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Introduction 2 Introduction

In this study, we consider a mathematical model for a particular component of the nephron, the functional unit of kidney. It describes the ionic exchanges through the nephron tubules in the Henle's loop. The main function of the kidneys is the ltration of blood. Through ltration, secretion and excretion of ltered metabolic wastes and toxins, the kidneys are able to maintain a certain homeostatic balance within cells. Despite the development of sophisticated models about water and electrolyte transport in the kidney, some aspects of the fundamental functions of this organ remain yet to be fully explained, [START_REF] Layton | Mathematical modeling of kidney transport[END_REF]. For example, how a concentrated urine can be produced by the mammalian kidney when the animal is deprived of water remains not entirely clear.

The loop of Henle and its architecture play an important role in the concentrated or diluted urine formation. In order to explain how an animal or a human being can produce a concentrated urine and what this mechanism depends on, we need to analyse the counter-current transport in the 'ascending' and 'descending' tubules. There the ionic exchanges between the cell membrane and the environment where tubules are immersed, take place. We consider a simplied model for sodium exchange in the kidney nephron. In this simplied version, the nephron is modelled by two tubules, one ascending and one descending, of length denoted L. Ionic exchanges and transport occur at the interface between the lumen and the epithelial layer (cell membrane) and at the interface between the cells and the interstitium (this term indicates all the space/environment that surrounds the tubules and blood vessels). A schematic representation for the model is given in Figure 1. If we denote t ≥ 0 and x ∈ (0, L) the time and space variables, respectively, the dynamics of ionic concentrations is modelled by the following semi-linear hyperbolic system (see e.g. [START_REF] Marulli | On the role of the epithelium in a model of sodium exchange in renal tubules[END_REF][START_REF] Tournus | Modèles d'échanges ioniques dans rein: théorie, analyse asymptotique et applications numériques[END_REF][START_REF] Tournus | Analysis of a simplied model of the urine concentration mechanism[END_REF][START_REF] Tournus | A model of calcium transport along the rat nephron[END_REF])

                 ∂ t u 1 + α∂ x u 1 = J 1 = 2πr 1 P 1 (q 1 -u 1 ) ∂ t u 2 -α∂ x u 2 = J 2 = 2πr 2 P 2 (q 2 -u 2 )
∂ t q 1 = J 1,e = 2πr 1 P 1 (u 1 -q 1 ) + 2πr 1,e P 1,e (u 0 -q 1 ) ∂ t q 2 = J 2,e = 2πr 2 P 2 (u 2 -q 2 ) + 2πr 2,e P 2,e (u 0 -q 2 ) -G(q 2 ) ∂ t u 0 = J 0 = 2πr 1,e P 1,e (q 1 -u 0 ) + 2πr 2,e P 2,e (q 2 -u 0 ) + G(q 2 ), [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] complemented with the boundary and initial conditions

     u 1 (t, 0) = u b (t); u 1 (t, L) = u 2 (t, L) t > 0 u 1 (0, x) = u 0 1 (x)
; u 2 (0, x) = u 0 2 (x); u 0 (0, x) = u 0 0 (x); q 1 (0, x) = q 0 1 (x); q 2 (0, x) = q 0 2 (x).

(

In this model, we have used the following notations : r i : denote the radius for the lumen i ([m]).

r i,e : denote the radius for the tubule i with epithelium layer.

Sodium's concentrations ([mol/m 3 ]) : u i (t, x) : in the lumen i, q i (t, x) : in the epithelium 'near' lumen, i u 0 (t, x) : in the interstitium.

Permeabilities ([m/s]): P i : between the lumen and the epithelium, P i,e : between the epithelium and the interstitium.

In this work we will indicate as lumen the considered limb and as tubule the segment with its epithelial layer. In physiological common language, the term 'tubule' refers to the cavity of lumen together with its related epithelial layer (membrane) as part of it, [START_REF] Layton | Mathematical Modeling in Renal Physiology[END_REF].

In the ascending tubule, the transport of solute both by passive diusion and active reabsorption uses N a + /K + -ATPases pumps, which exchange 3 N a + ions for 2 K + ions. This active transport is modelled by a non-linear term given by the Michaelis-Menten kinetics :

G(q 2 ) = V m,2 q 2 k M,2 + q 2 3 .
(

) 3 
where k M,2 and V m,2 are real positive constants. In each tubule, the uid (mostly water) is assumed to ow at constant rate α and we only consider one generic uncharged solute in two tubules as depicted in Figure 1.

Figure 1: Simplied model of the loop of Henle. q 1 , q 2 , u 1 and u 2 denote solute concentration in the epithelial layer and lumen of the descending/ascending limb, respectively.

In a recent paper [START_REF] Marulli | On the role of the epithelium in a model of sodium exchange in renal tubules[END_REF], the authors have studied the role of the epithelial layer in the ionic transport. The aim of this work is to clarify the link between model (1) taking into account the epithelial layer and models neglecting it. In particular, when the permeability between the epithelium and the lumen is large it is expected that these two regions merge, allowing to reduce system (1) to a model with no epithelial layer. More precisely, as the permeabilities P 1 and P 2 grow large, we show rigorously that solutions of (1) with boundary conditions (2) relax to solutions of a reduced system with no epithelial layer. From a mathematical point of view, system (1) may be seen as a hyperbolic system with a sti source term. The source term is in some sense a relaxation of another hyperbolic system of smaller dimension. Such an approach has been widely studied in the literature, see e.g. [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF][START_REF] Natalini | Convergence of a relaxation approximation to a boundary value problem for conservation laws[END_REF][START_REF] James | Convergence results for some conservation laws with a reux boundary condition and a relaxation term arising in chemical engineering[END_REF][START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF]. Since the initial data of the starting system for xed ε has no reason to be compatible with the limit system, the mathematical analysis of this relaxation procedure should account for initial layers. In the setting of a generic relaxation problem concerning the Cauchy case for not 'well-prepared' data, or data out of equilibrium, the construction of initial layers and the corresponding error analysis can be found in [START_REF] Giovangigli | Relaxation limit and initial-layers for a class of hyperbolic-parabolic systems[END_REF]. The proof of our convergence result is obtained thanks to a BV compactness argument in space and in time. Another diculty is due to the presence of the boundary, which must be handled with care in the a priori estimates, in order to be uniform with respect to ε, the relaxation parameter depending on the permeabilities.

Main results

Before presenting our main result, we list some assumptions which will be used throughout this paper.

Assumption 3.1. We assume that the initial solute concentrations are non-negative and uniformly bounded in L ∞ (0, L) and with respect to the total variation :

0 ≤ u 0 1 , u 0 2 , q 0 1 , q 0 2 , u 0 0 ∈ BV (0, L) ∩ L ∞ (0, L). (4) 
For detailed denitions of the BV setting we refer to the standard text-books [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF][START_REF] Ziemer | Weakly dierentiable functions. Sobolev spaces and functions of bounded variation[END_REF]. A more recent overview gives a global picture in an extensive way [START_REF] Heida | Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space[END_REF], it unies also the diversity of denitions found in the literature dealing with the BV spaces in either the probabilistic or the deterministic context. Assumption 3.2. Boundary conditions are such that

0 ≤ u b ∈ BV (0, T ) ∩ L ∞ (0, T ). (5) 
Assumption 3.3. Regularity and boundedness of G.

We assume that the non-linear function modelling active transport in the ascending limb is an odd and W 2,∞ (R) function :

∀ x ≥ 0, G(-x) = -G(x), 0 ≤ G(x) ≤ G ∞ , 0 ≤ G (x) ≤ G ∞ . (6) 
We notice that the function G dened on R + by the expression in (3) may be straightforwardly extended by symmetry on R by a function satisfying [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF].

To simplify our notations in (1), we set 2πr i,e P i,e = K i , i = 1, 2 and 2πr i P i = k i , i = 1, 2. The orders of magnitude of k 1 and k 2 are the same even if their values are not denitely equal, we may assume to further simplify the analysis that k 1 = k 2 . We consider the case where permeability between the lumen and the epithelium is large and we set, k 1 = k 2 = 1 ε for ε 1. Then, we investigate the limit ε goes to zero of the solutions of the following system :

∂ t u ε 1 + α∂ x u ε 1 = 1 ε (q ε 1 -u ε 1 ) (7a) 
∂ t u ε 2 -α∂ x u ε 2 = 1 ε (q ε 2 -u ε 2 ) (7b) 
∂ t q ε 1 = 1 ε (u ε 1 -q ε 1 ) + K 1 (u ε 0 -q ε 1 ) (7c) 
∂ t q ε 2 = 1 ε (u ε 2 -q ε 2 ) + K 2 (u ε 0 -q ε 2 ) -G(q ε 2 ) (7d) ∂ t u ε 0 = K 1 (q ε 1 -u ε 0 ) + K 2 (q ε 2 -u ε 0 ) + G(q ε 2 ) (7e) 
Formally, when ε → 0, we expect the concentrations u ε 1 and q ε 1 to converge to the same function. The same happens for u ε 2 and q ε 2 . We denote u 1 , respectively u 2 , these limits. Adding (7a) to (7c) and (7b) to (7d), we end up with the system

∂ t u ε 1 + ∂ t q ε 1 + α∂ x u ε 1 = K 1 (u ε 0 -q ε 1 ) ∂ t u ε 2 + ∂ t q ε 2 -α∂ x u ε 2 = K 2 (u ε 0 -q ε 2 ) -G(q ε 2 ).
Passing formally to the limit when ε goes to 0, we arrive at

2∂ t u 1 + α∂ x u 1 = K 1 (u 0 -u 1 ) (8) 
2∂ t u 2 -α∂ x u 2 = K 2 (u 0 -u 2 ) -G(u 2 ), (9) 
coupled to the equation for the concentration in the interstitium obtained by passing into the limit in equation (7e)

∂ t u 0 = K 1 (u 1 -u 0 ) + K 2 (u 2 -u 0 ) + G(u 2 ). ( 10 
)
This system is complemented with the initial and boundary conditions

u 1 (0, x) = u 0 1 (x) + q 0 1 (x), u 2 (0, x) = u 0 2 (x) + q 0 2 (x), u 0 (0, x) = u 0 0 (x), (11) 
u 1 (t, 0) = u b (t), u 2 (t, L) = u 1 (t, L). (12) 
Finally, we recover a simplied system for only three unknowns. From a physical point of view this means fusing the epithelial layer with the lumen. It turns out to merge the lumen and the epithelium into a single domain when we consider the limit of innite permeability. The aim of this paper is to make this formal computation rigorous. For this sake, we dene weak solutions associated to the limit system (8)-( 10) : 3 is a weak solution of system ( 8)- [START_REF] Marulli | On the role of the epithelium in a model of sodium exchange in renal tubules[END_REF] if for all φ ∈ S 3 , with

Denition 3.1. Let u 0 1 (x), u 0 2 (x), u 0 0 (x) ∈ L 1 (0, L) ∩ L ∞ (0, L) and u b (t) ∈ L 1 (0, T ) ∩ L ∞ (0, T ). We say that U (t, x) = (u 1 (t, x), u 2 (t, x), u 0 (t, x)) ∈ L ∞ ((0, T ); L 1 (0; L) ∩ L ∞ (0, L))
S 3 := φ ∈ C 1 ([0, T ] × [0, L]) 3 , φ(T, x) = 0, φ 1 (t, L) = φ 2 (t, L), and φ 2 (t, 0) = 0 , we have T 0 L 0 u 1 (2∂ t φ 1 + α∂ x φ 1 )dxdt + α T 0 u b (t)φ 1 (t, 0) dt + L 0 u 0 1 (x)φ 1 (0, x) dx + T 0 L 0 u 2 (2∂ t φ 2 -α∂ x φ 2 ) + L 0 u 0 2 (x)φ 2 (0, x) dx + T 0 L 0 u 0 ∂ t φ 3 + K 1 (u 1 -u 0 )(φ 3 -φ 1 ) + K 2 (u 2 -u 0 )(φ 3 -φ 2 ) + G(u 2 )(φ 3 -φ 2 ) dxdt + L 0 u 0 0 (x)φ 3 (0, x) dx = 0. (13) 
More precisely, the main result reads Theorem 3.1. Let T > 0 and L > 0. We assume that initial data and boundary conditions satisfy (4), ( 5), [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF]. Then, the weak solution (u ε 1 , u ε 2 , q ε 1 , q ε 2 , u ε 0 ) of system [START_REF] Layton | Mathematical modeling of kidney transport[END_REF] with boundary and initial conditions (2) converges, as ε goes to zero, to the weak solution of reduced (or limit) problem (8)(10) complemented with [START_REF] Mili²i¢ | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF] [START_REF] Natalini | Convergence of a relaxation approximation to a boundary value problem for conservation laws[END_REF]. More precisely,

u ε i --→ ε→0 u i i = 0, 1, 2, strongly in L 1 ([0, T ] × [0, L]), q ε j --→ ε→0 u j j = 1, 2, strongly in L 1 ([0, T ] × [0, L]),
where (u 1 , u 2 , u 0 ) is the unique weak solution of the limit problem (8) [START_REF] Marulli | On the role of the epithelium in a model of sodium exchange in renal tubules[END_REF] in the sense of Denition 3.1.

The system (7) can be seen as a particular case of the model without epithelial layer introduced and studied in [START_REF] Tournus | Analysis of a simplied model of the urine concentration mechanism[END_REF] and [START_REF] Tournus | Modèles d'échanges ioniques dans rein: théorie, analyse asymptotique et applications numériques[END_REF]. A priori estimates uniform with respect to the parameter ε (accounting for permeability) are obtained in Section 5. We emphasize that estimates on time derivatives are more subtle due to specic boundary conditions of system and because one has to take care of singular initial layers. Concerning existence and uniqueness of a solution, in previous works [START_REF] Tournus | Analysis of a simplied model of the urine concentration mechanism[END_REF] and [START_REF] Tournus | Modèles d'échanges ioniques dans rein: théorie, analyse asymptotique et applications numériques[END_REF], authors proposed a semi-discrete scheme in space in order to show existence. In this work we propose a xed point theorem giving the same result for any xed ε > 0 in Section 4. The advantage of our approach is that we directly work with weak solutions associated to [START_REF] Layton | Mathematical modeling of kidney transport[END_REF]. After recalling the denition of weak solution for problem (1), we report below the statement of Theorem 3.2, and we refer to Section 4 for the proof. 5 is a weak solution of system [START_REF] Layton | Mathematical modeling of kidney transport[END_REF] if for all φ = (φ 1 , φ 2 , φ 3 , φ 4 , φ 5 ) ∈ S 5 , with

3.2. Let (u 0 1 (x), u 0 2 (x), q 0 1 (x), q 0 2 (x), u 0 0 (x)) ∈ (L 1 (0, L) ∩ L ∞ (0, L)) 5 and u b (t) ∈ L 1 (0, T ) ∩ L ∞ (0, T ). Let ε > 0 be xed. We say that U ε (t, x) = (u ε 1 (t, x), u ε 2 (t, x), q ε 1 (t, x), q ε 2 (t, x), u ε 0 (t, x)) ∈ L ∞ ((0, T ); L 1 (0, L) ∩ L ∞ (0, L))
S 5 := φ ∈ C 1 ([0, T ] × [0, L]) 5 , φ(T, x) = 0, φ 1 (t, L) = φ 2 (t, L), and φ 2 (t, 0) = 0 we have T 0 L 0 u ε 1 (∂ t φ 1 + α∂ x φ 1 ) + 1 ε (q ε 1 -u ε 1 )φ 1 dxdt + α T 0 u ε b (t)φ 1 (t, 0) dt + L 0 u 0 1 (x)φ 1 (0, x) dx + T 0 L 0 u ε 2 (∂ t φ 2 -α∂ x φ 2 ) + 1 ε (q ε 2 -u ε 2 )φ 2 dxdt + L 0 u 0 2 (x)φ 2 (0, x) dx + T 0 L 0 q ε 1 (∂ t φ 3 ) + K 1 (u ε 0 -q ε 1 )φ 3 - 1 ε (q ε 1 -u ε 1 )φ 3 dxdt + L 0 q 0 1 (x)φ 3 (0, x) dx + T 0 L 0 q ε 2 (∂ t φ 4 ) + K 2 (u ε 0 -q ε 2 )φ 4 - 1 ε (q ε 2 -u ε 2 )φ 4 -G(q ε 2 )φ 4 dxdt + L 0 q 0 2 (x)φ 4 (0, x) dx + T 0 L 0 u ε 0 (∂ t φ 5 ) + K 1 (q ε 1 -u ε 0 )φ 5 + K 2 (q ε 2 -u ε 0 )φ 5 + G(q ε 2 )φ 5 dxdt + L 0 u 0 0 (x)φ 5 (0, x) dx = 0. (14) 
Theorem 3.2 (Existence). Under assumptions ( 4), ( 5), ( 6) and for every xed ε > 0, there exists a unique weak solution U ε of the problem [START_REF] Layton | Mathematical modeling of kidney transport[END_REF].

Proof of the existence result

We dene the Banach space B := (L 1 (0, L)∩L ∞ (0, L)) 5 . We prove existence using the Banach-Picard xed point theorem (see e.g., [START_REF] Perthame | Transport equations in biology[END_REF] for various examples of its application). We consider a time T > 0 (to be chosen later) and the map T : X T → X T with the Banach space X T = L ∞ ([0, T ]; B), and we denote

• X T = sup t∈(0,T ) • B . For a given function U ∈ X T , with U = (ũ 1 , ũ2 , q1 , q2 , ũ0 ), we dene U := T ( U ) solution to the problem :                            ∂ t u 1 + α∂ x u 1 = (q 1 -u 1 ) ε , ∂ t u 2 -α∂ x u 2 = (q 2 -u 2 ) ε , ∂ t q 1 = (ũ 1 -q 1 ) ε + K 1 (ũ 0 -q 1 ), ∂ t q 2 = (ũ 2 -q 2 ) ε + K 2 (ũ 0 -q 2 ) -G(q 2 ), ∂ t u 0 = K 1 (q 1 -u 0 ) + K 2 (q 2 -u 0 ) + G(q 2 ), (15) 
with initial data u 0 1 , u 0 2 , q 0 1 , q 0 2 , u 0 0 in L 1 (0, L) ∩ L ∞ (0, L) and with boundary conditions

u 1 (t, 0) = u b (t) ≥ 0 , u 2 (t, L) = u 1 (t, L), for t > 0,
where

u b ∈ L 1 (0, T ) ∩ L ∞ (0, T ).
First we dene the solutions of ( 15) using Duhamel's formula. Under these hypothesis, we may compute u 1 and u 2 with the method of characteristics

u 1 (t, x) = u 0 1 (x -αt)e -t ε + 1 ε t 0 e -t-s ε q1 (x -α(t -s), s) ds, if x > αt, u b t -x α e -x εα + 1 αε x 0 e -1 αε (x-y) q1 t -x-y α , y dy, if x < αt, (16) 
with u 0 1 (x), and u b (t) initial and boundary condition, respectively. We have a similar expression for u 2 (t, x) with u 0 2 instead of u 0 1 and the boundary condition u 2 (t, L) = u 1 (t, L) which is welldened thanks to [START_REF] Tournus | Analysis of a simplied model of the urine concentration mechanism[END_REF]. It reads :

u 2 (t, x) = u 0 2 (x + αt)e -t ε + 1 ε t 0 e -t-s ε q2 (s, x + α(t -s)) ds, if x < L -αt, u 1 t + x-L α , L e x-L αε + 1 αε L x e x-y εα q2 (t + x-y α , y)dy if x > L -αt. (17) 
Then, for the other unknowns one simply solves a system of uncoupled ordinary dierential equations leading to :

                 q 1 (t, x) = q 0 1 (x)e -( 1 ε +K 1 )t + t 0 e -( 1 ε +K 1 )(t-s) 1 ε ũ1 + K 1 ũ0 (s, x) ds, q 2 (t, x) = q 0 2 (x)e -( 1 ε +K 2 )t + t 0 e -( 1 ε +K 2 )(t-s) 1 ε ũ2 + K 1 ũ0 -G(q 2 ) (s, x) ds, u 0 (t, x) = u 0 0 (x)e -(K 1 +K 2 )t + t 0 e -(K 1 +K 2 )(t-s) K 1 q1 + K 2 q2 + G(q 2 ) (s, x) ds. (18) 
Using regularity arguments as is Theorem 2.1 and Lemma 2.1 in [START_REF] Mili²i¢ | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], one can show that thanks to the Lipschitz continuity of the solutions along the characteristics, the previous unknowns solve the weak formulation reading :

                             T 0 L 0 -u 1 (∂ t + α∂ x ) ϕ 1 (t, x) + 1 ε (u 1 -q1 ) ϕ 1 (t, x)dxdt + L 0 u 1 (t, x)ϕ 1 (t, x)dt t=T t=0 + α T 0 u 1 (t, x)ϕ 1 (t, x) x=L x=0 = 0, T 0 L 0 -u 2 (∂ t -α∂ x ) ϕ 2 (t, x) + 1 ε (u 2 -q2 ) ϕ 2 (t, x)dxdt + L 0 u 2 (t, x)ϕ 2 (t, x)dt t=T t=0 + α T 0 u 2 (t, x)ϕ 2 (t, x) x=L x=0 = 0, (19) 
for any

(ϕ 1 , ϕ 2 ) ∈ C 1 ([0, T ] × [0, L]) 2 .
Note that similar arguments as in Lemma 3.1 in [START_REF] Mili²i¢ | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF] show that the same holds true for

|u 1 | (resp. |u 2 | ) : T 0 L 0 -|u 1 | (∂ t + α∂ x ) ϕ 1 (t, x) + 1 ε (|u 1 | -sgn(u 1 )q 1 ) ϕ 1 (t, x)dxdt + L 0 |u 1 |(t, x)ϕ 1 (t, x)dt t=T t=0 + α T 0 |u 1 |(t, x)ϕ 1 (t, x) x=L x=0 = 0. ( 20 
)
The same holds also for the other unknowns (q i ) i∈{1,2} and u 0 , since for the ODE part of the system (18) provides directly similar results. In the rest of the paper, each time that we mention that we are multiplying formally by sgn each function of system [START_REF] Tournus | Modèles d'échanges ioniques dans rein: théorie, analyse asymptotique et applications numériques[END_REF] in order to get :

     ∂ t |u 1 | + α∂ x |u 1 | = 1 ε (sgn(u 1 )q 1 -|u 1 |) ∂ t |u 2 | -α∂ x |u 2 | = 1 ε (sgn(u 2 )q 2 -|u 2 |),
we actually mean that these inequalities hold in the previous sense, i.e. in the sense of (20).

The reader should notice that the stronger regularity of the integrated form ( 16), ( 17) and [START_REF] Ziemer | Weakly dierentiable functions. Sobolev spaces and functions of bounded variation[END_REF] allow to dene the solutions on the boundaries of the domain ∂((0, T ) × (0, L)). If these would only belong to L ∞ ((0, T ); L 1 (0, L) this would not make much sense. Now the meaning of the formal setting is well dened, we then can proceed by writing that one has :

                         ∂ t |u 1 | + α∂ x |u 1 | ≤ 1 ε (|q 1 | -|u 1 |) ∂ t |u 2 | -α∂ x |u 2 | ≤ 1 ε (|q 2 | -|u 2 |) ∂ t |q 1 | ≤ 1 ε (|ũ 1 | -|q 1 |) + K 1 (|ũ 0 | -|q 1 |) ∂ t |q 2 | ≤ 1 ε (|ũ 2 | -|q 2 |) + K 2 (|ũ 0 | -|q 2 |) -|G(q 2 )| ∂ t |u 0 | ≤ K 1 (|q 1 | -|u 0 |) + K 2 (|q 2 | -|u 0 |) + |G(q 2 )|. (21) 
We have used the fact that sgn(G(q 2 )) = sgn(q 2 ) from ( 6), which implies in particular -G(q 2 )• sgn(q 2 ) = -|G(q 2 )| and G(q 2 ) • sgn(u 0 ) ≤ |G(q 2 )|. In order to obtain inequalities in the weak formulation associated to the latter system it is enough to choose non-negative test functions in

C 1 ([0, T ] × [0, L]).
Adding all equations and integrating on [0, L], we obtain formally

d dt L 0 (|u 1 | + |u 2 | + |u 0 | + |q 1 | + |q 2 |) ≤ α|u 1 (t, 0)| + 1 ε L 0 (|ũ 1 | + |ũ 2 | + |q 1 | + |q 2 |) dx + (K 1 + K 2 ) L 0 |ũ 0 | dx,
where we use the boundary condition u 1 (t, L) = u 2 (t, L) and [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF]. Setting U (t, •) L 1 (0,L)

5 := L 0 (|u 1 | + |u 2 | + |q 1 | + |q 2 | + |u 0 |)(t,
x) dx and integrating with respect to time, we obtain:

U (t, x) L 1 (0,L) 5 ≤ U (0, x) L 1 (0,L) 5 + α T 0 |u b (s)| ds + η T 0 U (t, x) L 1 (0,L) 5 dt, (22) 
with η = K 1 + K 2 + 1 ε > 0.
Here the formal computations are to be understood in the following manner : in the weak formulation associated to (21) we choose the test function ϕ = (1, 1, 1, 1, 1), and the result (22) comes in a straightforward way when neglecting the out-coming characteristic at x = 0.

On the other hand, using ( 16), ( 17) and ( 18), one quickly checks that

U L ∞ ((0,T )×(0,L)) 5 ≤ max U 0 L ∞ (0,L) 5 , u b L ∞ (0,T ) + CT ε Ũ L ∞ ((0,T )×(0,L)) 5 (23) 
where the generic constant C depends only on (K i ) i∈{1,2} and G L ∞ (R) but not on Ũ nor on the data U 0 . At this step, T maps X T into itself.

Let us now prove that T is a contraction. Let ( U , W ) ∈ X 2 T , we dene U := T ( U ), W := T ( W ). Then, by the same token as obtaining (22), we have

T ( U ) -T ( W ) L 1 (0,L) 5 = U -W L 1 (0,L) 5 ≤ η T 0 U -W L 1 (0,L) ≤ ηT U -W X T .
Again similar computations as in (23), show that

U -W L ∞ ((0,T )×(0,L)) 5 ≤ CT ε Ũ -W L ∞ ((0,T )×(0,L)) 5
.

Therefore, as soon as T < min(1/η, ε/C), T is a contraction in X T . It allows to construct a solution on [0, T ] for T small enough. The xed point solves ( 16) and ( 18) in an implicit way. Along characteristics solutions have enough regularity to satisfy [START_REF] Layton | Mathematical modeling of kidney transport[END_REF] in a weak sense (19). Choosing then the test functions ϕ := (ϕ i ) i∈{1,...,5} to belong to S 5 shows that the xed point is a weak solution in the sense of Denition 3.2. Since the solution U (t, x) = (u 1 (t, x), u 2 (t, x), q 1 (t, x), q 2 (t, x), u 0 (t, x)) is well dened as on {T } × (0, L) thanks to regularity arguments stated above, U (T, x) becomes the initial condition of a new initial boundary problem. Thus, we may iterate this process on [T, 2T ], [2T, 3T ], . . . , since the condition on T does not depend on the iteration. As a result of above computations, we have also that if U 1 (resp. U 2 ) is a solution with initial data U 1,0 (resp. U 2,0 ) and boundary data u 1 b (resp. u 2 b ). Then we have the comparison principle :

U 1 -U 2 L 1 ((0,T )×(0,L)) ≤ U 0,1 -U 0,2 L 1 (0,L) + α u 1 b -u 2 b L 1 (0,T ) . ( 24 
)
which shows and implies uniqueness as well.

Uniform a priori estimates

In order to prove our convergence result, we rst establish some uniform a priori estimates. The strategy of the proof of Theorem 3.1 relies on a compactness argument. In this Section we will omit the index ε in order to simplify the notations.

5.1

Non-negativity and L 1 ∩ L ∞ estimates

The following lemma establishes that all concentrations of system are non-negative and this is consistent with the biological framework.

Lemma 5.1 (Non-negativity). Let U (t, x) be a weak solution of system (1) such that the assumptions (4), ( 5), ( 6) hold. Then for almost every (t, x) ∈ (0, T ) × (0, L), U (t, x) is nonnegative, i.e.: u 1 (t, x), u 2 (t, x), q 1 (t, x), q 2 (t, x), u 0 (t, x) ≥ 0.

Proof. We prove that the negative part of our functions vanishes. Using Stampacchia's method, we formally multiply each equation of system ( 7) by corresponding indicator function as follows:

               (∂ t u 1 + α∂ x u 1 )1 {u 1 <0} = 1 ε (q 1 -u 1 )1 {u 1 <0} (∂ t u 2 -α∂ x u 2 )1 {u 2 <0} = 1 ε (q 2 -u 2 )1 {u 2 <0} (∂ t q 1 )1 {q 1 <0} = 1 ε (u 1 -q 1 )1 {q 1 <0} + K 1 (u 0 -q 1 )1 {q 1 <0} (∂ t q 2 )1 {q 2 <0} = 1 ε (u 2 -q 2 )1 {q 2 <0} + K 2 (u 0 -q 2 )1 {q 2 <0} -G(q 2 )1 {q 2 <0} (∂ t u 0 )1 {u 0 <0} = K 1 (q 1 -u 0 )1 {u 0 <0} + K 2 (q 2 -u 0 )1 {u 0 <0} + G(q 2 )1 {u 0 <0} .
again as in the proof of existence in Section 4, these computations can be made rigorously using the extra regularity provided along characteristics in the spirit of Lemma 3.1, [START_REF] Mili²i¢ | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF].

We remember that for each function u we can dene positive and negative parts as u + = max(u, 0), u -= max(-u, 0). One has obviously that u - i = -u i 1 {u i <0} for any u ∈ L 1 loc ((0, T ) × (0, L)), whereas along characteristics curves one has du to Lipschitz continuity of the solutions that It is possible also to write in the distributional sense:

∂ t u - i = -∂ t u i 1 {u i <0} i = 0, 1, 2.
We refer again to Lemma 3.1 [START_REF] Mili²i¢ | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF] for more detailed explanations. The same is true for other functions q j with j = 1, 2.

Taking into account the fact that:

q i 1 {u i <0} = (q + i -q - i )1 {u i <0} ≥ -q - i , i = 1, 2,
since q - i 1 {u i <0} is zero or positive by denition of negative part, we obtain :

               ∂ t u - 1 + α∂ x u - 1 ≤ 1 ε (q - 1 -u - 1 ) ∂ t u - 2 -α∂ x u - 2 ≤ 1 ε (q - 2 -u - 2 ) ∂ t q - 1 ≤ 1 ε (u - 1 -q - 1 ) + K 1 (u - 0 -q - 1 ) ∂ t q - 2 ≤ 1 ε (u - 2 -q - 2 ) + K 2 (u - 0 -q - 2 ) + G(q 2 )1 {q 2 <0} ∂ t u - 0 ≤ K 1 (q - 1 -u - 0 ) + K 2 (q - 2 -u - 0 ) -G(q 2 )1 {u 0 <0} .
Adding the previous expressions, one recovers a single inequality reading

∂ t (u - 1 + q - 1 + q - 2 + u - 2 + u - 0 ) + α∂ x (u - 1 -u - 2 ) ≤ G(q 2 )(1 {q 2 <0} -1 {u 0 <0} ).
By Assumption 3.3, we have that sgn(G(q 2 )) = sgn(q 2 ). Thus G(q 2 )(1

{q 2 <0} -1 {u 0 <0} ) = G(q 2 ) (1 {G(q 2 )<0} -1 {u 0 <0} ) ≤ 0.
Then integrating on the interval [0, L], we get :

d dt L 0 (u - 1 + q - 1 + q - 2 + u - 2 + u - 0 )(t, x) dx ≤ α(u - 2 (t, L) -u - 2 (t, 0) -u - 1 (t, L) + u - 1 (t, 0)).
Since u - 1 (t, L) = u - 2 (t, L) thanks to condition [START_REF] James | Convergence results for some conservation laws with a reux boundary condition and a relaxation term arising in chemical engineering[END_REF], it follows:

d dt L 0 (u - 1 + q - 1 + q - 2 + u - 2 + u - 0 )(t, x) dx ≤ αu - 1 (t, 0) = αu - b (t).
From Assumptions 3.2 and 3.1, the initial and boundary data are all non-negative. Thus u - 1 (0, x),q - 1 (0, x), q - 2 (0, x), u - 2 (0, x),u - 0 (0, x) are necessarily zero. This proves solutions' nonnegativity and concludes the proof. Lemma 5.2 (L ∞ bound). Let (u 1 , u 2 , q 1 , q 2 , u 0 ) be the unique weak solution of problem [START_REF] Layton | Mathematical modeling of kidney transport[END_REF].

Assume that (4), ( 5), ( 6) hold, then it is bounded i.e. for a.e. (t, x) ∈ (0, T ) × (0, L),

0 ≤ u 0 (t, x) ≤ κ(1 + t), 0 ≤ u i (t, x) ≤ κ(1 + t), 0 ≤ q i (t, x) ≤ κ(1 + t), i = 1, 2, 0 ≤ u 2 (t, 0) ≤ κ(1 + t), 0 ≤ u 1 (t, L) ≤ κ(1 + t), where the constant κ ≥ max { G ∞ , u b ∞ , u 0 0 ∞ , u 0 i ∞ , q 0 i ∞ , i ∈ {1, 2}}.
Proof. We use the same method as in the previous lemma for the functions

w i = (u i -κ(1 + t)), i = 0, 1, 2, z j = (q j -κ(1 + t)), j = 1, 2.
From system [START_REF] Layton | Mathematical modeling of kidney transport[END_REF] and using the fact that

z j 1 {w i ≥0} = z + j 1 {w i ≥0} -z - j 1 {w i ≥0} ≤ z + j , w i 1 {z j ≥0} ≤ w + i , we get                         ∂ t w + 1 + κ1 {w 1 ≥0} + α∂ x w + 1 ≤ 1 ε (z + 1 -w + 1 ) ∂ t w + 2 + κ1 {w 2 ≥0} -α∂ x w + 2 ≤ 1 ε (z + 2 -w + 2 ) ∂ t z + 1 + κ1 {z 1 ≥0} ≤ 1 ε (w + 1 -z + 1 ) + K 1 (w + 0 -z + 1 ) ∂ t z + 2 + κ1 {z 2 ≥0} ≤ 1 ε (w + 2 -z + 2 ) + K 2 (w + 0 -z + 2 ) -G(q 2 )1 {z 2 ≥0} ∂ t w + 0 + κ1 {w 0 ≥0} ≤ K 1 (z + 1 -w + 0 ) + K 2 (z + 2 -w + 0 ) + G(q 2 )1 {w 0 ≥0} . (25) 
Adding expressions above gives

∂ t (w + 1 + w + 2 + z + 1 + z + 2 ) + α∂ x (w + 1 -w + 2 ) ≤ -κ1 {w 0 ≥0} + G(q 2 )(1 {w 0 ≥0} -1 {z 2 ≥0} ).
Integrating with respect to x yields

d dt L 0 (w + 1 + w + 2 + z + 1 + z + 2 + w + 0 )(t, x) dx ≤ α(w + 2 (t, L) -w + 2 (t, 0) -w + 1 (t, L) + w + 1 (t, 0)) + L 0 (G(q 2 ) -κ)1 {w 0 ≥0} dx,
where we use the fact that G(q 2 ) ≥ 0 from assumption (6) since q 2 ≥ 0 thanks to the previous lemma. From the boundary conditions in (1), we have for all t ≥ 0,

w + 2 (t, L) = [u 2 (t, L) -κ(1 + t)] + = [u 1 (t, L) -κ(1 + t)] + = w + 1 (t, L). Then, d dt L 0 (w + 1 + w + 2 + z + 1 + z + 2 + w + 0 )(t, x) dx + αw + 2 (t, 0) ≤ α(u b (t) -κ(1 + t)) + + ( G ∞ -κ) L 0 1 {w 0 ≥0} dx.
If we adjust the constant κ such that κ ≥ max { G ∞ , u b ∞ }, it implies that :

d dt L 0 (w + 1 + w + 2 + z + 1 + z + 2 + w + 0 )(t, x) dx + αw + 2 (t, 0) ≤ 0,
which shows the claim.

For the last estimate on u 1 (t, L), we sum the rst and the third inequalities of the system (25) and integrate on (0, L),

d dt L 0 (w + 1 + z + 1 ) dx + αw + 1 (t, L) ≤ αw + 1 (t, 0) + K 1 L 0 (w + 0 -z + 1 ) dx -κ L 0 (1 {w 1 ≥0} + 1 {z 1 ≥0} ) dx.
Integrating on (0, T ) and since we have proved above that w + 0 = 0 and z + 1 = 0, we arrive at

α T 0 w + 1 (t, L) dt ≤ α T 0 w + 1 (t, 0) dt = 0, for κ ≥ u b ∞ . Lemma 5.3 (L ∞ t L 1 estimates).
Let T > 0 and let (u 1 , u 2 , q 1 , q 2 , u 0 ) be a weak solution of system (1) in L ∞ ([0, T ]; (L 1 ∩ L ∞ )(0, L)) 5 . We dene:

H(t) = L 0 (|u 1 | + |u 2 | + |u 0 | + |q 1 | + |q 2 |)(t, x) dx.
Then, under hypothesis (4), ( 5), ( 6) the following a priori estimate, uniform in ε > 0, holds:

H(t) ≤ α u b L 1 (0,T ) + H(0), ∀t > 0.
Moreover the following inequalities hold:

T 0 |u 2 (t, 0)| dt ≤ u b L 1 (0,T ) + 1 α H(0), and 
T 0 |u 1 (t, L)| dt ≤ L 0 (|u 0 1 (x)| + |q 0 1 (x)|) dx + CT with C > 0 constant.
Proof. Since from Lemma 5.1 all concentrations are non-negative, we may write from system (7)

               ∂ t |u 1 | + α∂ x |u 1 | = 1 ε (|q 1 | -|u 1 |) ∂ t |u 2 | -α∂ x |u 2 | = 1 ε (|q 2 | -|u 2 |) ∂ t |q 1 | = 1 ε (|u 1 | -|q 1 |) + K 1 (|u 0 | -|q 1 |) ∂ t |q 2 | = 1 ε (|u 2 | -|q 2 |) + K 2 (|u 0 | -|q 2 |) -|G(q 2 )| ∂ t |u 0 | = K 1 (|q 1 | -|u 0 |) + K 2 (|q 2 | -|u 0 |) + |G(q 2 )|. (26) 
Adding all equations and integrating on (0, L), we get, recalling the boundary condition

u 1 (t, L) = u 2 (t, L), d dt H(t) + α|u 2 (t, 0)| = α|u 1 (t, 0)| = α|u b (t)|. (27) 
Integrating now with respect to time, we obtain:

H(t) + α t 0 |u 2 (s, 0)| ds ≤ α t 0 |u b (s)| ds + H(0). (28) 
with H(t) previously dened. It gives the rst two estimates of the Lemma. Finally, to obtain the last inequality, we add equations (7a) and (7c) and integrate on (0, L) to get

d dt L 0 (|u 1 | + |q 1 |) dx + α|u 1 (t, L)| ≤ α|u b (t)| + K 1 L 0 |u 0 | dx.
Since we have shown that

L 0 |u 0 | dx ≤ H(t) < ∞,
we can conclude after integrating with respect to time. to X T := L ∞ ((0, ); (L 1 (0, L) ∩ L ∞ (0, L))) 5 . and solves the problem

                         (∂ t + α∂ x )u δ 1,t = 1 ε q δ 1,t -u δ 1,t (∂ t -α∂ x )u δ 2,t = 1 ε q δ 2,t -u δ 2,t ∂ t q δ 1,t = - 1 ε q δ 1,t -u δ 1,t + K 1 (u δ 0,t -q δ 1,t ) ∂ t q δ 2,t = - 1 ε q δ 2,t -u δ 2,t + K 2 (u δ 0,t -q δ 2,t ) -G (q δ 2 )q δ 2,t ∂ t u δ 0,1 = K 1 (q δ 1,t -u δ 0,t ) + K 2 (q δ 2,t -u δ 0,t -G (q δ 2 )q δ 2,t (29) 
where u δ i,t = ∂ t u δ i and so on.

                               u δ 1,t (t, 0) = ∂ t u δ b (t), u δ 1,t (0, x) = -α∂ x u 0,δ 1 + 1 ε q 0,δ 1 -u 0,δ 1 u δ 2,t (0, x) = α∂ x u 0,δ 2 + 1 ε q 0,δ 2 -u 0,δ 2 q δ 1,t (0, x) = - 1 ε q 0,δ 1 -u 0,δ 1 + K 1 (u 0,δ 0 -q 0,δ 1 ) q δ 2,t (0, x) = - 1 ε q 0,δ 2 -u 0,δ 2 + K 2 (u 0,δ 0 -q 0,δ 2 ) -G(q 0,δ 2 ) u δ 0,t (0, x) = K 1 (q 0,δ 1 -u 0,δ 0 ) + K 2 (q 0,δ 2 -u 0,δ 0 ) + G(q 0,δ 2 ) (30) 
Proof. The Duhamel's formula obtained by the xed point method in the proof of Theorem 3.2 provides a solution U δ ∈ X T . Deriving U δ with respect to t, one can show that ∂ t U δ solves (29) with initial and boundary conditions (30). Applying then the existence result again proves that actually ∂ t U δ belongs to X T .

Remark 5.1. A priori estimates from previous sections, when applied to the problem (29) complemented with initial-boundary data (30), do not provide a control of ∂ t U δ which is uniform with respect to ε.

This remark motivates next paragraphs.

The initial layer

When ε goes to zero, the concentrations u 1 , q 1 and u 2 , q 2 approach very quickly each other becoming roughly speaking the same. They relax turning out to be equal exponentially fast in time. When considering the time derivative of our unknowns this fast convergence provides a singular contribution to the estimates. In order to account for this phenomenon, we introduce initial layer correctors.

On the microscopic scale we dene for t ∈ R + , the initial layer correctors (ũ 1 , ũ2 , q1 , q2 ) solving

         ∂ t ũ1 = q1 -ũ1 ∂ t ũ2 = q2 -ũ2 ∂ t q1 = ũ1 -q1 ∂ t q2 = ũ2 -q2 , (31) 
As G ∈ C 2 (R), thanks to Lemma 5.4, ∂ t δ ∈ L ∞ ((0, T ); (L 1 (0, T ) ∩ L ∞ (0, L))) 5 , taking the derivative with respect to t in system (35),

∂ t V δ = ∂ t (v δ 1 , v δ 2 , r δ 1 , r δ 2 , u δ 0 ) solves                ∂ t v δ 1,t + ∂ x v δ 1,t = 1 ε (r δ 1,t -v δ 1,t ) + 1 ε ∂ x ũ1,t ∂ t v δ 2,t -∂ x v δ 2,t = 1 ε (r δ 2,t -v δ 2,t ) -1 ε ∂ x ũ2,t ∂ t r δ 1,t = 1 ε (v δ 1,t -r δ 1,t ) + K 1 (u δ 0,t -r δ 1,t ) + 1 ε K 1 q1,t ∂ t r δ 2,t = 1 ε (v δ 2,t -r δ 2,t ) + K 2 (u δ 0,t -r δ 2,t ) + 1 ε K 2 q2,t -G (q δ 2 )q 2,t ∂ t u δ 0,t = K 1 (r δ 1,t -u δ 0,t ) + K 2 (r δ 2,t -u δ 0,t ) -1 ε K 1 q1,t -1 ε K 2 q2,t + G (q δ
2 )q 2,t in the sense of Denition (3.2). Again formally, we multiply each equation respectively by sgn(v δ i,t ) with i = 1, 2, and sgn(r δ j,t ), for j = 1, 2, and by sgn(u δ 0,t ) in the sense explained in the proof of Theorem 3.2. This gives

                         ∂ t |v δ 1,t | + ∂ x |v δ 1,t | ≤ 1 ε (|r δ 1,t | -|v δ 1,t |) + | 1 ε ∂ x ũ1,t | ∂ t |v δ 2,t | -|∂ x v δ 2,t | ≤ 1 ε (|r δ 2,t | -|v δ 2,t |) + | 1 ε ∂ x ũ2,t | ∂ t |r δ 1,t | ≤ 1 ε (|v δ 1,t | -|r δ 1,t |) + K 1 (|u 0,t | -|r δ 1,t |) + | 1 ε K 1 q1,t | ∂ t |r δ 2,t | ≤ 1 ε (|v δ 2,t | -|r δ 2,t |) + K 2 (|u 0,t | -|r δ 2,t |) + | 1 ε K 2 q2,t | +|G (q δ 2 ) 1 ε q2,t | -G (q δ 2 )|r δ 2,t | ∂ t |u 0,t | ≤ K 1 (|r δ 1,t | -|u 0,t |) + K 2 (|r δ 2,t | -|u 0,t |) + | 1 ε K 1 q1,t | +| 1 ε K 2 q2,t | + |G (q δ 2 ) 1 ε q2,t | + G (q δ 2 )|r δ 2,t |. (37) 
Indeed, the right hand side of the 4th and 5th inequalities can be obtained as follows. On the one hand, we have

-G (q δ 2 )q 2,t sgn(r δ 2,t ) = -G (q δ 2 ) r δ 2,t (t, x) - 1 ε q2,t t ε , x sgn(r δ 2,t ) ≤ -G (q δ 2 ) r δ 2,t + 1 ε G (q δ
2 )q 2,t . On the other hand -G (q δ 2 )q 2,t sgn(u δ 0,t ) = -G (q δ 2 ) r δ 2,t (t, x) -

1 ε q2,t t ε , x sgn(u 0,t ) ≤ G (q δ 2 ) r δ 2,t + 1 ε G (q δ
2 )q 2,t , since G is non-decreasing by assumption [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF]. Summing all inequalities in (37) and integrating with repsect to space on (0, L), we obtain formally

d dt Ht (t) + |v δ 2,t (t, 0)| ≤ F 1 (t) + F 2 (t) + F 3 (t) + F 4 (t), (38) 
where

F 1 (t) := |v δ 2,t (t, L)| -|v δ 1,t (t, L)|; F 2 (t) := |v δ 1,t (t, 0)|, F 3 (t) := 1 ε L 0 ∂ x ũ2,t t ε , x dx + 1 ε L 0 ∂ x ũ1,t t ε , x dx, F 4 (t) := 2K 1 ε L 0 q1,t t ε , x dx + 2 ε ( G ∞ + K 2 ) L 0 q2,t t ε , x dx.
Integrating (38) in time, we get

Ht (t) + T 0 |v δ 2,t (t, 0)| dt ≤ T 0 (F 1 (t) + F 2 (t) + F 3 (t) + F 4 (t)) dt + Ht (0). (39) 
Let us consider each term of the right hand side of (39) separately:

F 1 : On the right boundary x = L, one has T 0 (|v δ 2,t (t, L)| -|v δ (t, L)|) dt ≤ 1 ε T 0 (ũ 2,t -ũ1,t ) t ε , L dt ≤ T ε 0 |(ũ 2,t -ũ1,t )(τ, L)| dτ ≤ 1 2 u 0,δ 1 (0) -q 0,δ 1 (0) + u 0,δ 2 (0) -q δ,0 2 (0) ≤ C U 0,δ W 1,1 (0,L)
where we used trace operator's continuity for W 1,1 (0, L) functions.

F 2 : On the other hand at x = 0, the boundary condition can be estimated as

T 0 |v δ 1,t (t, 0)| dt ≤ T 0 |(u δ b ) (s)| ds + T ε 0 |(u 0,δ 1 (0) -q 0,δ 1 (0))e -2τ | dτ ≤ C u δ b W 1,1 (0,T ) + U 0,δ W 1,1 (0,L)
as above.

F 3 : With the change of variable τ = t ε , we have, using again (32),

T 0 L 0 1 ε ∂ x ũi,t t ε , x dxdt = T ε 0 L 0 |∂ x ũi,t (τ, x)| dxdτ ≤ C U 0,δ W 1,1 (0,L) ,
which is uniformly bounded with respect to ε.

F 4 : similarly, we have

T 0 L 0 1 ε qi,t t ε , x dxdt = T ε 0 L 0 |q i,t (τ, x)| dxdτ ≤ C U 0,δ W 1,1 (0,L)
thanks to the fact that ∂ t qi (τ, x) = (q 0 i (x) -u 0 i (x))e -2τ with i = 1, 2. It remains to estimate Ht (0) in (39). Indeed, using (35) at t = 0 in order to convert time derivatives into expressions involving only the data and its space derivatives, one obtains

Ht (0) = L 0 2 i=1 |v δ i,t (0, x)| + |r δ i,t (0, x)| + |u 0,t (0, x)| dx ≤ C U 0,δ W 1,1 (0,L)
So for instance, for the rst term of the sum, we use the rst equation in (35) and we write

∂ t v δ 1 (0, x) = 1 ε (r δ 1 (0, x) -v δ 1 (0, x)) + ∂ x ũ1 (0, x) -∂ x v δ 1 (0, x).
Recalling that r δ 1 (0, x) = q 0 1 (x) and v δ 1 (0, x) = q 0 1 (x) as dened in (36) we get:

∂ t v δ 1 (0, x) = ∂ x (q 0 1 (x) -u 0 1 (x)) -∂ x v δ 1 (0, x) = -∂ x u 0 1 (x), then L 0 |∂ t v δ 1 (0, x)| dx ≤ L 0 |∂ x u 0,δ 1 (x)| dx < C U 0,δ W 1,1 (0,L) ,
The rest follows exactly the same way. We conclude from (39) and the above calculations that

Ht (t) + T 0 |v δ 2,t (t, 0)| dt ≤ Ht (0) + t 0 (F 1 + F 2 + F 3 + F 4 )(s) ds ≤ C U 0,δ W 1,1 (0,L) + u δ b W 1,1 (0,T ) .
Finally, in order to recover (34), we add the rst and third inequalities in (37) and integrate on (0, T ) × (0, L), we get

0 (|v δ 1,t (T, x)| + |r δ 1,t (T, x)|) dx + T 0 |v δ 1,t (t, L)| dt ≤ T 0 |v δ 1,t (t, 0)| dt + L 0 (|v δ 1,t (0, x)| + |r δ 1,t (0, x)|) dx + T 0 L 0 K 1 |u δ 0,t (t, x)| + K 1 ε q1,t t ε , x + 1 ε ∂ x ũ1,t t ε , x dxdt.
We have already proved that the second term of the right hand side is bounded. We have also proved above that u δ 0,t is uniformly bounded in L ∞ ((0, T ); L 1 (0, L)). From (36), we have

v δ 1,t (t, 0) = u b (t) + 1 ε ũ1,t ( t ε , 0).
As above, we use the expressions of ũ1 and q1 and a change of variable to bound each term of the right hand side.

As a consequence, we deduce the following estimates on the time derivatives of the original unknowns (u δ 1 , u δ 2 , q δ 1 , q δ 2 , u δ 0 ) :

Corollary 5.1. Let T > 0, under the same assumptions, there exists a constant C T > 0 depending only on the W 1,1 norm of the data but independent on ε, such that :

T 0 L 0 (|∂ t u δ 1 | + |∂ t u δ 2 | + |∂ t u δ 0 | + |∂ t q δ 1 | + |∂ t q δ 2 |)(t, x) dx dt ≤ C U 0,δ W 1,1 (0,L) , T 0 |∂ t u δ 2 (t, 0)| dt ≤ C U 0,δ W 1,1 (0,L) , T 0 |∂ t u δ 1 (t, L)| dt ≤ C U 0,δ W 1,1 (0,L) . (40) 
Proof. We recall the expressions

v δ 1 = u δ 1 + ũ1 , v δ 2 = u δ 2 + ũ2 , r δ 1 = q δ 1 + q1 , r δ 2 = q δ 2 + q2 .
By the triangle inequality, we have for i ∈ {1, 2},

∂ t u δ i L 1 ([0,T ]×[0,L]) ≤ ∂ t v δ i L 1 ([0,T ]×[0,L]) + 1 ε ∂ t ũi (t/ε, x) L 1 ([0,T ]×[0,L]) , ∂ t q δ i L 1 ([0,T ]×[0,L]) ≤ ∂ t r δ i L 1 ([0,T ]×[0,L]) + 1 ε ∂ t qi (t/ε, x) L 1 ([0,T ]×[0,L]) .
The rst terms of the latter right hand side are bounded from Proposition 5.1. For the second terms, we have, as above,

T 0 L 0 1 ε ∂ t qi t ε , x dxdt = 1 ε T 0 L 0 (q 0 i (x) -u 0 i (x))e -2 t ε dxdt < C U 0,δ W 1,1 (0,L) , T 0 L 0 1 ε ∂ t ũi t ε , x dxdt = 1 ε T 0 L 0 (u 0 i (x) -q 0 i (x))e -2 t ε dxdt < C U 0,δ W 1,1 (0,L) .
Furthermore, from (39), we get T 0 v δ 2,t (t, 0) dt ≤ C T U 0,δ W 1,1 (0,L) .

By the triangle inequality, it implies the second estimate in (40)

Using a Grönwall Lemma, we get, after an integration on [0, L], Thus, one shall conclude that u ε 0 --→ ε→0 u 0 strongly in L 1 ((0, T ) × (0, L)).

2. The limit system :

We pass to the limit in [START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF], the weak formulation of system [START_REF] Layton | Mathematical modeling of kidney transport[END_REF]. Suppose that φ ∈ S 5 .

Taking φ 1 = φ 3 and φ 2 = φ 4 in ( 14) we may pass to the limit ε → 0 and we obtain (u 0 1 (x) + q 0 1 (x))φ 1 (0, x) dx

+ T 0 L 0 u 2 (2∂ t φ 2 -α∂ x φ 2 ) + L 0
(u 0 2 (x) + q 0 2 (x))φ 2 (0, x) dx

+ T 0 L 0 u 0 ∂ t φ 3 + K 1 (u 1 -u 0 )(φ 3 -φ 1 ) + K 2 (u 2 -u 0 )(φ 3 -φ 2 ) + G(u 2 )(φ 3 -φ 2 ) dxdt + L 0 u 0 (0, x)φ 3 (0, x) dx = 0.
which is exactly [START_REF] Perthame | Transport equations in biology[END_REF] with initial data coming from system [START_REF] Layton | Mathematical modeling of kidney transport[END_REF]. Finally, since the solution of the limit system is unique, we deduce that the whole sequence converges. This concludes the proof of Theorem 3.1.

Conclusion

In this study we presented a model describing the transport of ionic concentrations, in particular sodium, for a simplied version of the loop of Henle in a kidney nephron. After introducing the system, we dealt with the rigorous passage to the limit in semi-linear hyperbolic 5 × 5 system, accounting for the presence of epithelium layers, towards a 3 × 3 system (8)- [START_REF] Marulli | On the role of the epithelium in a model of sodium exchange in renal tubules[END_REF]. Physically, studying the asymptotic with respect to parameter ε (accounting for permeability) means to consider very large permeabilities. Roughly speaking, taking into account the limit when ε goes to 0, means 'removing' the epithelial layers and assuming that the tubule is directly in contact with the surrounding interstitium. This work ensures consistency between the reduced model and the 'epithelial' model and also rigorously explains and makes explicit the link between two possible descriptions of the same physical phenomenon, but with two dierent levels of complexity.

The reduced system has already given a proper representation of the counter-current mechanism, but it is not sucient to give other suggestions about the description of the entire phenomenon and, for example, about sodium uxes in clinical cases. As already discussed in [START_REF] Marulli | On the role of the epithelium in a model of sodium exchange in renal tubules[END_REF], despite the addition of the epithelial layer, the model remains far from how the nephron and kidneys actually work.

In order to look after a more appropriate analysis regarding physiological conditions, the rst step would be to take into account water ow and the uid reabsorption in the descending tubule. the second one would be to consider the electrical forces that apply to ions such as sodium and potassium, and that modulate the ows which depend not only on concentration gradients but also on electrical potential, [START_REF] Layton | Mathematical Modeling in Renal Physiology[END_REF][START_REF] Tournus | Modèles d'échanges ioniques dans rein: théorie, analyse asymptotique et applications numériques[END_REF]. The system would give a contribution in the eld of physiological renal transport model and it could be a good starting point to elucidate and to better understand some mechanisms underlying concentrating mechanism and the transport of ions in the kidney.

Denition
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u 1 (

 1 2∂ t φ 1 + α∂ x φ 1 )dxdt + T 0 u b (t)φ 1 (t, 0) dt + L 0

5.2

Estimates on the derivatives

Data

Here we detail the notion of regularization for BV functions. The regularization denoted f δ for a generic BV (0, L) function f is described in the proof of Theorem 5.3.3 [START_REF] Ziemer | Weakly dierentiable functions. Sobolev spaces and functions of bounded variation[END_REF]. It provides the estimates from above :

Using the standard mollier this result is not true as stated p. 225 [START_REF] Ziemer | Weakly dierentiable functions. Sobolev spaces and functions of bounded variation[END_REF], since BV space is not separable.

Denition 5.1. If (u 0 1 , u 0 2 , q 0 1 , q 0 2 , u 0 0 ) and u b are respectively the initial and boundary data associated to the problem [START_REF] Layton | Mathematical modeling of kidney transport[END_REF], under hypotheses 4 and 5, we dene as regular data their regularization in the following manner : we set

where the regularization procedure is extracted from the proof of Theorem 5.3.3 [START_REF] Ziemer | Weakly dierentiable functions. Sobolev spaces and functions of bounded variation[END_REF] and we dene

where χ ∈ C ∞ (R) is a positive monotone function.

On the other hand, we introduced arbitrary constants (c i ) i∈{1,2} such that that match the initial and boundary condition on x = 0 for the incoming characteristic.

that prevents mismatches between u 0 1 , u 0 2 and the boundary condition

The matching is C ∞ in the neighbourhood of (0, 0) in [0, L]×[0, T ]. Indeed, u 0,δ 1 (x) = c 1 when x is close enough to 0 and in the same way u δ b (t) = c 1 when t is near 0, whereas for the derivatives (u 0,δ 1 ) (k) (x) = 0 when x is close to zero for any derivative of order k, and the same holds for (u δ b ) (k) (t) when t is suciently small. The same holds true in the neighbourhood of the point (t, x) = (L, 0).

This regularization procedure allows then to obtain Lemma 5.4. Assume hypotheses 3.3, and let U δ be the solution associated to problem [START_REF] Layton | Mathematical modeling of kidney transport[END_REF] with initial data U 0,δ = (u 0,δ 1 , u 0,δ 2 , q 0,δ 1 , q 0,δ 2 , u 0,δ 0 ) and the boundary condition

Actually, this system may be solved explicitly and we obtain

Uniform L 1 bounds of the time derivatives

We introduce the following quantities on the macroscopic time scale t ∈ [0, T ] :

Next, we prove uniform bounds on the time derivatives :

Proposition 5.1. Let T > 0. If the data is regular in the sense of Denition 5.1, setting : 33), one has :

where W 1,1 (0, L) denotes the vector-space W 1,1 (0, L) 5 .

Proof. From system (7) we deduce

with following initial and boundary conditions:

To recover the third claim in (40), we notice that by denition of v δ 1 and a triangle inequality, we have

where again we use the continuity of the trace operator on W 1,1 (0, L) functions in order to recover the dependence between the values at x = L and the W 1,1 (0, L)-norm of the initial data. Integrating in time and using (34) allows to conclude.

5.2.4

Uniform bounds on the space derivatives Lemma 5.5. Let T > 0. If the data is regular in the sense of Denition 5.1, then, the space derivatives of functions u δ 1 , u δ 2 satisfy the following estimates :

for some non-negative constant C T uniformly bounded with respect to ε.

Proof. Adding equation (7a) with (7c) and also (7b) with (7d) we get

Using Corollary 5.1 and ( 6), the right hand sides are uniformly bounded in L 1 ((0, T ) × (0, L)).

Deriving the ODE part of ( 7) with respect to the space variable and using the latter estimates provides the results for u δ 0 , q δ 1 and q δ 2 .

Extension to BV data

We show here how to use Corollary 5.1 and Lemma 5.5 in order to obtain BV compactness.

Theorem 5.1. Under hypotheses (3.1)-(3.3), there exists a uniform bound such that the εdependent solutions of system (7) satisfy

where the generic constant C is independent on ε.

), one has from the previous estimates :

Now using Theorem 5.3.3 [START_REF] Ziemer | Weakly dierentiable functions. Sobolev spaces and functions of bounded variation[END_REF] one estimates the rhs with respect to the BV norm of the data :

A simple computation shows that χ δ BV (0,max(T,L)) < C uniformly with respect to δ. Then choosing c i = U 0 BV(0,L) u b BV(0,T ) for i ∈ {1, 2} shows that

We are in the hypotheses of Theorem 5.2.1. p. 222 of [START_REF] Ziemer | Weakly dierentiable functions. Sobolev spaces and functions of bounded variation[END_REF] : by L 1 -continuity, shown in Theorem 3.2, U δ tends to U := (u 1 , u 2 , q 1 , q 2 , u 0 ) in L 1 ((0, T ) × (0, L)) strongly, when δ vanishes. Then for any open set V ⊂ (0, T ) × (0, L) one has

and since the BV bound of the sequence (U δ ) δ is uniformly bounded with respect to δ, the result extends by Remark 5.2.2. p. 223 [START_REF] Ziemer | Weakly dierentiable functions. Sobolev spaces and functions of bounded variation[END_REF] to the whole set (0, T ) × (0, L).

6 Proof of the convergence result (Theorem 3.1)

It is divided into two steps.

1. Convergence : From Lemma 5.2, Lemma 5.3 and Corollary (5.1), the sequences (u ε 1 ) ε and (u ε 2 ) ε are uniformly bounded in L ∞ ∩ BV ((0, T ) × (0, L)). Thanks to the Helly's theorem ( [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF][START_REF] Lefloch | Hyperbolic systems of conservation laws. The theory of classical and nonclassical shock waves[END_REF]), we deduce that, up to extraction of a subsequence,

By equations (7a), one shows by testing with the appropriate C 1 compactly supported functions in (0, T ) × (0, L) and using the denition of the BV norm (cf for instance, [START_REF] Ziemer | Weakly dierentiable functions. Sobolev spaces and functions of bounded variation[END_REF] p. 220221):

which tends to zero as ε goes to 0 thanks to the bounds in Corollary 5.1 and Lemma 5.5. Therefore, q ε 1 --→ ε→0 u 1 strongly in L 1 ((0, T ) × (0, L)). By the same argument, we show that q ε 2 --→ ε→0 u 2 strongly in L 1 ((0, T ) × (0, L)). Moreover, since G is Lipschitz-continuous, we have, when ε goes to zero,

G(q ε

2 ) -G(u 2 ) L 1 ((0,T )×(0,L)) -→ 0.

For the convergence of u ε 0 , let us rst denote u 0 a solution to the equation

Then, taking the last equation of system [START_REF] Layton | Mathematical modeling of kidney transport[END_REF], subtracting by this latter equation and multiplying by sgn(u ε 0 -u 0 ), we get in a weak sense that