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Introduction

In this paper, we investigate the existence and non-existence of weak solutions to the nonlinear problem with a fractional p-Laplacian given by (1.1) In the early 1960's, Nehari [START_REF] Nehari | On a class of nonlinear second-order differential equations[END_REF], introduced a method that became very useful in the calculus of variations and which is now called the Nehari manifold method. Nehari's original idea was to study a boundary value problem for certain second order nonlinear ordinary differential equations in an open interval (a, b) and show that the equation has a non-trivial solution that can be obtained through minimization problems with link. The fibering maps method is a good tool for solving elliptical differential problems [START_REF] Drábek | Positive solutions for the p-Laplacian: application of the fibrering method[END_REF][START_REF] Il'yasov | On non-local existence results for elliptic operators with convex-concave nonlinearities[END_REF][START_REF] Nyamoradi | The Nehari Manifold and Application to a Quasilinear Elliptic Equation with Multiple Hardy-Type Terms[END_REF][START_REF] Chen | The Nehari manifold and the existence of multiple solutions for a singular quasilinear elliptic equation[END_REF]. Relating the Nehari manifold with fibering maps was introduced by [START_REF] Drábek | Positive solutions for the p-Laplacian: application of the fibrering method[END_REF] [START_REF] Drábek | Positive solutions for the p-Laplacian: application of the fibrering method[END_REF] and discussed by [START_REF] Brown | The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function[END_REF] [START_REF] Brown | The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function[END_REF] which related the Euler Lagrange functional to a real function.

   H D α,β;ψ T H D α,β;ψ 0+ ξ (x) p-2 H D α,β;ψ 0+ ξ (x) = λ |ξ (x)| p-2 ξ (x) + b (x) |ξ (x)| q-1 ξ (x) ,
In 2003, Figueiredo et al. [START_REF] Figueiredo | Local superlinearity and sublinearity for indefinite semilinear elliptic problems[END_REF], investigated the existence of solutions to an elliptic class of problems

   -∆u = λu q + b (x) u p , in Ω u ≥ 0, u = 0 in Ω u = 0
where Ω is a bounded region of R n with smooth boundary, 0 < q < 1 < p < N +2 N -2 , λ > 0 and a, b : Ω → R are regular functions that can change signs in Ω, using the Mountain Pass Theorem. In 2005, IL'yasov [START_REF] Il'yasov | On non-local existence results for elliptic operators with convex-concave nonlinearities[END_REF] and 2009 Wu [START_REF] Wu | Multiplicity results for a semi-linear elliptic equation involving sign-changing weight function[END_REF], discussed the existence of solutions via the fibering approach and Nehari manifolds, respectively. In 1997 Drábek and Pohozaev [START_REF] Drábek | Positive solutions for the p-Laplacian: application of the fibrering method[END_REF] discussed positive solutions for p-Laplacian fibering maps, in 2003 Brown and Zhang [START_REF] Brown | The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function[END_REF], discussed the existence of solutions to the problem via a combination of fibering maps and Nehari manifolds.

In 2013, Nyamoradi et al. [START_REF] Nyamoradi | The Nehari Manifold and Application to a Quasilinear Elliptic Equation with Multiple Hardy-Type Terms[END_REF], investigated the existence and multiplicity of positive solutions to a quasilinear elliptic equation

(1.2)    -∆ p u - k i=1 µ i |u| p-2 u |x-ai| p = f (x) |u| p * -2 u + λg (x) |u| q-2 , in Ω, u = 0, on ∂Ω,
where Ω ⊂ R N (N ≥ 3) is a bounded domain with smooth boundary ∂Ω such that the points a i ∈ Ω, i = 1, 2, ..., k (k ≥ 2), 0 ≤ µ i < µ := N -p p p , and p * := pN N -p is the critical Sobolev exponent and 1 ≤ q < p, λ > 0 and f, g are continuous functions. With the problem (1.2) one can relate it to the following Hardy inequality

Ω |u| p |x-a| p dx ≤ 1 µ Ω |∇u| p dx, ∀a ∈ R N , u ∈ C ∞ 0 R N .
Results on the existence and multiplicity of solutions for nonlinear boundary value problems of fractional differential equations in a fractional derivative space can be found in [START_REF] Qiu | Existence of Weak Solutions for Nonlinear Time-Fractional-Laplace Problems[END_REF][START_REF] Agarwal | Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations[END_REF][START_REF] Li | Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[END_REF][START_REF] Jiao | Existence of solutions for a class of fractional boundary value problems via critical point theory[END_REF][START_REF] Zhang | Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses[END_REF][START_REF] Xu | Positive Solutions for a Class of p-Laplacian Hadamard Fractional-Order Three-Point Boundary Value Problems[END_REF]. Ledesma [START_REF] Ledesma | Impulsive fractional boundary value problem with p-Laplace operator[END_REF][START_REF] Ledesma | Boundary value problem with fractional p-Laplacian operator[END_REF][START_REF] Ledesma | Multiplicity of Solutions for a Class of Perturbed Fractional Hamiltonian Systems[END_REF] and others discuss variational problems via fractional derivatives and integrals, with important techniques, such as the Mountain Pass Theorem, Nehari manifolds, critical point theory and fibering maps (see [START_REF] Agarwal | Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations[END_REF][START_REF] Ledesma | Existence and symmetry result for fractional p-Laplacian in R n[END_REF][START_REF] Ledesma | Existence of solutions for fractional Hamiltonian systems with nonlinear derivative dependence in R[END_REF][START_REF] Tian | Variational methods to mixed boundary value problem for impulsive differential equations with a parameter[END_REF][START_REF] Boucenna | Existence of a positive solution for a boundary value problem via a topological-variational theorem[END_REF][START_REF] Wu | Multiplicity results for a semi-linear elliptic equation involving sign-changing weight function[END_REF][START_REF] Fu | Nontrivial solutions for an integral boundary value problem involving Riemann-Liouville fractional derivatives[END_REF]). For other works see [START_REF] Ledesma | Existence of solution for Liouville-Weyl Fractional Hamiltonian systems[END_REF][START_REF] Ledesma | Mountain pass solution for a fractional boundary value problem[END_REF][START_REF] Ledesma | Existence and symmetric result for Liouville-Weyl fractional nonlinear Schrödinger equation[END_REF][START_REF] Zhang | Solutions for a class of fractional Hamiltonian systems with a parameter[END_REF][START_REF] Li | Existence and multiplicity of nontrivial solutions for Liouville-Weyl fractional nonlinear Schrödinger equation[END_REF]. In 2020, Sousa et al. [START_REF] Sousa | A Variational approach for a problem involving a ψ-Hilfer fractional operator[END_REF], discussed a new variational structure for the ψ-Hilfer fractional operator, justifying some fundamental properties in the variational context, in the ψ-fractional derivative spaces H α,β;ψ p ([0, T ] , R) and H 2α,β;ψ p ([0, T ] , R), so one can discuss numerous boundary value problems in the fractional differential equation sense.

In 2018, Saoudi et al. [START_REF] Saoudi | The Nehari manifold for a boundary value problem involving Riemann-Liouville fractional derivative[END_REF], discussed the existence of solutions to the following nonlinear boundary value problem of the fractional differential equation:

-t D α 1 | 0 D α t (u (t))| p-2 0 D α t u (t) = f (t, u (t)) + λg (t) |u (t)| q-2 u (t) , (t ∈ (0, 1)) , u (0) = u (1) = 0,
where 0 D α t (•), t D α 1 (•) are Riemann-Liouville fractional derivatives left-sided and right-sided of order α with 1 2 < α < 1, λ is a positive parameter, 2 < r < p < q, , g ∈ C ([0, 1]), and f ∈ C ([0, 1] × R, R), using a combination of the Nehari manifold and fibering maps. Ghanmi and Zhang [START_REF] Ghanmi | Nehari manifold and multiplicity results for a class of fractional boundary value problems with p-Laplacian[END_REF], investigated the existence of non-trivial solutions the following fractional boundary value problems

t D α T | 0 D α t (u (t))| p-2 0 D α t u (t) = ∇W (t, u (t)) + λg (t) |u (t)| q-2 u (t) , (t ∈ (0, T )) , u (0) = u (T ) = 0, where 0 D α t (•), t D α T (•) are Riemann-Liouville fractional derivatives left-sided and right-sided α with 1 p < α < 1, ∇W (t, u) is the gradient of W (t, u) at u and W ∈ C ([0, T ] × R n , R
) is homogeneous of degree r, λ is a positive parameter, g ∈ C ([0, T ]) , 1 < r < p < q, using fibering maps and Nehari manifolds, for some positive constant λ 0 such that 0 < λ < λ 0 . Other works related to the existence of solutions for fractional boundary value problems can be found in [START_REF] Jiao | Existence of solutions for a class of fractional boundary value problems via critical point theory[END_REF][START_REF] Ledesma | Existence of solution for Liouville-Weyl Fractional Hamiltonian systems[END_REF][START_REF] Ledesma | Existence and symmetric result for Liouville-Weyl fractional nonlinear Schrödinger equation[END_REF][START_REF] Tian | Variational methods to mixed boundary value problem for impulsive differential equations with a parameter[END_REF][START_REF] Ghanmi | Nehari manifold and multiplicity results for a class of fractional boundary value problems with p-Laplacian[END_REF][START_REF] Fu | Nontrivial solutions for an integral boundary value problem involving Riemann-Liouville fractional derivatives[END_REF].

One of the main aims of this paper is to contribute new results to the theory of boundary value problem for fractional differential equations. The Euler functional associated with Eq.(1.1), for each ξ ∈ H α,β;ψ p , is given in the following form

E λ (ξ) = 1 p T 0 H D α,β;ψ 0+ ξ (x) p dx - λ p T 0 |ξ (x)| p dx - 1 q + 1 T 0 b (x) |ξ(x)| q+1 dx.
Motivated by the works above, this article aims to discuss the following results:

Theorem 1.1. Suppose that there exists λ > 0 such that for any λ < λ, we have L -(λ) ⊆ Υ -. Then, (1) There is a minimizing point for

E λ in S + λ , (2) There is a minimizing point for E λ in S - λ , proving that L -(λ) is non-empty. Theorem 1.2. Suppose L -(λ) ∩ Υ + = ∅. Then (1) inf ξ∈S + λ E λ (ξ) = -∞, when S + λ = ∅; (2) inf ξ∈S - λ E λ (ξ) = 0, when S - λ = ∅.
Note L -(λ), Υ -(λ), Υ + (λ), S - λ and S + λ , will be presented in a later section. In section 2 we present fundamental concepts of the ψ-Riemann-Liouville fractional integral and the ψ-Hilfer fractional derivative and some essential properties. We give the definition of the ψ-fractional derivative space and some new results are obtained, in particular, the integration by parts for the ψ-Hilfer fractional derivative. In section 3, we introduce the Nehari manifold and fibering maps and some results are proven involving the Euler functional in the ψ-fractional derivative space H α,β;ψ p . Finally, section 4 shows the existence and non-existence of weak solutions to the non-linear problem with a fractional p-Laplacian according to Eq.(1.1) in the sense of the ψ-Hilfer fractional derivative.

2.

Preliminaries and the ψ-fractional derivative space H α,β;ψ p ([0, T ] , R).

In this section, we present the fundamental concepts of the ψ-Riemann-Liouville fractional integral and the ψ-Hilfer fractional derivative, as well as some fundamental results. We discuss a version of the integration by parts for the ψ-Hilfer fractional derivative and consider some particular cases. In addition, we present the variational structure that will define and prove the existence and non-existence of weak solutions to the fractional nonlinear problem p-Laplacian.

Let (a, b) (-∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real line R and α > 0. Also let ψ (•) be an increasing and positive monotone function on [a, b], having a continuous derivative ψ (x) = 0 on (a, b) . The left and right-sided fractional integrals of a function f with respect to another function ψ on [a, b], are defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Sousa | On the Ψ-fractional integral and applications[END_REF] (2.1)

I α;ψ a+ ξ (x) = 1 Γ (α) x a ψ (t) (ψ (x) -ψ (t)) α-1 ξ (t) dt and (2.2) I α;ψ b-ξ (x) = 1 Γ (α) b x ψ (t) (ψ (t) -ψ (x)) α-1 ξ (t) dt.
On the other hand, let n - [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Sousa | On the Ψ-fractional integral and applications[END_REF] (2.3)

1 < α < n, with n ∈ N, I = [a, b] is the interval such that -∞ ≤ a < b ≤ ∞ and there exist two functions f, ψ ∈ C n ([a, b] , R) such that ψ is
H D α,β;ψ a+ ξ (x) = I β(n-α);ψ a+ 1 ψ (x) d dx n I (1-β)(n-α);ψ a+ ξ (x) and (2.4) H D α,β;ψ b- ξ (x) = I β(n-α);ψ b- - 1 ψ (x) d dx n I (1-β)(n-α);ψ b- ξ (x) .
Choosing β → 0, we have ψ-Riemann-Liouville fractional derivatives left-sided and right-sided, given by (2.5)

D α;ψ a+ ξ (x) = 1 ψ (x) d dx n I (n-α);ψ a+ ξ (x) and (2.6) D α;ψ b-ξ (x) = - 1 ψ (x) d dx n I (n-α);ψ b- ξ (x) .
The ψ-Hilfer fractional derivatives defined as above can be written in the following form

(2.7) H D α,β;ψ a+ ξ (x) = I γ-α;ψ a+ D γ;ψ a+ ξ (x) and (2.8) H D α,β;ψ b- ξ (x) = I γ-α;ψ b- D γ;ψ b-ξ (x) with γ = α + β (n -α) and I γ-α;ψ a+ (•) , I γ-α;ψ b- (•) , D γ;ψ b-(•)
and D γ;ψ a+ (•) as defined in Eq.(2.1), Eq.(2.2), Eq.(2.5) and Eq.(2.6).

Theorem 2.1. [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] 

Let n -1 < α < n, n ∈ N and 0 ≤ β ≤ 1. If ξ ∈ C n ([a, b]), then H D α,β;ψ a+ ξ (x) = D n-β(n-α);ψ a+ I (n-γ);ψ a+ ξ (x) - n-1 k=0 (ψ (x) -ψ (a)) k k! D γ;ψ a+,k ξ (a)
and

H D α,β;ψ b- ξ (x) = D n-β(n-α);ψ b- I (n-γ);ψ b- ξ (x) - n-1 k=0 (-1) k (ψ (b) -ψ (x)) k k! D γ;ψ a+,k ξ (b) with γ = α + β(n -α).
Lemma 2.2. [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] Let α > 0 and δ > 0. Then, we have the following semigroup property given by (2.9) I α;ψ a+ I δ;ψ a+ ξ (x) = I α+δ;ψ a+ ξ (x) and

(2.10) 

I α;ψ b-I δ;ψ b-ξ (x) = I α+δ;ψ b- ξ (x) .
I α;ψ b-ξ (x) = ξ (x) . Theorem 2.4. [3, 4] If ξ ∈ C n ([a, b] , R), n -1 < α < n and 0 ≤ β ≤ 1, then (2.12) I α;ψ a+ H D α,β;ψ a+ ξ (x) = ξ (x) - n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) ξ [n-k] ψ I (1-β)(n-α);ψ a+ ξ (a)
and

(2.13)

I α;ψ b- H D α,β;ψ b- ξ (x) = ξ (x) - n k=1 (ψ (b) -ψ (x)) γ-k Γ (γ -k + 1) ξ [n-k] ψ I (1-β)(n-α);ψ b- ξ (b) ,
where ξ

[n-k] ψ (x) := 1 ψ (x) d dx n-k ξ (x).
Next, we will prove the integration by parts for the ψ-Riemann-Liouville fractional integral and the ψ-Hilfer fractional derivative.

The relation

(2.14) b a I α;ψ a+ ξ (t) θ (t) dt = b a ξ (t) ψ (t) I α;ψ b- θ (t) ψ (t) dt is valid.
One can prove Eq.(2.14) directly by interchanging the order of integration by the Dirichlet formula in the particular case Fubini theorem, i.e., b a

I α;ψ a+ ξ (t) θ (t) dt = b a 1 Γ (α) t a ψ (s) (ψ (t) -ψ (s)) α-1 ξ (s) dsθ (t) dt = b a 1 Γ (α) b t ψ (s) (ψ (t) -ψ (s)) α-1 θ (t) dtξ (s) ds = b a ξ (t) ψ (t) I α;ψ b- θ (t) ψ (t) dt.
Theorem 2.5. Let ψ(•) be an increasing and positive monotone function on [a, b], having a continuous derivative

ψ (•) = 0 on (a, b). If 0 < α ≤ 1 and 0 ≤ β ≤ 1, then (2.15) b a H D α,β;ψ a+ ξ (t) θ (t) dt = b a ξ (t) ψ (t) H D α,β;ψ b- θ (t) ψ (t) dt
for any ξ ∈ AC 1 and θ ∈ C 1 satisfying the boundary conditions ξ (a) = 0 = ξ (b).

Proof. In fact, using Eq.(2.8), Eq.(2.10) and Theorem 2.4 (Eq.(2.12)), we have

b a ξ (t) ψ (t) H D α,β;ψ b- θ (t) ψ (t) dt = b a ξ (t) ψ (t) I 1-α;ψ b- D 1;ψ b- θ (t) ψ (t) dt = b a ψ (t) I α;ψ a+ H D α,β;ψ a+ ξ (t) + (ψ (t) -ψ (a)) γ-1 Γ (γ) d j I 1-α;ψ b- D 1;ψ b- θ (t) ψ (t) dt where d j = 1 ψ (t) d dt I (1-β)(1-α);ψ a+ ξ (a) = b a ψ (t) I α;ψ a+ H D α,β;ψ a+ ξ (t) I 1-α;ψ b- D 1;ψ b- θ (t) ψ (t) dt + d j Γ (γ) b a ψ (t) (ψ (t) -ψ (a)) γ-1 I 1-γ;ψ b- D 1;ψ b- θ (t) ψ (t) dt = b a I α;ψ a+ H D α,β;ψ a+ ξ (t) I -α;ψ b- θ (t) ψ (t) dt = b a H D α,β;ψ a+ ξ (t) θ (t) dt.
We now present some particular cases of the integration by parts of some fractional derivatives.

Theorem 2.6. Let 0 < α ≤ 1 and taking limit β → 1 in Eq.(2.15), we have the integration by parts for ψ-Caputo fractional derivative, given by b a

C D α;ψ a+ ξ (t) θ (t) dt = b a ξ (t) ψ (t) C D α;ψ b- θ (t) ψ (t) dt
for any ξ ∈ AC 1 and θ ∈ C 1 satisfying the boundary conditions ξ (a) = 0 = ξ (b).

Theorem 2.7. Let 0 < α ≤ 1, ψ(t) = t and taking limit β → 1 in Eq.(2.15), we have the integration by parts for Caputo fractional derivative, given by b a Theorem 2.9. Let 0 < α ≤ 1, ψ(t) = t and taking limit β → 0 in Eq.(2.15), we have the integration by parts for Riemann-Liouville fractional derivative, given by b a

C D α a+ ξ (t) θ (t) dt = b a ξ (t) C D α b-θ (t) dt
C D α a+ ξ (t) θ (t) dt = b a ξ (t) C D α b-θ (t) dt
for any ξ ∈ AC 1 and θ ∈ C 1 satisfying the boundary conditions ξ (a) = 0 = ξ (b).

Theorem 2.10. Let 0 < 1 p < α < 1 and q = p p-1 Then for any ξ ∈ L p , we have:

(1) I α;ψ a+ is Hölder continuous on [a, b] with exponent α -1 p > 0. (2) lim t→a I α;ψ a+ ξ (t) = 0.
Proof. The proof is a direct consequence of Proposition 7.3 [START_REF] Yong | Basic theory of fractional differential equations[END_REF].

Consequently I α;ψ a+ ξ (t) can be continuously extended by 0 in t = a. Finally, for any ξ ∈ L p , we have I α;ψ a+ ξ ∈ C. Moreover, the following inequality holds

I α;ψ a+ L p [0,T ] ≤ (ψ (b) -ψ (a)) Γ (α) ((α -1) q + 1) 1 q ξ L p [0,T ]
for any ξ ∈ L p .

Lemma 2.11. [START_REF] Sousa | A Variational approach for a problem involving a ψ-Hilfer fractional operator[END_REF][START_REF] Ledesma | Mountain pass solution for a fractional boundary value problem[END_REF] Let 0 < α ≤ 1 and 1 ≤ p < ∞. For any ξ ∈ L p ([0, T ] , R), we have

I α;ψ a+ L p [0,T ] ≤ (ψ (T ) -ψ (0)) α Γ (α + 1) ξ L p [0,T ] for any t ∈ [0, T ]. Consider the Banach space L p ([0, T ] , R) (1 < p < ∞) of functions on [0, T ] with values in R with the norm ξ p = T 0 |ξ (t)| p dt 1/p and L ∞ ([0, T ] , R) is the Banach space of essentially bounded functions from [0, T ] into R equipped with the norm ξ ∞ = ess sup t∈[0,T ] |ξ (t)| . Definition 2.12. [2, 26] Let 0 < α ≤ 1, 0 ≤ β ≤ 1 and 1 < p < ∞, The ψ-fractional derivative space H α,β;ψ p := H α,β;ψ p ([0, T ] , R) is defined by the closure of C ∞ 0 ([0, T ] , R)
, and is given by

H α,β;ψ p = ξ ∈ L p ([0, T ] , R) ; H D α,β;ψ 0+ ξ ∈ L p ([0, T ] , R) , I β(β-1) 0+ ξ (0) = I β(β-1) T ξ (T ) = 0 = C ∞ 0 ([0, T ] , R) (2.16)
with the following norm

(2.17) ξ H α,β;ψ p = ξ p L p + H D α,β;ψ 0+ ξ p L p 1/p
,

where H D α,β;ψ 0+ (•) is the ψ-Hilfer fractional derivative with 0 < α ≤ 1 and 0 ≤ β ≤ 1. Lemma 2.13. [2, 26] Let 0 < α ≤ 1 and 0 ≤ β ≤ 1 and 1 ≤ p < ∞. For any ξ ∈ L p ([0, T ] , R) we have I α;ψ 0+ L p [0,T ] ≤ (ψ (T ) -ψ (0)) α Γ (α + 1) ξ L p [0,T ] , for any t ∈ [0, T ]. Proposition 2.14. [2, 26] Let 0 < α ≤ 1, 0 ≤ β ≤ 1 and 1 < p < ∞. For all ξ ∈ H α,β;ψ p , if 1 -α ≥ 1/p or α > 1/p, we have (2.18) ξ L p ≤ (ψ (T ) -ψ (0)) α Γ (α + 1) H D α,β;ψ 0+ ξ L p . Moreover, if α > 1/p and 1 p + 1 q = 1, then (2.19) ξ ∞ ≤ (ψ (T ) -ψ (0)) α-1/p Γ (α) ((α -1) q + 1) 1/q H D α,β;ψ 0+ ξ L p , where ξ ∞ = sup t∈[0,T ] |ξ (t)|.
From the inequality (2.19), we also have

ξ ∞ ≤ (ψ (T ) -ψ (0)) α-1/p Γ (α) ((α -1) q + 1) 1/q H D α,β;ψ 0+ ξ H α,β;ψ p that H α,β;ψ p is continuously injected into C ([0, T ]) for α > 1 p .
According to (2.18), we can consider H α,β;ψ p with respect to the equivalent norm

(2.20) ξ = H D α,β;ψ 0+ ξ L p . Proposition 2.15. [2, 26] Let 0 < α < 1 and 0 ≤ β ≤ 1. For any ξ ∈ H α,β;ψ p , we have H D α,β;ψ 0+ ξ L p ≤ (ψ (T ) -ψ (0)) α Γ (α + 1) H D α,β;ψ T H D α,β;ψ 0+ ξ L p . Moreover, if α > 1/p, 0 ≤ β ≤ 1 and 1 p + 1 q = 1, then ξ ∞ ≤ (ψ (T ) -ψ (0)) α-1/p Γ (α) [(α + 1) q + 1] 1/q [ψ (T )] α Γ (α + 1) H D α,β;ψ T H D α,β;ψ 0+ ξ L p . Proposition 2.16. [2, 26] Let 0 < α ≤ 1, 0 ≤ β ≤ 1 and 1 < p < ∞. Assume that α > 1/p and the sequence {ξ k } converges weakly to ξ in H α,β;ψ p i.e., ξ k ξ. Then ξ k → ξ in C ([0, T ] , R), i.e., ξ -ξ k ∞ → 0 as k → ∞. Proposition 2.17. [2, 26] The space H α,β;ψ p is compactly embedded in C ([0, T ] , R). Proposition 2.18. [2, 26] Let 0 < α ≤ 1, 0 ≤ β ≤ 1 and 1 < p < ∞.
The fractional derivative space H α,β;ψ p is a reflexive and separable Banach space.

Choosing p = 2, in definition Eq.(2.16), we have the ψ-fractional derivative space H α,β;ψ 2 is defined on

C ∞ 0 ([0, T ] , R) with respect to the norm ξ H α,β;ψ 2 = T 0 |ξ (t)| 2 dt + T 0 H D α,β;ψ 0+ ξ (t) 2 dt 1/2
.

The space H α,t;ψ 2 is a Hilbert space with the norm

ξ H α,β;ψ 2 = T 0 H D α,β;ψ 0+ ξ (t) 2 dt 1/2 with 0 < α ≤ 1 and 0 ≤ β ≤ 1.
Theorem 2.19. [START_REF] Brezis | Functional analysis, Sobolev spaces, and partial differential equations[END_REF] Let E a normed vector space and {x n } n∈N ⊂ E be a sequence. Then, the following statements are valid:

(1)

x n x ⇔ f (x n ) → f (x) for all f ∈ E * ; (2) If x n → x, then x n x; (3) If x n x, then x n is bounded and moreover x ≤ lim inf n→∞ x n . Theorem 2.20. [29] Let ξ : M → N be a differentiable map with dim M = m, dim N = n, m ≥ n and p ∈ N . Let dξ(x) be of class C n , ∀x ∈ M , with ξ(x) = p. Then ξ -1 (p) is a sub-variety of M , of dimension m -n.
Now we state a compactness result for the integral space H α,β;ψ p when 0 < α ≤ 1 p . This will be the principal key for our analysis in the sequel. For any h ∈ R and any u ∈ L p ([0, T ]), we consider the translation of u by h defined by

(2.21) ξ n (u) (t) = ξ (t + h) , t + h ∈ [0, T ] 0 , t + h / ∈ [0, T ] . Theorem 2.21. [28] (Frechet-Kolmogorov) Let Ω ⊂ R n be bounded open and 1 ≤ p < ∞. A subset Y of L p (Ω, R n
) is relatively compact if and only if the following conditions are satisfied:

(1) Y is bounded, i.e., there exists a c > 0, such that ξ L p ≤ c for all ξ ∈ Y ;

(2)

f n (ξ) → ξ in L p (Ω, R n ) as h → 0, uniformly for ξ ∈ Y, i.e., sup ξ∈Y f n (ξ) -ξ L p → 0 as h → 0. Theorem 2.22. Let α ∈ (0, 1). Then the embedding H α,β;ψ p → L p ([0, T ] , R) is compact.
Proof. From Proposition 2.14, the embedding H α,β;ψ p → L p ([0, T ] , R) is continuous, and so it is sufficient to prove that every bounded sequence in

H α,β;ψ p is pre-compact in L p ([0, T ] , R). According to the Frechet- Kolmogorov theorem, it is sufficient to prove that sup n f n (ξ n ) -ξ n L p → 0 as h → 0.
Now, using the Theorem 2.4, for any u ∈ H α,β;ψ p and the fact that I α;ψ 0+ ξ (0) = 0, we have

I α;ψ 0+ H D α,β;ψ 0+ ξ (t) = ξ (t) , t ∈ [0, T ] .
Thus, for h > 0 and t, t + h ∈ [0, T ], we have

ξ n (t + h) -ξ n (t) p L p = T 0 I α;ψ 0+ H D α,β;ψ 0+ ξ n (t + h) -I α;ψ 0+ H D α,β;ψ 0+ ξ n (t) p dt = T 0 1 Γ (α) t 0 ψ (s) (ψ (t + h) -ψ (s)) α-1 H D α,β;ψ 0+ ξ n (s) ds + 1 Γ (α) t+h t ψ (s) (ψ (t + h) -ψ (s)) α-1 H D α,β;ψ 0+ ξ n (s) ds - 1 Γ (α) t 0 ψ (s) (ψ (t) -ψ (s)) α-1 H D α,β;ψ 0+ ξ n (s) ds p dt ≤ 2 p-1 Γ (α) p T 0    t 0 |ψ (s)| H D α,β;ψ 0+ ξ n (s) (ψ (t + h) -ψ (s)) α-1 -(ψ (t) -ψ (s)) α-1 ds    p dt + 2 p-1 Γ (α) p T 0 t+h t ψ (s) (ψ (t + h) -ψ (s)) α-1 H D α,β;ψ 0+ ξ n (s) ds p dt.

Now, consider

A 1 = t 0 |ψ (s)| (ψ (t + h) -ψ (s)) α-1 -(ψ (t) -ψ (s)) α-1 H D α,β;ψ 0+ ξ n (s) ds
and

A 2 = t+h t ψ (s) (ψ (t + h) -ψ (s)) α-1 H D α,β;ψ 0+ ξ n (s) ds.
Let q be such that 1 p + 1 q = 1. Now Hölder's inequality yields

A 1 = t 0 |ψ (s)| 1 p (ψ (t + h) -ψ (s)) α-1 -(ψ (t) -ψ (s)) α-1 1 p H D α,β;ψ 0+ ξ n (s) × |ψ (s)| 1 q (ψ (t + h) -ψ (s)) α-1 -(ψ (t) -ψ (s)) α-1 1 q ds ≤ 1 α 1 q [(ψ (t + h) -ψ (s)) α -((ψ (t + h) -ψ (0)) α -(ψ (t) -ψ (0)) α )] 1 q × T 0 |ψ (s)| (ψ (t + h) -ψ (s)) α-1 -(ψ (t) -ψ (s)) α-1 H D α,β;ψ 0+ ξ n (s) p ds 1 p (2.

22)

and

A 2 = t+h t ψ (s) (ψ (t + h) -ψ (s)) α-1 1 p × H D α,β;ψ 0+ ξ n (s) ψ (s) (ψ (t + h) -ψ (s)) α-1 1 q ds ≤ t+h t ψ (s) (ψ (t + h) -ψ (s)) α-1 H D α,β;ψ 0+ ξ n (s) p ds 1 p t+h t ψ (s) (ψ (t + h) -ψ (s)) α-1 ds 1 q , ( 2.23) 
respectively.

Performing the following variable change s = t+ h T s, it follows that H D α,β;ψ

0+ u n (s) → H D α,β;ψ t+ h T s u n t + h T s , yields t+h t ψ (s) (ψ (t + h) -ψ (s)) α-1 ds = T 0 ψ t + h T s ψ (t + h) -ψ T t + hs T α-1 dt.
Thus, from (2.23), we have

A 2 ≤     t+h t ψ t + h T s ψ (t + h) -ψ T t + hs T α-1 H D α,β;ψ t+ h T s ξ n t + h T s p dt     1 p × t+h t ψ t + h T s ψ (t + h) -ψ T t + hs T α-1 dt 1 q dt.
(2.24)

Therefore, for every n ∈ N, by (2.22) and (2.24) one has

ξ n (t + h) -ξ n (t) p L p ≤ 2 p-1 α -1 q Γ (α) p T 0 (Ψ α (t + h, t) -(Ψ α (t + h, 0) -Ψ α (t, 0))) p q × t 0 |ψ (s)| Ψ α-1 (t + h, s) -Ψ α-1 (t, s) H D α,β;ψ 0+ ξ n (s) p ds dt + 2 p-1 Γ (α) p T 0     T 0 ψ t + h T s ψ (t + h) -ψ T t + hs T α-1 H D α,β;ψ t+ h T s ξ n t + h T s p dt     dt × T 0 ψ t + h T s ψ (t + h) -ψ T t + hs T α-1 dt p q ≤ 2 p-1 Γ (α) p 1 α p q [Ψ α (T + h, T ) -(Ψ α (T + h, 0) -Ψ α (T, 0))] p q × T 0 T s |ψ (s)| Ψ α-1 (t + h, s) -Ψ α-1 (t, s) H D α,β;ψ 0+ ξ n (s) p dsdt + 2 p-1 (ψ (t + h) -ψ (t)) αp q Γ (α) p × T 0     T 0 ψ t + h T s ψ (t + h) -ψ T t + hs T α-1 H D α,β;ψ t+ h T s ξ n t + h T s p dt     dt ≤ 2 p-1 Γ (α) p 1 α p q [Ψ α (T + h, T ) -(Ψ α (T + h, 0) -Ψ α (T, 0))] p q × T 0 |ψ (s)| ψ (t) H D α,β;ψ 0+ ξ n (s) p Ψ α (t + h, s) -(Ψ α (T + h, s) -Ψ α (T + h, s)) α dt + 2 p-1 Γ (α) p 1 α p (ψ (t + h) -ψ (t)) αp q +α H D α,β;ψ 0+ ξ n (s) p L p ≤ 2 p-1 Γ(α+1) p [Ψ α (T + h, T ) -(Ψ α (T + h, 0) + Ψ α (T, 0))] p + 2 p-1 Γ(α+1) p (Ψ α (T + h, T )) × H D α,β;ψ 0+ ξ n (s) p L p , (2.25) where Ψ α (t + h, t) := (ψ (t + h) -ψ (t)) α and Ψ α (t + h, 0) := (ψ (t + h) -ψ (0)) α .
Therefore the result follows from (2.25).

The method of Nehari Manifolds and properties

In this section, we introduce some results about the Nehari manifold structure and fibering map analysis, related to Eq.(1.1). Now E λ : H α,β;ψ p → R, defined by

E λ (ξ) = 1 p T 0 H D α,β;ψ 0+ ξ (x) p dx - λ p T 0 |ξ (x)| p dx - 1 q + 1 T 0 b (x) |ξ(x)| q+1 dx
is the underlying functional associated to problem (1.1). We say that ξ ∈ H α,β;ψ p is a solution of the problem Eq.(1.1), if

E λ (ξ) , η H α,β;ψ p = T 0 H D α,β;ψ 0+ ξ (x) p-2 H D α,β;ψ 0+ ξ (x) H D α,β;ψ 0+ η (x) dx -λ T 0 |ξ (x)| p-2 ξ (x) η (x) dx - T 0 b (x) |ξ(x)| q-1 ξ(x)η(x)dx
for any η ∈ H α,β;ψ p and the eigenvalue problem associated with the ψ-fractional p-Laplacian operator is given by

(3.1)    H D α,β;ψ T H D α,β;ψ 0+ ξ(x) p-2 H D α,β;ψ 0+ ξ(x) = λ|ξ(x)| p-2 ξ(x), for x ∈ [0, T ] I β(β-1);ψ 0+ ξ(0) = I β(β-1);ψ T ξ(T ) = 0.
Note that, (3.2)

λ 1 = min ξ∈H α,β;ψ p T 0 H D α,β;ψ 0+ ξ(x) p dx T 0 |ξ(x)| p dx , ξ = 0. Lemma 3.1. Let 0 < α < 1 and 0 ≤ β ≤ 1.
(

) 1 
The functional E λ is well defined on H α,β;ψ p ;

(2) The functional E λ is of class C 1 H α,β;ψ p , R and for all ξ, η ∈ H α,β;ψ p , we have

E λ (ξ) , η H α,β;ψ p = T 0 D α,β;ψ 0+ ξ (x) p-2 H D α,β;ψ 0+ ξ (x) H D α,β;ψ 0+ η (x) dx -λ T 0 |ξ (x)| p-2 ξ (x) η (x) dx - T 0 b (x) |ξ (x)| q-1 ξ (x) η (x) dx. (3.3)
Proof. [START_REF] Nehari | On a class of nonlinear second-order differential equations[END_REF]. From Hölder's inequality and (2.20), we have

E λ (ξ) ≤ 1 p T 0 H D α,β;ψ 0+ ξ (x) p dx + λ p T 0 |ξ (x)| p dx + 1 q + 1 T 0 b (x) |ξ (x)| q+1 dx ≤ H D α,β;ψ 0+ ξ p p + λ ξ p p p + b ∞ |ξ| q+1 q q+1 q + 1 ≤ c 1 H D α,β;ψ 0+ ξ p + c 2 ξ p + c 3 |ξ| q+1
where c 2 , c 3 , are the embedding constants. Therefore, E λ is well defined on H α,β;ψ p . (2). Consider

H (ξ) = 1 p H D α,β;ψ 0+ ξ (x) p - λ p |ξ (x)| p - 1 q + 1 b (x) |ξ (x)| q+1 .
Then, for all ξ, η ∈ H α,β;ψ p and for almost every

t ∈ [0, T ] lim s→0 H (ξ (x) + sη (x)) -H (ξ (x)) s = H D α,β;ψ 0+ ξ (x) p-2 H D α,β;ψ 0+ ξ (x) H D α,β;ψ 0+ η (x) -λ |ξ (x)| p-2 ξ (x) η (x) -b (x) |ξ (x)| q-1 ξ (x) η (x) .
From the Lagrange mean value theorem, there exists a real number θ such that |θ| ≤ s and

H (ξ (x) + sη (x)) -H (ξ (x)) s = H D α,β;ψ 0+ (ξ (x) + θη (x)) p-2 H D α,β;ψ 0+ (ξ (x) + θη (x)) H D α,β;ψ 0+ η (x) -λ |(ξ (x) + θη (x))| p-2 (ξ (x) + θη (x)) η (x) -b (x) |ξ (x) + θη (x)| q-1 (ξ (x) + θη (x)) η (x) ≤ H D α,β;ψ 0+ (ξ (x) + θη (x)) p-1 H D α,β;ψ 0+ η (x) +λ |(ξ (x) + θη (x))| p-1 η (x) + b (x) |ξ (x) + θη (x)| q η (x) ≤ H D α,β;ψ 0+ ξ (x) p-1 H D α,β;ψ 0+ η (x) + H D α,β;ψ 0+ η (x) p +λ |ξ (x)| p-1 |η (x)| + λ |η (x)| p + b (x) |ξ (x)| q |η (x)| + b(x) |η (x)| q+1 . (3.4) Now Hölder's inequality yields (3.5) T 0 H D α,β;ψ 0+ ξ (x) p-1 H D α,β;ψ 0+ η (x) dx ≤ H D α,β;ψ 0+ ξ p-1 p p-1 H D α,β;ψ 0+ η p , (3.6) T 0 |ξ (x)| p-1 |η (x)| dx ≤ |ξ| p-1 p p-1 η p , and 
(3.7) T 0 |ξ (x)| q |η (x)| ≤ |ξ| q q+1 q η q+1 .
From (3.5), (3.6) and (3.7), one concludes that the last inequality in (3.4) is in L 1 (Ω). Therefore, by the dominated convergence theorem, we get

lim s→0 E λ (ξ + sη) -E λ (ξ) s = T 0 H D α,β;ψ 0+ ξ (x) p-2 H D α,β;ψ 0+ ξ (x) H D α,β;ψ 0+ η (x) dx -λ T 0 |ξ (x)| p-2 ξ (x) η (x) dx - T 0 b (t) |ξ (x)| q-1 ξ (x) η (x) dx.
That is, E λ is Gȃteaux differentiable. Finally, it is sufficient to prove that the Gâteaux derivative of E λ is continuous, and in this case we omit the details since it is similar to [START_REF] Ghanmi | Nehari manifold and multiplicity results for a class of fractional boundary value problems with p-Laplacian[END_REF]. Lemma 3.2.

(

) Suppose that λ < λ 1 . Then E λ is bounded from below in H α,β;ψ p . (2) If λ > λ 1 , then E λ is not bounded from below in H α,β;ψ p . Proof. (1). Now (3.2), yields λ 1 T 0 |ξ(x)| p dx ≤ T 0 H D α,β;ψ 0+ ξ(x) p dx, 1 

and,

T 0

H D α,β;ψ 0+ ξ(x) p dx -λ T 0 |ξ(x)| p dx ≥ (λ 1 -λ) T 0 |ξ(x)| p dx implies that E λ (ξ) ≥ (λ 1 -λ) p T 0 |ξ(x)| p dx - 1 q + 1 T 0 b(x)|ξ(x)| q+1 dx. Now b ∈ L ∞ so there exists a b ≥ 0 with E λ (ξ) ≥ (λ 1 -λ) p T 0 |ξ(x)| p dx - b q + 1 T 0 |ξ(x)| q+1 dx,
so, applying the Hölder inequality, note 1 < q < p -1, 2 p < q + 1 p < 1 and 1 -q + 1 p > 0, we have

E λ (ξ) ≥ 1 p (λ 1 -λ) T 0 |ξ(x)| p dx - b q + 1 T 1-(q+1)/p T 0 |ξ(x)| p dx q+1 p .
Therefore, E λ is bounded from below in H α,β;ψ p , when λ < λ 1 . (2). Let λ > λ 1 . Let Ξ be the eigenfunction associated with the main eigenvalue λ 1 , that is, (Ξ, λ 1 ) is a solution to problem (3.1) and Ξ = 0, and then

(3.8) λ 1 = T 0 H D α,β;ψ 0+ Ξ(x) p dx T 0 |Ξ(x)| p dx .
Performing the same procedure as in (1), and taking the limit in E λ (tΞ), with t → ∞, yields

lim t→∞ E λ (tΞ) = lim t→∞ |t| p λ 1 p T 0 |Ξ| p dx - λ p T 0 |Ξ| p dx - 1 (q + 1)t p-(q+1) T 0 |Ξ| q+1 dx = lim t→∞ |t| p (λ 1 -λ) p T 0 |Ξ| p dx - 1 (q + 1)t p-(q+1) T 0 |Ξ| q+1 dx .
Thus lim t→∞ E λ (tΞ) = -∞, and therefore E λ is not bounded from below in H α,β;ψ p , when λ > λ 1 .

Consider S λ , the subset of H α,β;ψ p , given by S λ = ξ ∈ H α,β;ψ p ; E λ ξ, ξ = 0, ξ = 0 , called the Nehari manifold, where , denotes the usual duality. Note that if ξ is a critical point of the functional E λ , then E λ (ξ)η = 0, for all η ∈ H α,β;ψ p . Thus, we say that u ∈ S λ if, and only if, it satisfies (3.9)

T 0 H D α,β;ψ 0+ ξ(x) p dx -λ T 0 |ξ(x)| p dx - T 0 b(x)|ξ(x)| q+1 dx = 0.
Proposition 3.3. The set S λ is nonempty and is a sub-variety of H α,β;ψ p . Proof. Consider T : H α,β;ψ p \{0} → R, given by T(ξ) = E λ (ξ), ξ .

T(ξ) = T 0 H D α,β;ψ 0+ ξ p dx J1 -λ T 0 |ξ| p dx J2 - T 0 b(x)|ξ| q+1 dx J3 .
Note that J 1 , J 2 , J 3 , are of class C 1 ([0, T ]) and, therefore, it is observed that they are also of class C 2 ([0, T ]), so we get that T ∈ C 1 ([0, T ]). Note that, Consider the function t → T(tη), t ∈ R and t > 0. Then,

T (ξ)η = p T 0 H D α,β;ψ 0+ ξ p-2 H D α,β;ψ 0+ ξ H D α,β;ψ 0+ η dx -λp T 0 |ξ| p-2 ξη dx -(q + 1) T 0 b(x)|ξ| q-1 ξη dx.
T(tη) = t p T 0 H D α,β;ψ 0+ η p dx -λt p T 0 |η| p dx -t q+1 T 0 b(x)|η| q+1 dx.
Then as 1 < q < p -1 < ∞, it follows that lim t→∞ T(tη) = +∞ and lim t→0 T(tη) = 0 -. Thus, for some t > 0, the function T( tη) is equal to zero, that is, tη ∈ S λ . Therefore S λ = ∅. Now, we show that T has no critical point in S λ . First, note that

(3.10) T (ξ)ξ = p T 0 H D α,β;ψ 0+ ξ p dx -λp T 0 |ξ| p dx -(q + 1) T 0 b(x)|ξ| q+1 dx.
For ξ ∈ S λ , with ξ = 0, we have Therefore, as 1 < q < p -1, we obtain that T (ξ) = 0, ∀ξ = 0 in S λ .

T(ξ) = 0 =⇒ T 0 H D α,β;ψ 0+
Let M = H α,β;ψ p \{0}. Note that 0 is a unique critical point in T -1 (0) and 0 / ∈ M, and note T 0 b|ξ| q+1 dx > 0. Therefore, 0 is a regular point of T| M . From Theorem 2.20, it follows that T -1 | M (0) is a sub-variety of M. Therefore, S λ is a C 1 sub-variety of H α,β;ψ p .

Let us consider real functions of positive variables as follows: Ξ ξ (t) : t → E λ (tξ) (t > 0), and these functions are known as fibering maps for each ξ ∈ H α,β;ψ p , and we have

(3.11) Ξ ξ (t) = t p p T 0 H D α,β;ψ 0+ ξ p -λ|ξ| p dx - t q+1 q + 1 T 0 b(x)|ξ| q+1 dx, (3.12) Ξ ξ (t) = t p-1 T 0 H D α,β;ψ 0+ ξ(x) p -λ|ξ(x)| p dx -t q T 0 b(x)|ξ(x)| q+1 dx and (3.13) Ξ ξ (t) = (p -1)t p-2 T 0 H D α,β;ψ 0+ ξ(x) p -λ|ξ(x)| p dx -qt q-1 T 0 b(x)|ξ(x)| q+1 dx.
The following Lemma 3.4 considers the relationship between the Nehari manifold and fibering maps, which guarantees a correspondence between the critical points of Ξ ξ (t) and the elements of S λ . Lemma 3.4. Let Ξ ξ be the operator defined in Eq.(3.11), with t > 0 and let ξ ∈ H α,β;ψ p . Then (1) ξ ∈ S λ if, and only if, Ξ ξ (1) = 0.

(2) tξ ∈ S λ if, and only if, Ξ ξ (t) = 0.

Proof. (1). In fact, for ξ ∈ S λ from Eq.(3.12), we have

Ξ ξ (1) = T 0 H D α,β;ψ 0+ ξ(x) p -λ|ξ(x)| p dx - T 0 b(x)|ξ(x)| q+1 dx = E λ (ξ)ξ = 0.
(2). We have

0 = Ξ ξ (t) = t p-1 T 0 H D α,β;ψ 0+ ξ(x) p -λ|ξ(x)| p dx -t q T 0 b(x)|ξ(x)| q+1 dx.
Multiplying both sides by t, so

0 = t p T 0 H D α,β;ψ 0+ ξ(x) p -λ|ξ(x)| p dx -t q+1 T 0 b(x)|ξ(x)| q+1 dx = E λ (tξ)tξ.
For tξ ∈ S λ , we have 0 = E λ (tξ)tξ, and then

0 = t p T 0 H D α,β;ψ 0+ ξ(x) p -λ|ξ(x)| p dx -t q+1 T 0 b(x)|ξ(x)| q+1 dx.
Dividing both sides by t > 0, yields

0 = t p-1 T 0 H D α,β;ψ 0+ ξ(x) p -λ|ξ(x)| p dx -t q T 0 b(x)|ξ(x)| q+1 dx = Ξ ξ (t).
It is natural to divide the Nehari manifold into three distinct sets. Note that Eq.(3.12) and Eq.(3.13), yields

Ξ ξ (t) = t q-1 [(p -1) -q] T 0 b(x)|ξ(x)| q+1 dx
and as t > 0, 1 < q < p -1, we have

Ξ ξ (t) > 0 ⇔ T 0 b(x)|ξ(x)| q+1 dx > 0, Ξ ξ (t) < 0 ⇔ T 0 b(x)|ξ(x)| q+1 dx < 0 and Ξ ξ (t) = 0 ⇔ T 0 b(x)|ξ(x)| q+1 dx = 0.
We can divide S λ into three sets:

S + λ = ξ ∈ S λ ; T 0 b(x)|ξ(x)| q+1 dx > 0 , S - λ = ξ ∈ S λ ; T 0 b(x)|ξ(x)| q+1 dx < 0 and S 0 λ = ξ ∈ S λ ; T 0 b(x)|ξ(x)| q+1 dx = 0 ,
where S + λ , S - λ and S 0 λ correspond to the points of local minimum, local maximum and inflection of Ξ ξ , respectively.

The analysis of the behavior of Ξ ξ is in relation to the sign of

Θ(ξ) = T 0 H D α,β;ψ 0+ ξ(x) p -λ|ξ(x)| p dx and
Υ(ξ) = T 0 b(x)|ξ(x)| q+1 dx.
Let ξ ∈ H α,β;ψ p and Ξ ξ (t) = 0, and we conclude that:

(1) If Θ(ξ) and Υ(ξ) have the same sign, then Ξ ξ has a unique critical point,

t ξ =     T 0 b(x)|ξ(x)| q+1 dx T 0 H D α,β;ψ 0+ ξ(x) p -λ|ξ(x)| p dx     1 p-(1+q)
. This critical point is a minimum when t ξ ξ ∈ S + λ if, and only if, Υ(ξ) > 0. It is a maximum point when t ξ ξ ∈ S - λ if, and only if, Υ(ξ) < 0. (2) If Θ(ξ) and Υ(ξ) have opposite signs, then Ξ ξ has no inflection points, so there are no multiples of ξ in S λ .

Therefore, we define (here . = . 

Υ + = ξ ∈ H α,β;ψ p ; ξ = 1 and T 0 b(x)|ξ(x)| q+1 dx > 0 .
Similarly, we can define L -(λ) and Υ -when we replace "> 0" by "< 0" and L 0 (λ) and Υ 0 when we replace "> 0" by "= 0". We have the following results:

RESULTS I:

(1) If ξ ∈ L + (λ) ∩ Υ + , then t → Ξ ξ (t) has a local minimum at t = t ξ and t ξ ξ ∈ S + λ . (2) If ξ ∈ L -(λ) ∩ Υ -, then t → Ξ ξ (t) has a local maximum at t = t ξ and t ξ ξ ∈ S - λ . (3) If ξ ∈ L + (λ) ∩ Υ -, then t → Ξ ξ (t) is strictly increasing and no multiple of ξ is in S λ . (4) If ξ ∈ L -(λ) ∩ Υ + , then t → Ξ ξ (t) is strictly decreasing and no multiple of ξ is in S λ .
The next result ensures that a critical point ξ ∈ S λ , of the functional E λ , restricted to the Nehari manifold, such that ξ / ∈ S 0 λ is really a critical point in H α,β;ψ p . Lemma 3.5. Suppose that ξ 0 is a local maximum point or a local minimum point for E λ in S λ , and that ξ 0 / ∈ S 0 λ . Then ξ 0 is a critical point of E λ , and this means that E λ (ξ 0 ) = 0 in (H α,β;ψ p ) * .

Proof. Let ξ 0 a local maximum or minimum point of E λ in S λ . By the Lagrange multiplier theorem, ∃µ ∈ R, such that

(1) E λ (ξ 0 ) = µ r λ (ξ 0 ) in (H α,β;ψ p ) * , where

r λ (ξ 0 ) = T 0 H D α,β;ψ 0+ ξ 0 (x) p -λ|ξ 0 (x)| p dx - T 0 b(x)|ξ 0 (x)| q+1 dx = E λ (ξ 0 )ξ 0 = 0.
Thus, (2)

(3.14) T 0 H D α,β;ψ 0+ ξ 0 (x) p -λ|ξ 0 (x)| p dx = T 0 b(x)|ξ 0 (x)| q+1 dx.
Since ξ 0 ∈ S λ , (1) and Eq.(3.14), give

0 = E λ (ξ 0 ), ξ 0 H α,β;ψ p = µ r λ (ξ 0 ), ξ 0 H α,β;ψ p = p T 0 H D α,β;ψ 0+ ξ 0 (x) p -λ|ξ 0 (x)| p dx -(q + 1) T 0 b(x)|ξ 0 (x)| q+1 dx = (p -q -1) T 0 b(x)|ξ 0 (x)| q+1 dx.
Since ξ 0 / ∈ S 0 λ , then Ξ ξ (1) = 0. Thus, (r λ (ξ 0 )ξ 0 = 0) r λ (ξ 0 ), ξ 0 = 0, giving us that µ = 0, and E λ (ξ 0 ) = 0. Therefore, ξ 0 is a critical point in H α,β;ψ p . We now discuss the important role played by the condition L -(λ) ⊆ Υ -, in determining the nature of the Nehari manifold.

When λ < λ 1 , we have Theorem 3.6. Suppose that there exists λ, such that for any λ < λ, we have L -(λ) ⊆ Υ -. Then, for all λ < λ, we get (1) L 0 (λ) ⊆ Υ -and, so,

L 0 (λ) ∩ Υ 0 = ∅, (2) 
S + λ is bounded, (3) 0 / ∈ S - λ and S - λ is closed, (4) S + λ ∩ S - λ = ∅. Proof. (1)
. Suppose, by contradiction, that L 0 (λ) Υ -. Thus, there exists ξ ∈ L 0 (λ), such that ξ / ∈ Υ -. This means that

ξ ∈ L 0 (λ) ⇒ ξ ∈ H α,β;ψ p , ξ = 1 , T 0 H D α,β;ψ 0+ ξ p -λ|ξ(x)| p dx = 0 and ξ / ∈ Υ -⇒ T 0 b(x) |ξ| ξ q+1 dx ≥ 0. If λ < µ < λ, then 0 = T 0 H D α,β;ψ 0+ ξ p -λ|ξ| p dx > T 0 H D α,β;ψ 0+ ξ p -µ|ξ| p dx ⇒ ξ ∈ L -(µ),
so that L -(µ) Υ -, which gives us a contradiction to the theorem hypothesis. Now L 0 (λ) ⊆ Υ -and as

Υ -∩ Υ 0 = ∅, we get L 0 (λ) ∩ Υ 0 = ∅.
(2). Suppose that S + λ is unbounded. Then there exists {ξ n } ∈ S + λ , such that

T 0 H D α,β;ψ 0+ ξ n p -λ|ξ n | p dx = T 0 b(x)|ξ n | q+1 dx > 0 and ξ n → ∞, when n → ∞.
Let η n = ξ n ξ n . Note {η n } is bounded so there exists a subsequence of {η n } (without loss of generality assume it is the whole sequence) with η n η 0 in H α,β;ψ p . Now from Theorem 2.22 (without loss of generality assume it is the whole sequence) we have η n → η 0 in L p (Ω) and in L q+1 (Ω), as 1 < q < p -1. Note also there exists a subsequence (without loss of generality assume it is the whole sequence) with η n converging a.e. to η 0 . Since ξ n ∈ S + λ , we have

T 0 b(x)|η n | q+1 dx = 1 ξ n q+1 T 0 b(x)|ξ n | q+1 dx > 0. Thus (note b ∈ L ∞ ) T 0 b(x)|η 0 | q+1 dx ≥ 0.
Furthermore, since ξ n ∈ S λ , from Eq.(3.9), we have 

(x)|η n | q+1 is in L q+1 ([0, T ]) and ξ n → ∞, we have T 0 H D α,β;ψ 0+ η n p -λ|η n | p dx = T 0 b(x)|η n | q+1 1 ξ n p-(q+1) dx → 0 as n → ∞. Now lim n→∞ T 0 |η n | p dx = T 0 |η 0 | p dx and T 0 H D α,β;ψ 0+ η 0 p dx ≤ lim inf n→∞ T 0 H D α,β;ψ 0+ η n p dx.
Combining the above gives

T 0 H D α,β;ψ 0+ η 0 p -λ|η 0 | p dx ≤ lim inf n→∞ T 0 H D α,β;ψ 0+ η n p -λ|η n | p dx = 0 and so, η 0 η 0 ∈ L -(λ) ⊆ Υ -or η 0 η 0 ∈ L 0 (λ) ⊆ Υ -, which is impossible because T 0 b(x)|η 0 | q+1 dx ≥ 0.
Therefore, S + λ is bounded. (3). Suppose that 0 ∈ S - λ . Then, there exists a sequence {ξ n } ⊆ S - λ , such that

(3.16) T 0 H D α,β;ψ 0+ ξ n p -λ|ξ n | p dx = T 0 b(x)|ξ n | q+1 dx < 0.
and ξ n → 0, when n → ∞. Take η n = ξ n ξ n , and we have {η n } is bounded so there exists a subsequence of {η n } (without loss of generality assume it is the whole sequence) with η n η 0 in H α,β;ψ p . Now from Theorem 2.22 (without loss of generality assume it is the whole sequence) we have η n → η 0 in L p (Ω) and in L q+1 (Ω), as 1 < q < p -1. Note also there exists a subsequence (without loss of generality assume it is the whole sequence) with η n converging a.e. to η 0 .

Since ξ n ∈ S - λ , we have

T 0 b(x)|η n | q+1 dx = 1 ξ n q+1 T 0 b(x)|ξ n | q+1 dx < 0. Thus (note b ∈ L ∞ ) T 0 b(x)|η 0 | q+1 dx ≤ 0.
Divide Eq.(3.16) by ξ n p , and since b(x)|η n | q+1 is in L q+1 ([0, T ]) and ξ n → 0, we have

T 0 H D α,β;ψ 0+ η n p -λ|η n | p dx = ξ n (q+1)-p T 0 b(x)|η n | q+1 dx → -∞ as n → ∞ if T 0 b(x)|η 0 | q+1 dx < 0. Thus (3.17) T 0 b(x)|η 0 | q+1 dx = 0. Now lim n→∞ T 0 |η n | p dx = T 0 lim n→∞ |η n | p dx and T 0 H D α,β;ψ 0+ η 0 p dx ≤ lim n→∞ inf T 0 H D α,β;ψ 0+ η n p dx.
Combining the above gives

(3.18) T 0 H D α,β;ψ 0+ η 0 p -λ|η 0 | p dx ≤ lim n→∞ inf T 0 H D α,β;ψ 0+ η n p -λ|η n | p dx ≤ 0.
Hence, Lemma 3.7. Suppose that L -(λ) ∩ Υ + = ∅. Thus, there exists k > 0 such that, for any ε > 0, there exists

η 0 η 0 ∈ L -(λ) ∩ Υ 0 or η 0 η 0 ∈ L 0 (λ) ∩ Υ 0 . In both cases, this is impossible. For the first one note that L -(λ) ⊆ Υ -and Υ -∩ Υ 0 = ∅. For the second one note L 0 (λ) ⊆ Υ -(see (1)) and Υ -∩ Υ 0 = ∅. Therefore, 0 / ∈ S - λ . Next, we prove that S - λ is closed. The idea here is to show that S - λ ⊆ S - λ . Let ξ ∈ S - λ . Then there exists a sequence {ξ n } ⊆ S - λ such that ξ n → ξ in H α,β;ψ p . Also ξ n → ξ in L p (Ω) and in L q+1 (Ω), as 1 < q < p -1. Now T 0 H D α,β;ψ 0+ ξ n p -λ|ξ n | p dx = T 0 b(x)|ξ n | q+1 dx < 0,
ξ ε ∈ L + (λ) ∩ Υ + such that T 0 H D α,β;ψ a+ ξ ε (x) p -λ |ξ ε (x)| p dx < ε and T 0 b (x) |ξ ε (x)| q+1 dx > k. Proof. Let ξ ∈ L -(λ) ∩ Υ + , so that T 0 H D α,β;ψ a+ ξ (x) p -λ |ξ (x)| p dx < 0 and T 0 b (x) |ξ (x)| q+1 dx > 0.
We can choose h ∈ H α,β;ψ p in such a way that

T 0 H D α,β;ψ a+ h (x)
p dx is arbitrarily large and so we can take h so that

T 0 b (x) |(ξ + th) (x)| q+1 dx > 1 2 T 0 b (x) |ξ (x)| q+1 dx, ∀t ∈ [0, 1]
and

T 0 H D α,β;ψ a+ (ξ + th) (x) p -λ |(ξ + th) (x)| p dx > 0.
Consider ξ t := ξ + th ξ + th . So, for t ∈ [0, 1], we have ξ t ∈ Υ + . In fact,

T 0 b (x) |ξ t (x)| q+1 dx ≥ 1 ( ξ + h ) q+1 1 2 T 0 b (x) |ξ (x)| q+1 dx. Now, ξ 0 ∈ L -(λ) and ξ 1 ∈ L + (λ). Take φ (t) = T 0 H D α,β;ψ 0+ ξ t (x) p -λ |ξ t (x)| p dx, ∀t ∈ [0, 1] .
So, the function φ : [0, 1] → R is a continuous function such that φ (0) < 0 and φ (1) > 0 and so for any ε > 0 given, there are values of t such that ξ t has the required properties.

Existence and nonexistence of weak solutions

In this section, we will discuss the existence and non-existence of weak solutions to the nonlinear problem with a fractional p-Laplacian as given by Eq.(1.1), introduced via the ψ-Hilfer fractional derivative. Theorem 4.1. Suppose that there exists λ > 0, such that for any λ < λ, we have L -(λ) ⊆ Υ -. Then, for all λ < λ, we have (1) E λ is bounded from below in

S + λ . (2) inf ξ∈S - λ E λ (ξ) > 0, proving that S - λ is nonempty. Proof. (1). It is a direct consequence of bounded of S + λ . (2). Notice that E λ (ξ) ≥ 0, for all ξ ∈ S - λ . In fact, if ξ ∈ S - λ , then ξ ∈ S λ , so E λ (ξ) = 1 p - 1 q + 1 T 0 H D α,β;ψ 0+ ξ p -λ|ξ| p dx = 1 p - 1 q + 1 T 0 b(x)|ξ| q+1 dx ≥ 0. (4.1)
Suppose that inf 

       η n η 0 in H α,β;ψ p ; η n → η 0 in L p (Ω); η n → η 0 in L q+1 (Ω); η n → η 0 a.e. Ω.
T 0 H D α,β;ψ 0+ η 0 p -λ|η 0 | p dx ≤ lim n→∞ inf T 0 H D α,β;ψ 0+ η n p -λ|η n | p dx ≤ 0. (4.3) 
Hence,

η 0 η 0 ∈ L 0 (λ) or η 0 η 0 ∈ L -(λ).
However from above η 0 η 0 ∈ Υ 0 , and this is a contradiction, because

L -(λ) ⊆ Υ -, Υ -∩ Υ 0 = ∅ and L 0 (λ) ∩ Υ 0 = ∅ (see (1) of Theorem 3.6). Therefore, inf ξ∈S - λ E λ (ξ) > 0.
Theorem 4.2. Suppose that there exists λ > 0, such that for any λ < λ, we have L -(λ) ⊆ Υ -(λ). Then, for all λ < λ, (1) There is a minimizing point for E λ in S + λ , (2) There is a minimizing point for E λ in S - λ , proving that L -(λ) is non-empty. Proof. [START_REF] Nehari | On a class of nonlinear second-order differential equations[END_REF]. In view of Theorem 4.1, we know that E λ is bounded from below in S + λ . Thus, there exists a minimizing sequence {ξ n } ⊆ S + λ , such that (4.4) lim

n→∞ E λ (ξ n ) = inf ξ∈S + λ E λ (ξ).
Since S + λ is bounded (see (2) of Theorem 3.6) there exists a subsequence of {ξ n } (without loss of generality assume it is the whole sequence) such that (4.5)

       ξ n ξ 0 in H α,β;ψ p ξ n → ξ 0 in L p (Ω); ξ n → ξ 0 in L q+1 (Ω); ξ n → ξ 0 a.e. Ω.
Thus, we have 

b(x)|ξ n | q+1 dx ≥ 0, so, ξ 0 ξ 0 ∈ Υ + Υ 0 . Note that, if ξ 0 ξ 0 ∈ Υ 0 , it follows from (4.8) that ξ 0 ξ 0 ∈ L 0 (λ) ∪ L -(λ). First if ξ 0 ξ 0 ∈ L -(λ) then ξ 0 ξ 0 ∈ L -(λ) ⊆ Υ -so ξ 0 ξ 0 ∈ Υ -
, and so we have

ξ 0 ξ 0 ∈ Υ -∩Υ 0 , which is impossible. Secondly if ξ 0 ξ 0 ∈ L 0 (λ) then ξ 0 ξ 0 ∈ L 0 (λ) ⊆ Υ -so ξ 0 ξ 0 ∈ Υ -
, and so we have

ξ 0 ξ 0 ∈ Υ -∩ Υ 0 , which is impossible. Therefore, ξ 0 ξ 0 ∈ Υ + . Also as above (since Υ -∩ Υ + = ∅) neither ξ 0 ξ 0 ∈ L -(λ) nor ξ 0 ξ 0 ∈ L 0 (λ) is possible, so ξ 0 ξ 0 ∈ L + (λ)
, and as a result

ξ 0 ξ 0 ∈ L + (λ) ∩ Υ + .
From our previous (1) of RESULTS I, we obtain that the fibering map Ξ ξ0 has a local minimum at t ξ0 and t ξ0 ξ 0 ∈ S + λ , where

t ξ0 =     T 0 b(x)|ξ 0 | q+1 dx T 0 H D α,β;ψ 0+ ξ 0 p -λ|ξ 0 | p dx     1 p-(q+1) ≥ 1.
Furthermore, we have

E λ (ξ 0 ) = T 0 H D α,β;ψ 0+ ξ 0 p -λ|ξ 0 | p dx - T 0 b(x)|ξ 0 | q+1 dx ≤ lim n→∞ inf T 0 H D α,β;ψ 0+ ξ n p -λ|ξ n | p dx -lim n→∞ inf T 0 b(x)|ξ n | q+1 dx ≤ lim n→∞ inf T 0 H D α,β;ψ 0+ ξ n p -λ|ξ n | p dx - T 0 b(x)|ξ n | q+1 dx = lim n→∞ T 0 H D α,β;ψ 0+ ξ n p -λ|ξ n | p dx - T 0 b(x)|ξ n | q+1 dx = lim n→∞ E λ (ξ n ). (4.9)
Also from (4.8), we have the Ξ ξ0 (1) ≤ 0. Now suppose t ξ0 > 1. Then we have Ξ ξ0 (1) < 0. Since Ξ ξ0 has a local minimum at t ξ0 and t ξ0 ξ 0 ∈ S + λ it follows that E λ (t ξ0 ξ 0 ) = Ξ ξ0 (t ξ0 ) < Ξ ξ0 (1) = E λ (ξ 0 ). From (4.9) and (4.4) we have

E λ (t ξ0 ξ 0 ) < E λ (ξ 0 ) ≤ lim n→∞ E λ (ξ n ) = inf ξ∈S + λ E λ (ξ), which is impossible. Hence t ξ0 = 1 so ξ 0 = t ξ0 ξ 0 ∈ S + λ . Thus ξ 0 is a minimizing point for E λ in S + λ ; note E λ (ξ 0 ) ≤ lim n→∞ E λ (ξ n ) = inf ξ∈S + λ E λ (ξ) and since ξ 0 ∈ S + λ then E λ (ξ 0 ) = inf ξ∈S + λ E λ (ξ) .
(2). Let {ξ n } be a minimizing sequence for E λ in S - λ and from Theorem 4.1 we have

(4.10) lim n→∞ E λ (ξ n ) = lim n→∞ T 0 H D α,β;ψ 0+ ξ n p dx -λ T 0 |ξ n | p dx - T 0 b(x)|ξ n | q+1 dx = inf ξ∈S - λ E λ (ξ) > 0.
Now we claim that {ξ n } is a bounded sequence. Suppose otherwise, so we may assume that ξ n → ∞ as

n → ∞. Let η n = ξ n ξ n .
Then there exists a subsequence {η n } (without loss of generality assume it is the whole sequence), such that (4.11)

       η n η 0 in H α,β;ψ p ; η n → η 0 in L p (Ω); η n → η 0 in L q+1 (Ω); η n → η 0 a.e. Ω.
From (4.10) we have

lim n→∞ T 0 H D α,β;ψ 0+ η n p -λ|η n | p dx = lim n→∞ T 0 b(x)|η n | q+1 dx ξ n q+1-p = 0.
From (4.11), we have

T 0 H D α,β;ψ 0+ η 0 p -λ|η 0 | p dx ≤ lim n→∞ inf T 0 H D α,β;ψ 0+ η n p -λ|η n | p dx = 0. Moreover, since ξ n ∈ S - λ , we have T 0 b(x)|η n | q+1 dx = 1 ξ n q+1 T 0 b(x)|ξ n | q+1 dx < 0, so, T 0 b(x)|η 0 | q+1 dx = lim n→∞ T 0 b(x)|η n | q+1 dx ≤ 0. Since ξ n ∈ S λ , we have E λ (ξ n ) = 1 p - 1 q + 1 T 0 H D α,β;ψ 0+ ξ n p -λ|ξ n | p dx = 1 p - 1 q + 1 T 0 b(x)|ξ n | q+1 dx, which implies T 0 b(x)|ξ n | q+1 dx = 1 p - 1 q + 1 -1 E λ (ξ n ). (4.12) Since, {E λ (ξ n )} is bounded, it follows that T 0 b(x)|ξ n | q+1 dx is bounded so T 0 b(x)|η 0 | q+1 dx = lim n→∞ T 0 b(x)|η n | q+1 dx = lim n→∞ 1 ξ n q+1 T 0 b(x)|ξ n | q+1 dx = 0. Thus, η 0 η 0 ∈ L -(λ) ∩ Υ 0 or η 0 η 0 ∈ L 0 (λ) ∩ Υ 0 . First if η 0 η 0 ∈ L -(λ) ∩ Υ 0 , then η 0 η 0 ∈ L -(λ) ⊂ Υ -, so η 0 η 0 ∈ Υ -,
and so we have

η 0 η 0 ∈ Υ -∩ Υ 0 , which is impossible. Secondly, if η 0 η 0 ∈ L 0 (λ) ∩ Υ 0 , it is
also impossible, because it contradicts (1) of Theorem 3.6. Hence {ξ n } is bounded. Thus we may assume there exists a subsequence {ξ n } (without loss of generality assume it is the whole sequence) such that Also from (4.15), we have Ξ ξ0 (1) ≥ 0. Now since t ξ0 ξ n t ξ0 ξ 0 in H α,β;ψ p we have

E λ (t ξ0 ξ 0 ) ≤ lim n→∞ inf E λ (t ξ0 ξ n ).
Also since t → E λ (tξ n ) reaches its maximum at t = 1 so from (4.10) we have

E λ (t ξ0 ξ 0 ) ≤ lim n→∞ inf E λ (t ξ0 ξ n ) ≤ lim n→∞ E λ (ξ n ) = inf ξ∈S - λ E λ (ξ),
and so since t ξ0 ξ 0 ∈ S - λ we must have

E λ (t ξ0 ξ 0 ) = lim n→∞ E λ (ξ n ) = inf ξ∈S - λ E λ (ξ) i.e. E λ (t ξ0 ξ 0 ) = lim n→∞ E λ (ξ n ).
Thus ξ n → t ξ0 ξ 0 in H α,β;ψ p and since ξ n ξ 0 in H α,β;ψ p we must have t ξ0 = 1. Hence t ξ0 = 1 so ξ 0 = t ξ0 ξ 0 ∈ S - λ . Thus ξ 0 is a minimizing point for E λ in S - λ ; note

E λ (ξ 0 ) ≤ lim n→∞ inf E λ (ξ n ) ≤ lim n→∞ E λ (ξ n ) = inf ξ∈S - λ E λ (ξ) and since ξ 0 ∈∈ S - λ then E λ (ξ 0 ) = inf ξ∈S - λ E λ (ξ).
The existence of the above minimizing point implies the existence of corresponding non-negative solutions for Eq.(1.1). Indeed, for example, ξ 0 is a minimizing point for E λ in S - λ . Since E λ (ξ) = E λ (|ξ|), we can assume that ξ 0 is not negative in [0, T ]. Note that, S - λ is closed, so ξ 0 is a local minimum for E λ in S - λ . Theorem 4. So for t n ξ n ∈ S + λ , we have Thus for t n ξ n ∈ S - λ , we have 

E λ (t n ξ n ) = 1 p - 1 q + 1 (t n ) p T 0 H D α,β;ψ 0+ ξ n (x) p -λ |ξ n (x)| p dx = 1 p - 1 q + 1
E λ (t n ξ n ) = 1 p - 1 q + 1

Concluding remarks

In this paper we obtain the existence and non-existence of weak solutions to the nonlinear problem with a fractional p-Laplacian introduced by the ψ-Hilfer fractional operator via the combination of Nehari manifold and fibering maps. The results investigated here were discussed in the ψ-fractional derivative space H α,β;ψ p . The results presented here will allow one to investigate other p-Laplacian problems in the fractional sense.

I

  β(β-1);ψ 0+ ξ (0) = I β(β-1);ψ T ξ (T ) = 0, where H D α,β;ψ 0+ (•), H D α,β;ψ T (•) are ψ-Hilfer fractional derivatives left-sided and right-sided of order 1p < α < 1, type 0 ≤ β ≤ 1, 1 < q < p -1 < ∞, b ∈ L ∞ (Ω) and I β(β-1);ψ 0+ (•) and I β(β-1);ψ T (•) are ψ-Riemann-Liouville fractional integrals left-sided and right-sided, for all x ∈ Ω = [0, T ]. We also have that ξ ∈ H α,β ψ p and λ > 0.

  increasing and ψ (x) = 0, for all x ∈ I. The ψ-Hilfer fractional derivatives left-sided and right-sided H D α,β;ψ a+ (•) H D α,β;ψ b-(•) function of order α and type 0 ≤ β ≤ 1 are defined by

Theorem 2 . 3 . [ 3 , 4 ]

 2334 Let ξ ∈ C 1 ([a, b] , R), α > 0 and 0 ≤ β ≤ 1, and we have H D α,β;ψ a+ I α;ψ a+ ξ (x) = ξ (x) and (2.11) H D α,β;ψ b-

for any ξ ∈ AC 1

 1 and θ ∈ C 1 satisfying the boundary conditions ξ (a) = 0 = ξ (b).

Theorem 2 . 8 .

 28 Let 0 < α ≤ 1 and taking limit β → 0 in Eq.(2.15), we have the integration by parts for ψ-Riemann-Liouville fractional derivative, given by b a D α;ψ a+ ξ (t) θ (t) dt = b a ξ (t) ψ (t) D α;ψ b-θ (t) ψ (t) dt for any ξ ∈ AC 1 and θ ∈ C 1 satisfying the boundary conditions ξ (a) = 0 = ξ (b).

  Now, consider η ∈ H α,β;ψ p with η = 0. Without loss of generality assume |η| q+1 dx > 0.

-

  λ|ξ| p dx = T 0 b(x)|ξ| q+1 dx. Substituting in Eq.(3.10), gives T (ξ)ξ = (p -(q + 1)) T 0 b(x)|ξ| q+1 dx.

;-

  H α,β;ψ p ) L + (λ) = ξ ∈ H α,β;ψ p λ|ξ(x)| p dx > 0 and

--

  λ|ξ(x)| p dx > 0, for all ξ ∈ H α,β;ψ p . Thus L + (λ) = ξ ∈ H α,β;ψ p ; ξ = 1 , L -(λ) = ∅ and L 0 (λ) = ∅. When λ = λ 1 , we get λ|ξ(x)| p dx ≥ 0, ∀ξ ∈ H α,β;ψ p . Thus L -(λ) = ∅ and L 0 (λ) = {Ξ}, and when λ > λ 1 , L -(λ) becomes non-empty and becomes larger as λ increases.

-

  λ|ξ n | p dx = T 0 b(x)|ξ n | q+1 dx. Divide Eq.(3.15) by ξ n p , and since b

  so taking the limit as n → ∞ we have )|ξ| q+1 dx = 0 then both integrals are equal to 0, so ξ ξ ∈ L 0 (λ) ∩ Υ 0 , which contradicts (1). Hence both integrals must be negative and so ξ ∈ S - λ . Thus S - λ = S - λ , so S - λ is closed. (4). Suppose that there exists ξ ∈ S + λ ∩ S - λ . Note from (3) that ξ = 0. Since ξ ∈ S - |ξ| q+1 dx ≥ 0, which is impossible. Thus, we conclude that S + λ ∩ S - λ = ∅.

---

  ξ) = 0. Then, there exists {ξ n } ⊆ S - λ , so that limn→∞ E λ (ξ n ) = 0. From (4λ|ξ n | p dx → 0 and T 0 b(x)|ξ n | q+1 dx → 0, when n → ∞. Let η n = ξ n ξ n .As we saw, 0 / ∈ S - λ (see (3) of Theorem 3.6), therefore there exists a c > 0 with ξ n > c. λ|η n | p dx = lim λ|ξ n | p dx = 0, )|ξ n | q+1 dx = 0, Also there exists a subsequence of {η n } (without loss of generality assume it is the whole sequence) with η n η 0 in H α,β;ψ p and as usual we may assume without loss of generality that (4.2)

From the dominated convergence

  theorem (note b ∈ L ∞ )

-

  λ|ξ 0 | p dx ≤ lim n→∞ inf |ξ 0 | q+1 dx. (4.8) Also, from (4.5) and {ξ n } ⊆ S + λ , we have T 0 b(x)|ξ 0 | q+1 dx = lim n→∞ T 0

- 1 q + 1 - 1

 11 H α,β;ψ p ; ξ n → ξ 0 in L p (Ω); ξ n → ξ 0 in L q+1 (Ω); ξ n → ξ 0 a.e. Ω.Now since limn→∞ E λ (ξ n ) > 0 and 1 < q < p -1, taking the limit as n → ∞ on both sides of Eq.(4.12), we haveT 0 b(x)|ξ 0 | q+1 dx = lim n→∞ T 0 b(x)|ξ n | q+1 dx = 1 p lim n→∞ E λ (ξ n ) < 0. (4.14)From (4.14) and (4.13), we getT 0 H D α,β;ψ 0+ ξ 0 p -λ|ξ 0 | p dx ≤ lim n→∞ inf L -(λ) ∩ Υ -. Now Ξ ξ has a local maximum at t ξ0 (see[START_REF] Sousa | A Variational approach for a problem involving a ψ-Hilfer fractional operator[END_REF] of RESULTS I), and t ξ0 ξ 0 ∈ S -

3 . 0 b 0 H

 300 Suppose L -(λ) ∩ Υ + = ∅. Then (1) inf ξ∈S + λ E λ (ξ) = -∞, when S + λ = ∅; (2) inf ξ∈S - λ E λ (ξ) = 0, when S - λ = ∅.Proof.[START_REF] Nehari | On a class of nonlinear second-order differential equations[END_REF]. Suppose ξ 0 ∈ L -(λ) ∩ Υ + . It follows from Lemma 3.7 that there exists k > 0 and a sequence{ξ n } ⊆ L + (λ) ∩ Υ + such that T (x) |ξ n (x)| q+1 dx ≥ k and 0 < T D α,β;ψ 0+ ξ n (x) p -λ |ξ n (x)| p dx < 1 n .

  q+1) k p p-(q+1) → -∞ when n → ∞.Thus infξ∈S + λ E λ (ξ) = -∞.

( 2 )b- 0 b

 20 . Let ξ ∈ L -(λ) ∩ Υ + . We can choose h ∈ H α,β(x) |(ξ + h) (x)| q+1 dx < 0. Let ξ t := ξ + th ξ + th , then for t ∈ [0, 1] , we have ξ t ∈ L -(λ). Moreover ξ 0 ∈ Υ + and ξ 1 ∈ Υ -. By the same argument as in the proof of (1), we can deduce that there exist δ > 0 and a sequence{ξ n } ⊂ L -(λ) ∩ Υ - λ |ξ n (x)| p dx < -δ and T (x) |ξ n (x)| q+1 dx < -1 n .

  n → ∞. Hence E λ (t n ξ n ) → 0 as n → ∞ and inf ξ∈S - λ E λ (u) = 0.
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