and a4 is a positive
constant term that quantifies the intensity of cell growth. It
could be noticed that cell–cell crowding can retard cell
proliferation even at a pre-confluence step. Then the
exponential growth model is really only accurate at low
cell number densities. However, including this fact in Eq.
(3) we added a new delay constant t0 with PðtÞ ¼

a3 expða4ðt� t0ÞÞ and PðtÞ ¼ a3 if tot0. We have tested
this hypothesis on 57 proliferation curves and hypothesis
t0 ¼ 0 was rejected only once (with t0 ¼ 3 days).

Model 4: The cells proliferate until they attain con-
fluence. In the beginning we obtain an exponential growth
law, and when they reach the confluence the exponential
law does not hold any longer and the cell density reaches
an asymptote. This self-limiting process is called a logistic
growth and is defined by

PðtÞ ¼
a5

K expð�a6tÞ þ 1
with K ¼

a5
Pð0Þ
� 1, (4)

where a5 is a positive constant, K the carrying capacity of
the cell environment and a6 is a positive constant that
represents a measure of the rate at which stable steady state
population is reached.

Model 5: The cells do not proliferate. As a consequence
the number of cells is equal to the number of cells initially
deposited on the substrate. The number of cells is constant
and equal to the number of cells initially introduced.

PðtÞ ¼ Pð0Þ. (5)

Let us first notice that the value P(0) in our model is not
known since only the number of cells introduced in the
culture is known and since this number is higher than the
number of cells that will initially adhere on the substrate
(very short-term adhesion). As a consequence, P(0) is
statistically determined from experimental data as are the
coefficients {a0,y,a7} used in the proliferation models. In
the particular case of models 2 or 5, it is mathematically
impossible to estimate P(0) (indetermination) and a rough
estimation is made by descriptive statistics process on all
our experimental data. In reality, a precise estimation is not
required since in this case P(0) becomes a threshold
parameter to affirm or reject the assertion ‘‘is the number
of cells more numerous than the initial number of cells ?’’.
Algebraically, the logistic equation, Eq. (4), generalizes
other proliferation models (for example, Eq. (4) converges
to Eq. (1) when K tends to infinity). However, in a
statistical sense, this assertion is not true. As Eq. (3)
requires three parameters estimated from a small finite set
of experimental data, variance of the estimator will be large
and then can lead to reject an appropriate model that will
be accepted by a one or two parameters model. The
method used to determine these coefficients is based on the
non-linear least-squares method using the SASTM statis-
tical language (SAS Institute, Cary, NC). We retain the
model that minimizes the residual standard deviation if,
and only if, all coefficients are statistically significant (using
studentization for linear regression or asymptotical stu-
dentization in the case of non-linear regression).

3.2. De-correlation of adhesion and proliferation

We first must determine the adhesion law for an
individual cell. We shall suppose that a cell possesses its
own adhesion law. Two models can be proposed: a
deterministic one or a probabilistic one. For example in
the deterministic one, we shall suppose that after a
trypsination time d, the cell is detached by the trypsin.
For the stochastic one, we shall suppose that on average,
the cell will be detached after d (Fig. 2).
We can postulate that when culture time t increases,

adhesion increases and so does d. We shall then claim that
d is an increasing function of t. We shall suppose that it will
be equal to the following power law:

dðtÞ ¼ atb with aX0. (6)

The choice of this power law is justified by some
experimental and mathematical considerations. The most
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important is that in our entire study we encountered
neither local minima nor local maxima. In a physical and
biological sense, it will be unlikely that adhesion will
increase (or decrease) to reach a maximal value (or
minimal) and will next decrease (or increase). Then we
retain as a mathematical model an increasing (b40),
constant (b ¼ 0) or decreasing (bo0) function. This model
possesses only two parameters to be sufficiently robust in a
statistical sense. Moreover, the power laws provide
interesting properties to model temporal phenomena with
both scaling (a) and kinetic coefficients (b). Physiologically,
it is likely that adhesion is monotonic in time, but still
reaches a maximum. The power law described before does
not have this behavior. In fact, it is right that within the
timescale of the experiments, outlined adhesion will
continually increase but once full adherence has been
achieved this will not be the case. However, including this
fact will lead to two major problems: the first one is a
statistical one. Introducing this fact leads to add a new
parameter describing the asymptotic measure of final
adhesion. This will statistically introduce a high noise in
the a and b coefficient estimations since this asymptote was
not reached in our experimental measures. This will
introduce a very high variance in the parameters char-
acterizing the asymptotic measure of final adhesion leading
to a high variance of the a and b estimators. The second
one is that in the biological experiments it is difficult to
culture cells in static conditions more than some weeks
since the results will be biased by external environment
effects like limitation in culture medium volume upper the
cells and in access to nutritive elements for cultured cells
entrapped in extracellular matrix. Then, it would be
impossible to reach in vitro the value of asymptotical
maximal adhesion met surely in the in vivo process.
However, as we will prove in this paragraph, our model
is well posed. We will prove that under this hypothesis,
adhesion will increase as a square root of time meaning
that adhesion will increase only by a factor two when time
increases by a factor four. This low increase will, roughly
speaking, lead to reach a kind of asymptotic value in our
experiments because the increase of adhesion measurement
will be of the same order as experimental uncertainties. As
a consequence, the variation of this function could describe
the adhesion of cells on biomaterials after a time t in
culture (without proliferation). To find the values of the
coefficients a and b of Eq. (6) we use experimental data. We
dispose of N trypsination times fd1; d2; . . . ; dNg for M times
in culture ft1; t2; . . . ; tMg, which gives N�M data per
experiment and per run to determine two adhesion
coefficients. The probability Pr(d) that a cell detaches after
a d minute digestion with trypsin, is

PrðdÞ ¼ Hðd � dðtÞÞ, (7)

where H is the Heaviside step distribution

HðxÞ ¼ 0 if xo0,
HðxÞ ¼ 1 if xX0. (8)

However, as was shown above, cells will proliferate and
we have to include this fact. The value ðqPðtÞ=qtÞ dt
represents the number of cells, which have proliferated
during the time t and t+dt. Let us note p(t,d),
pðt; dÞ 2 ½0 . . . 1�, the ratio of cells detached by the action
of trypsin during d minutes and which were formed by
division over a time t (the beginning being the origin t ¼ 0).
This number is calculated as follows pðt; dÞ ¼R d

0 nðt; dÞ dd=ð
R dsup

0 nðt; dÞ ddþ nf ðtÞÞ, where n(t,d) is the
number of cells detached after the action of trypsin during
d minutes at time t in culture, dsup is the duration of the
detachment experiment, nf(t) is the number of cells
detached by concentrated trypsin at the end of the
diluted trypsination process. The following expression
ðqPðtÞ=qtÞ dtHðd � d̄ðt� tÞÞ represents the number of cells
at the time t that have proliferated at time t and that will be
detached by trypsin after a trypsination time of d minutes.
Finally, we have to sum up all the cells detached for a time
in culture t and to normalize this function to obtain the
following integro-differential equation:

pðt; dÞ ¼
1

PðtÞ � Pð0Þ

Z t

0

ðqPðtÞ=qtÞHðd � d̄ðt� tÞÞ dt. (9)

The main problem consists in finding the values of the
coefficients a and b of Eq. (8) by using Eq. (9) and
experimental data. Thus, we have five trypsination times
d1 ¼ 5, d2 ¼ 10, d3 ¼ 20, d4 ¼ 30, and d5 ¼ 60 and four
times in culture t1 ¼ 1 day, t2 ¼ 7 days, t3 ¼ 14 days and
t4 ¼ 21 days which gives 20 experimental data per surface
and per run to determine two adhesion coefficients. (note
that four experimental data obtained after concentrated
trypsin action are also processed to calculate the ratio of
cells detached at each time in culture). In our experimental
design (see Table 1), 396 experiments were processed
corresponding to all surfaces and all runs (in total
396(20+4)�9500 measures of detachment) that leads to
calculate 396 pairs of (a,b) coefficients. The solution
consists in working out a and b to minimize the following
functional expression:

min
a;b

XM
i¼1

XN

j¼1

pðti; djÞ �
1

PðtiÞ � Pð0Þ

�

Z ti

0

ðqPðtÞ=qtÞHðdj � d̄ðti � tÞÞ dt
�2

. ð10Þ

The solution was obtained by the simplex method. The
simplex method was first introduced by Nelder and Mead
[49] for finding the minimum value of functions. The
Simplex method does not require derivative function
estimations that would be numerically poorly robust and
stable due to experimental error. This method is based on
four mechanisms of vertex movements. Vertices are moved
toward the minimum point by the four mechanisms,
reflection, expansion, contraction, and shrinkage. We have
shown that b ¼ 0:5. That means that adhesion increases
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with the square root of time. To statistically minimize noise
in this determination assuming that b ¼ 0:5, the ‘‘a’’
coefficient was recalculated by fixing b ¼ 0:5 in Eq. (7).
As a consequence, the adhesion law followed d̄ðtÞ ¼ a

ffiffi
t
p

meaning that adhesion could be characterized by only one
term, a, that we have called the adhesion power (AP) [42].
We demonstrated in a previous paper that a was influenced
by the surface topography of materials [33]. On the
contrary, the exponent b was independent of the substrate’s
characteristics meaning that the long-term adhesion
increases proportionally to the square root of culture time.
From this relationship, we suggested that a diffusion-based
process related to the kinetic of formation of extracellular
matrix should be involved in long-term adhesion on
materials. Indeed, the influence of the ECM could be
related either to the action of trypsin by inhibiting its
enzymatic action or to an increase in the adhesion of cells
by way of cell–matrix adhesions [33].

One major criticism of our model is that it is
phenomenological and does not really explain the adhesion
phenomenon. We totally agree with this criticism but we
would prefer to put back our mathematical modeling
approach in its context. Our objective is to characterize
adhesion with few parameters (in our case, only one) since
the critical point is that our model is highly robust in a
statistical sense. If we retain a model with more than one
coefficient, the modeling error would have surely decreased
but the coefficients would have drastically lost their
physical meaning. In our adhesion studies, 93% of our
experiments were repeated three times. As a consequence,
we can estimate error by calculating the standard deviation
on fraction of detached cells, noted as se. In our
experiment, 2087 measurements of triplet values were
done. We obtained an average of s̄e ¼ 0:051�0:0004,
representing our experimental error. In another method,
we can calculate the modeling error noted sm that is the
standard deviation of the difference between our model
and experimental data. Note that statistically, we must
always have sepsm because modeling error cannot be less
than experimental error. We obtained an average of
s̄m ¼ 0:065�0:001, roughly meaning that modeling error is

around

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs̄mÞ2 � ðs̄eÞ2 � 2 covðs̄m; s̄eÞ

q
� 0:005, that is less

than 0.5%. The empirical distribution of 2087 measures of
sm and se is represented in Fig. 3. Intrinsic experimental
error and modeling error distribution are quite similar,
demonstrating that our single-coefficient model is well
adapted to describe adhesion (whatever the substrate
nature), and that proliferation is also well modeled.

Some other criticisms of our model include the risk of a
wrong choice among the five models proposed for
proliferation, or over-simplification of reality given by
Eq. (6). However, the low percentage of error between
experimental and modeling error we found demonstrates
that these criticisms could be theoretically stated but would
not lead to better results than our analysis. We think that it
is impossible, due to the high experimental variation, to
propose a model with more than one coefficient that will
better describe a so-complex phenomenon including the
influence of numerous uncontrolled parameters like surface
chemistry, surface roughness, cell–cell interactionsy. In
fact, the major question we should ask is: ‘‘Is it really
possible to model based on biophysics laws, such a
complex biological system by taking into account all the
rules of the cellular adhesion?’’ If the entire biophysical
system was deterministic, we could surely answer positively
but viewing the large dispersion in repeated experiments,
we are more convinced that a deterministic position is
utopic and we thus prefer to treat these problems in a
statistical way. In fact, having (a) robust parameter(s) of
adhesion allows us to analyze the relation between one of
these coefficients with some properties of the surface to
quantify surface effects on adhesion, thanks to appropriate
statistical tools.
To illustrate the efficiency of our mathematical model-

ing, we shall analyze the results for cell adhesion on four
surfaces, which have shown very typical different prolif-
eration rates in previous studies [43,46]: ThermanoxTM

(high proliferation rate), IE0N (middle proliferation rate),
TE0O (low proliferation rate) and VE0O (very low
proliferation rate) surfaces. According to our model, for
low proliferation rate, the macroscopic measure of adhe-
sion we perform will be on the same order as individual cell
adhesion given by Eq. (10). On the contrary, when
proliferation rate increases, the macroscopic adhesion
measure includes newly formed cells. Then, the macro-
scopic measure will be more and more different than
individual measure and will be always lower than
individual measure taken at the same time in culture.
Fig. 4 represents the normalized experimental mean
trypsination curves obtained on these selected surfaces.
Then we applied our model to calculate values of a and b

for each experiment: each value of a and b allowed us to
calculate four trypsination curves for the four times in
culture (1, 7, 14, 21 days). These curves are Heaviside
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functions. However, as many experiments were done for a
given sample and the same time in culture, many Heaviside
curves were obtained. To include the statistical variation
between experiments, we summed up all Heaviside func-
tions and divided them by the number of experiments to
obtain a real cumulative probability density function. By
repeating this normalization for each time in culture and
each type of samples, we obtained the modeled trypsina-
tion curves in Fig. 5. After optimization, Fig. 5 represents
the trypsination curves without the contribution of
proliferation on the four model surfaces. As can be
observed, modeled curves look like theoretical cumulative
curves in Fig. 2, meaning that the hypothesis that cell
detachment time for a given time in culture follows a
probabilistic model is justified. As it can be stated in our
model, for low proliferation rate (VE0O sample), the
macroscopic measures of adhesion plotted on Fig. 4 are
identical to modeled curves (Fig. 5) because the bias
introduced by newly formed cells in the number of
detached cells is relatively low. On the contrary, for high
proliferation rate (ThermanoxTM, IEON), because of the
increase of number of detached cells (since newly formed
cells can be also detached), the macroscopic measure
underestimates adhesion and curves are more different
than modeled curves obtained by retrieving of proliferation
effect. These curves allow us to validate the efficiency of
our model.

4. Bootstrap protocol

As claimed before, we have characterized cell adhesion,
thanks to an appropriate mathematical model, by only one
robust coefficient called the AP. However, we have not
introduced statistical aspects as, for example, the con-
fidence intervals for the adhesion coefficient. Further, if we
want to correlate this coefficient with physical properties of
the surface, some statistical tools must be used to quantify
the reliability of this correlation. If our data obeys some
known density function, it is possible using the statistical
inference to construct confidence intervals. Most statistical
procedures require some knowledge of the sampling
distribution of the statistics used for analyses in order to
estimate or approximate the accuracy of measures for a
given statistic (estimator). Sometimes it requires a very
large sample size in order to have accurate measure of the
estimator [50]. However, the number of experimental data
in the biological experiments are generally too few to verify
the assumption of the statistical inference [51]. Surely,
other techniques could be used such as non-parametric or
Bayesian approaches to minimize the statistical properties
of the data, but these techniques require a large number of
data to be efficient. Another possibility is to use a recent
statistical methodology called the Bootstrap [45]. The
application of this method will be illustrated with two
studies: the calculation of confidence intervals of the AP
coefficient and the determination of the more appropriate
morphological roughness parameters to characterize the
effect of roughness on cell adhesion. The bootstrap is an
intensive computer statistical technique from Efron and
Tibshirani based on the re-sampling of data [45,46]. The
introduction of the Bootstrap theory allows considering
experimental variations on the mean’s estimation of
independent measurements. A data-based simulation
method for statistical inference is used to study the
variability of values of a set of observations and provide
confidence intervals for parameters in situations where
these are difficult or impossible to derive analytically. The
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basic idea involves re-sampling with replacement of data to
produce random samples of size n from the original data.
Each of these samples is known as a bootstrap sample and
each provides an estimate of the parameter of interest.
Repeating the sampling a large number of times provides
information on the variability of the estimator. The major
advantage of this method is to have no preconceived
opinion on the probability density followed by the data.
The growing stream of scientific articles using re-sampling
techniques, both as a basic tool as well as for difficult
applications, testifies to value of re-sampling [52]. Addi-
tionally, the increasing literature in mathematical statistics
shows its acceptance on a theoretical basis, after many
years of doubts. A major disadvantage of the bootstrap is
that it is necessary to develop an appropriate software. The
elementary calculus has to be performed a high number of
times. Thus, an automatic process with computation
procedure optimization is required. In our case, we have
written our own code in the SAS language that contains a
real computer language (not classical macro language that
can be met in some statistical softwares) and that allows to
optimize the basic or extended statistical procedures.

4.1. Calculation of confidence intervals

Let us now analyze an example to understand the
principle of this method. We will try to find the confidence
interval of the mean a value given in Eq. (6). As Eq. (7) is
highly non-linear, it becomes very difficult to determine
analytically without gross simplification an estimation of
the confidence interval of a. Here, the bootstrap method is
a good alternative to estimate the probability density
function for a and the associated confidence intervals.
Twenty data points were used to calculate the coefficient a

for each run in order to quantify adhesion thanks to our
Eq. (6). However, in our case, data were very scattered and
we had not a sufficient number of samples to validate the
statistical hypothesis allowing the use of statistical tests.
The aim of the bootstrap in our case was to create a data
bank by sampling randomly with replacement of 20 data in
the original data set (ti, di) that constituted the first
bootstrap sample from which the adhesion power was
noted aB

1 ð1Þ. Further, from the second run, another
bootstrap sample was created and gives aB

1 ð2Þ. If n runs
are made, then from the first bootstrap, we get n
evaluations of a values that gives faB

1 ð1Þ; a
B
1 ð2Þ; . . . ; a

B
1 ðnÞg

to calculate a first bootstrap estimation of the mean values:
āB
1 ¼ ð1=nÞSn

i¼1a
B
1 ðiÞ. Finally, this procedure was repeated a

high number of times: 10,000 in our case. This is a good
compromise to have a good estimation of the probability
density function of a and an acceptable time of computing
that was of 1 week for the 396 experiments. This allowed
building statistics āB

1 ; ā
B
2 ; . . . ; ā

B
10000

� �
on which a prob-

ability density function (PDF) can be drawn allowing the
further calculation of descriptive statistics. Thanks to this
bootstrap technique, the mean histograms of the adhesion
power of all samples were established. Three sampled
histograms are plotted in Fig. 6. As shown in this figure,
our original adhesion parameter a allowed good discrimi-
nating of cell adhesion strength on these three different
surfaces. For the demonstration of the pertinence of
adhesion power on all the other surfaces tested, see
Ref. [33].

4.2. Estimation of the influence of surface morphology on

cell adhesion

We now apply the bootstrap methodology to estimate
the effect of surface morphology on cell adhesion. The
bootstrap theory was also the basis of a new methodology
we developed in order to determine the relative influence of
the physical tested parameters on cell response. This
methodology aims at the construction and the calculation
of a performance index as well as a confidence interval in
order to account for the relevance of parameters. We
model by a power law the relation between a surface
roughness parameter and the measure of cell adhesion. By
taking for each surface studied a bootstrap value for the
adhesion power parameter and for a given roughness
parameter, a first estimation of the standard deviation of
the residual (i.e. modeled data minus experimental data)
can be computed. This procedure is repeated 100,000 times
(since this bootstrap procedure is less costly in computing
time and since all variance estimators converge to this
number of bootstrap) and descriptive statistics can be
constructed. For each roughness parameter, the bootstrap
protocol is applied. As an example, we previously
published the classification of the 35 most relevant surface
roughness parameters according to their influence on cell
adhesion [33]. Fig. 7 represents this classification by using
the standard deviation of the residuals. For all the
relations, the lower the standard deviation, the more
relevant the parameter. Then, as confidence intervals
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Table 2

Meaning of the roughness parameters met in Fig. 7

Parameter Meaning Reference

Order Order of the surface [33]

Delta_a Profiles slope [53]

Lac_p Auto correlation length [33]

Cte_p Number of peaks [53]

Cte_t Number of peaks following a valley [53]

Lambda Peak width [53]

SM Mean width of a peak [53]

AMNLN Fractal dimension (Bigerelle method) [54]

BIGLN Fractal dimension (Bigerelle method) [54]

LAC Integral auto correlation length [33]

OSCLN Fractal dimension (Tricot method) [54]

TRILN Fractal dimension (Dubuc method) [54]

LAC_E Exponential auto correlation length [53]

DIMFREQ Fractal dimension (spectrum method) [54]

RWZ Mean peak radii curvature [53]

Romax Maximum peak radii curvature [53]

M_pic Maximal mean amplitude [53]

g Amplitude of the profile curvature [53]

Gamma Amplitude of the profile curvature [53]

Sk Amplitude skewness [53]

Ro Amplitude of mean peaks [53]

Ek Amplitude kurtosis [53]

RZ3 A mean average amplitude [53]

RZ A mean maximal amplitude [53]

Rmax Maximal amplitude [53]

Rt Amplitude range [53]

Lr Relative developed profile length [53]

L0 Absolute developed profile length [53]

Zmax A range amplitude parameter [53]

Ra Average roughness [53]

Rq Root mean square amplitude roughness [53]

Z0 Amplitude with sign [53]

For the meanings of the roughness parameters, reader could refer to

{2615}, for the meanings of fractal dimension parameters, refer to {2614}.
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obtained by bootstrap do not overlap with others, it could
be concluded that the ‘order’ parameter was the most
influential parameter on AP. The ‘order’ parameter is an
original parameter defined in our laboratory [33]. As the
literature did not provide us with any other parameter to
quantify the order of a surface with scaling invariance both
in amplitude and position, we defined a new ‘‘scale
invariant roughness parameter’’ that quantifies the organi-
zation of surfaces. Our main idea was to find a parameter
without resorting to Fourier’s analysis (since spectrum
parameters have little robustness and a sin–cosine basis is
not always appropriate to characterize surface roughness),
which gave an upper limit value (100%) if surfaces were
periodic, a medium value if surfaces get a non-negligible
first-order autocorrelation, and zero as the lower limit
value for uncorrelated random surfaces (white noise). This
parameter is now used in our laboratory to quantify the
impact of different processes on the topography of the
surface [17,18,37]. The most important quality of this
parameter is to be mathematically independent of the
amplitude parameters. Thus, the effect of the order of the
surface and also the ‘‘scaled amplitude parameter’’ can be
analyzed without any correlation bias. The analysis of Fig.
7 shows that frequency parameters discriminate cell
adhesion better than amplitude parameters. This confirmed
that cell adhesion is more influenced by the morphology of
the surface topography than by its amplitude [18].

5. Conclusion

Using examples derived from our experiments, we
presented the essential features needed for the modeling
of cell/material interactions studies. Firstly, we described
the way to carry out the experimental design, which must
be at the root of modeling. Secondly, we illustrated the use
of a statistical modeling technique based on a bootstrap
protocol, used either to eliminate correlation existing
between measured parameters, to increase the number of
data available by re-sampling or to determine among all
the parameters which ones have the higher significance. In
a third part of this paper, examples of statistical analysis of
the relative influence of biological and physical parameters
were given, illustrating a phenomenological approach to
cell/material interactions based on an extensive statistical
analysis. As we dispose now of robust models describing
macroscopic tendencies of cell/material interactions, the
future objective of this type of modeling approach must be
the development of more efficient and discriminating
models allowing to explain this phenomenon also at the
mesoscopic level (Table 2).
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