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Abstract In a Hilbert framework H, we study the convergence properties of a
Newton-like inertial dynamical system governed by a general maximally mono-
tone operator A : H → 2H. When A is equal to the subdifferential of a convex
lower semicontinuous proper function, the dynamic corresponds to the introduc-
tion of the Hessian-driven damping in the continuous version of the accelerated
gradient method of Nesterov. As a result, the oscillations are significantly attenu-
ated. According to the technique introduced by Attouch-Peypouquet (Math. Prog.
2019), the maximally monotone operator is replaced by its Yosida approximation
with an appropriate adjustment of the regularization parameter. The introduction
into the dynamic of the Newton-like correction term (corresponding to the Hessian
driven term in the case of convex minimization) provides a well-posed evolution
system for which we will obtain the weak convergence of the generated trajecto-
ries towards the zeroes of A. We also obtain the fast convergence of the velocities
towards zero. The results tolerate the presence of errors, perturbations. Then, we
specialize our results to the case where the operator A is the subdifferential of a
convex lower semicontinuous function, and obtain fast optimization results.
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1 Introduction

Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and norm ‖ · ‖.
Given a general maximally monotone operator A : H → 2H, we will study the
asymptotic behavior, as t→ +∞, of the second-order in time evolution equation

(DIN-AVD)α,β,λ,e ẍ(t) +
α

t
ẋ(t) + β

d

dt

(
Aλ(t)(x(t))

)
+Aλ(t)(x(t)) = e(t).

The operators JλA : H → H and Aλ : H → H which are defined by

JλA = (I + λA)−1 and Aλ =
1

λ
(I − JλA) ,

are respectively the resolvent of A and the Yosida regularization of A of index
λ > 0. The coefficients α, β are positive damping parameters. The tuning of the
time dependent parameter λ(t) which enters the Yosida regularization of A will
play a crucial role in the asymptotic analysis. The second member e takes account
of perturbations, errors. Without ambiguity, we refer briefly to the dynamic as
(DIN-AVD). The terminology reflects the link of this dynamic with the Dynamic
Inertial Newton method and to the Asymptotic Vanishing Damping, as explained
in the next paragraph. According to the Lipschitz continuity property of the Yosida
approximation, (DIN-AVD) is relevant to the Cauchy-Lipschitz theorem, which
provides existence and uniqueness of the corresponding Cauchy problem. On the
basis of an appropriate adjustment of the parameters, we will obtain the weak
convergence of the generated trajectories towards the zeroes of A, i.e. solutions of
the monotone inclusion

0 ∈ Ax. (1)

This dynamic is the support of a recent study by the authors concerning rapidly
converging algorithms to solve (1) and which make use only of the resolvents of A,
see [12]. It is a difficult problem of fundamental importance in optimization, equi-
librium theory, economics and game theory, partial differential equations, statis-
tics, among other subjects. An in-depth study of (DIN-AVD) is a key to going
further in the analysis of the associated algorithms. Our study is based on several
recent advances in the study of damped inertial dynamics for solving optimiza-
tion problems and monotone inclusions. We describe them briefly in the following
paragraphs.

1.1 Inertial dynamics and algorithms with vanishing damping coefficient

The use of inertial dynamics to accelerate the gradient method in optimization
was first considered by B. Polyak in [34]. He considered the inertial system with a
fixed viscous damping coefficient γ > 0

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0,

which, because of its natural mechanical interpretation, is called the Heavy Ball
with Friction method. This system was further developed by Attouch-Goudou-
Redont [11] as a tool to explore the local minima of f . For a strongly convex
function f , and γ judiciously chosen, (HBF) provides convergence at exponential
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rate of f(x(t)) to minH f . For a general convex function f , the asymptotic conver-
gence rate of (HBF) is O(1

t ) (in the worst case). This is however not better than
the steepest descent. A decisive step to obtain a faster asymptotic convergence
was taken by Su-Boyd-Candès [36] who considered the case of an Asymptotic
Vanishing Damping coefficient γ(t) = α

t , that is

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0.

For a general convex differentiable function f , and α = 3, it provides a continuous
version of the accelerated gradient method of Nesterov [33]. 1 For α ≥ 3, each
trajectory x(·) of (AVD)α satisfies the asymptotic convergence rate of the values

f(x(t))− inf
H
f = O

(
1/t2

)
as t→ +∞.

As a specific feature, the viscous damping coefficient α
t vanishes (tends to zero) as

time t goes to infinity, hence the terminology. The case α = 3, which corresponds
to Nesterov’s historical algorithm, is critical. In the case α = 3, the question of the
convergence of the trajectories remains an open problem (except in one dimension
where convergence holds [10]). For α > 3, it has been shown by Attouch-Chbani-
Peypouquet-Redont [8] that each trajectory converges weakly to a minimizer. For
α > 3, it is shown in [17] and [32] that the asymptotic convergence rate of the values
is actually o(1/t2). The subcritical case α ≤ 3 has been examined by Apidopoulos-
Aujol-Dossal [4] and Attouch-Chbani-Riahi [10], with the convergence rate of the

objective values O
(
t−

2α
3

)
. These rates are optimal, that is, they can be reached,

or approached arbitrarily close. The corresponding inertial algorithms are in line
with the Nesterov accelerated gradient method

yk = xk +
(

1− α

k

)
(xk − xk−1)

xk+1 = yk − s∇f(yk).

They enjoy similar properties to the continuous case. They were first obtained by
Chambolle-Dossal [27], see [6], [8], and [30] for further results, and the extension
to proximal-gradient algorithms for structured optimization.

1.2 Hessian damping

The following inertial system combines asymptotic vanishing damping with Hessian-
driven damping

ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0.

It was considered by Attouch-Peypouquet-Redont in [18]. At first glance, the pres-
ence of the Hessian may seem to entail numerical difficulties. However, this is not

1 When f is not convex, the convergence of the trajectories generated by (AVD)α is a largely
open question. Recent progress has been made in [24] where the convergence of the trajectories
of a system, which can be considered as a perturbation of (AVD)α, has been obtained in a
non-convex setting.
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the case as the Hessian intervenes in the above ODE in the form ∇2f(x(t))ẋ(t),
which is nothing but the derivative with respect to time of ∇f(x(t)). So, the tem-
poral discretization of this dynamic provides first-order algorithms of the form{

yk = xk + αk(xk − xk−1)− βk (∇f(xk)−∇f(xk−1))

xk+1 = yk − s∇f(yk).

As a specific feature, and by comparison with the accelerated gradient method of
Nesterov, these algorithms contain a correction term which is equal to the differ-
ence of the gradients at two consecutive steps. While preserving the convergence
properties of the Nesterov accelerated method, they provide fast convergence to
zero of the gradients, and reduce the oscillatory aspects. Several recent studies have
been devoted to this subject, see Attouch-Chbani-Fadili-Riahi [7], Boţ-Csetnek-
László [25], Kim [29], Lin-Jordan [31], Shi-Du-Jordan-Su [35].

1.3 Inertial dynamics and cocoercive operators

Let’s come to the transposition of these techniques to the case of maximally mono-
tone operators. Álvarez-Attouch [2] and Attouch-Maingé [13] studied the equation

ẍ(t) + γẋ(t) +A(x(t)) = 0, (2)

when A is a cocoercive 2 (and hence maximally monotone) operator, (see also [23]).
Cocoercivity plays an important role in the study of (2), not only to ensure the
existence of solutions, but also to analyze their long-term behavior. Assuming that
the cocoercivity parameter λ and the damping coefficient γ satisfy the inequality
λγ2 > 1, they showed that each trajectory of (2) converges weakly to a zero of
A. Since for λ > 0, the operator Aλ is λ-cocoercive and A−1

λ (0) = A−1(0), we
immediately deduce that, under the condition λγ2 > 1, given a general maximally
monotone operator A, each trajectory of

ẍ(t) + γẋ(t) +Aλ(x(t)) = 0

converges weakly to a zero of A. In the quest for faster convergence, the system

ẍ(t) +
α

t
ẋ(t) +Aλ(t)(x(t)) = 0, t > t0 > 0,

involves a time-dependent regularizing parameter λ(·) satisfying the inequality

λ(t)× α2

t2
> 1, t > t0 > 0,

see Attouch-Peypouquet [16]. Time discretization of this dynamic gives the Re-
laxed Inertial Proximal Algorithm

(RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = (1− ρk)yk + ρkJµkA(yk),

whose convergence properties have been analyzed by Attouch-Cabot [5], Attouch-
Chbani-Riahi [9], Attouch-Peypouquet [16].

2 A : H → H is λ-cocoercive (λ > 0) if for all x, y ∈ H 〈Ay −Ax, y − x〉 ≥ λ‖Ay −Ax‖2.
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1.4 Link with Newton-like methods for solving monotone inclusions

Let us specify the link between our study and Newton’s method for solving (1). To
overcome the ill-posed character of the continuous Newton method for a general
maximally monotone operator A, the following first order evolution system was
studied by Attouch-Svaiter [20],{

v(t) ∈ A(x(t))

γ(t)ẋ(t) + βv̇(t) + v(t) = 0.

This system can be considered as a continuous version of the Levenberg-Marquardt
method, which acts as a regularization of the Newton method. Remarkably, under
a fairly general assumption on the regularization parameter γ(t), this system is
well posed and generates trajectories that converge weakly to equilibria. Parallel
results have been obtained for the associated proximal algorithms obtained by
implicit temporal discretization, see [1], [15], [19]. Formally, this system writes as

γ(t)ẋ(t) + β
d

dt
(A(x(t))) +A(x(t)) = 0.

Thus, (DIN-AVD)α,β can be considered as an inertial and regularized version of
this dynamical system.

1.5 Organization of the paper

In Section 2, we show the existence and the uniqueness of a strong global solution
to the Cauchy problem associated with (DIN-AVD). In Section 3, based on an
appropriate tuning of the parameters, we study the convergence properties as t→
+∞ of the trajectories generated by (DIN-AVD). Our study takes into account the
presence of perturbations, errors. Section 4 is devoted to numerical experiments.
In Section 5, we specialize our study in the case where the operator A is the
subdifferential of a convex lower semicontinuous function. In this case, we get fast
minimization properties. Finally, we present some lines of research for the future.

2 Existence and uniqueness results for (DIN-AVD)

We rely on the first-order equivalent formulation of (DIN-AVD) which is valid when
β > 0. It was first considered by Alvarez-Attouch-Bolte-Redont [3] and Attouch-
Peypouquet-Redont [18] in the framework of convex minimization, that is A = ∂f

with f convex. Specifically, in our context, we have the following equivalence, which
follows from a simple differential and algebraic calculation.

Proposition 1 The following are equivalent: (i)⇐⇒ (ii)

(i) ẍ(t) +
α

t
ẋ(t) + β

d

dt

(
Aλ(t)(x(t)))

)
+Aλ(t)(x(t)) = e(t).

(ii)


ẋ(t) + βAλ(t)(x(t))−

(
1
β −

α
t

)
x(t) + 1

β y(t) = 0;

ẏ(t)−
(

1
β −

α
t + αβ

t2

)
x(t) + 1

β y(t) = −βe(t).
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Note that (ii) is different from the Hamiltonian formulation of (i). On the one
hand, the formulation (ii) is written as an evolution system in the product space
H × H, which is governed by the sum of a time dependent maximally monotone
operator and a time dependent continuous linear operator. From this, we will
deduce in the following theorem the existence and uniqueness of a strong global
solution for the associated Cauchy problem. This first order equivalent formulation
offers many applications. It was used by Attouch-Maingé-Redont in [14] for the
modeling of damped shocks in mechanics, and by Castera-Bolte-Févotte-Pauwels
in deep learning [26].

On the other hand, when one works with (ii), one loses the mechanical interpre-
tation of the dynamic, and the intuition of the energy notions which are attached to
it. So, in the following sections, to develop a Lyapunov analysis for (DIN-AVD),
we will work with the initial formulation (i). The analysis of (DIN-AVD) is es-
sentially based on the use of time-dependent Yosida parameters λ(t). We have
gathered in the following lemma some technical results concerning the properties
of the mapping (λ, x) 7→ Aλ(x), which will be useful later in the proofs.

Lemma 1 Let A : H → 2H be a maximally monotone operator, let γ, ν > 0, and

x, y ∈ H. Then, the following inequalities are satisfied

a) ‖γAγ(x)− νAν(y)‖ ≤ 2‖x− y‖+ |γ − ν|‖Aγ(x)‖.

b) ‖Aγ(x)−Aν(y)‖ ≤ 2
γ ‖x− y‖+ |γ−ν|

γ (‖Aγ(x)‖+ ‖Aν(y)‖).

c) Consider x : [t0,+∞[→ H a differentiable function. Assume further λ : [t0,+∞[→
]0,+∞[ is a derivable function. Then, for every t ∈ [t0,+∞[ and every z ∈ A−1(0),

(c1)

∥∥∥∥ ddtλ(t)Aλ(t)(x(t))

∥∥∥∥ ≤ 2‖ẋ(t)‖+ λ′(t)‖Aλ(t)(x(t))‖.

(c2)

∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ ≤ 2

λ(t)
‖ẋ(t)‖+ 2

|λ′(t)|
λ(t)

‖Aλ(t)(x(t))‖.

(c3)

∥∥∥∥ ddtλ(t)Aλ(t)(x(t))

∥∥∥∥ ≤ 2‖ẋ(t)‖+
|λ′(t)|
λ(t)

‖x(t)− z‖.

Proof a) Note that according to [21, Proposition 23.28 (iii)]

‖JγA(x)− JνA(x)‖ ≤ |γ − ν|‖Aγ(x)‖.

Hence,

‖γAγ(x)− νAν(x)‖ = ‖(x− y)− (JγA(x)− JνA(x)‖ ≤ ‖x− y‖+ |γ − ν|‖Aγ(x)‖.

Moreover, by the 1
ν−Lipschitz continuity of the Yosida approximation Aν , we have

‖νAν(x)− νAν(y)‖ ≤ ‖x− y‖.

Finally,

‖γAγ(x)− νAν(y)‖ = ‖(γAγ(x)− νAν(x)) + (νAν(x)− νAν(y))‖
≤ ‖x− y‖+ |γ − ν|‖Aγ(x)‖+ ‖x− y‖.
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b) By using a) we have

‖Aγ(x)−Aν(y)‖ =
1

γ
‖(γAγ(x)− νAν(y)) + (ν − γ)Aν(y)‖

≤ 1

γ
‖γAγ(x)− νAν(y)‖+

|ν − γ|
γ
‖Aν(y)‖

≤ 2

γ
‖x− y‖+

|γ − ν|
γ

(‖Aγ(x)‖+ ‖Aν(y)‖).

(c1) Let h > 0. From a) we have

‖λ(t+ h)Aλ(t+h)(x(t+ h))− λ(t)Aλ(t)(x(t))‖ ≤ 2‖x(t+ h)− x(t)‖

+ |λ(t+ h)− λ(t)|‖Aλ(t+h)(x(t+ h))‖.

Dividing by h, and letting h→ 0, we get the claim.

(c2) Let h > 0. From b) we have

‖Aλ(t+h)(x(t+ h))−Aλ(t)(x(t))‖ ≤
2

λ(t+ h)
‖x(t+ h)− x(t)‖+

|λ(t+ h)− λ(t)|
λ(t+ h)

(‖Aλ(t+h)(x(t+ h))‖+ ‖Aλ(t)(x(t))‖).

Dividing by h and letting h→ 0, we get the claim.

(c3) Let z ∈ A−1(0). According to Aλ(t)(z) = 0, and the 1
λ(t) -Lipschitz continuity

of Aλ(t) we have

‖Aλ(t)(x(t))‖ ≤ 1

λ(t)
‖x(t)− z‖.

Combining this inequality with (c1) gives the claim.

Theorem 1 Suppose that β ≥ 0. Suppose that λ : [t0,+∞[→]0,+∞[ is a measurable

function, and that there exists λ > 0 such that λ(t) ≥ λ for all t ≥ t0. Suppose that

e ∈ L1(t0, T ;H) for all T > t0.

Then, for any (x0, x1) ∈ H × H, there exists a unique strong global solution x :
[t0,+∞[→ H of the continuous dynamic (DIN-AVD) which satisfies the Cauchy data

x(t0) = x0, ẋ(t0) = x1.

Proof a) Case β > 0. According to Proposition 1, it is equivalent to solve the

first-order system (ii) with the Cauchy data x(t0) = x0 and y(t0) = y0 := −β
(
x1 +

βAλ(t0)(x0)−
(

1
β −

α
t0

)
x0

)
. This system writes

Ż(t) + F (t, Z(t)) = 0, Z(t0) = (x0, y0)

where Z(t) = (x(t), y(t)) ∈ H×H and

F (t, (x, y)) =
(
βAλ(t)(x)−

(
1

β
− α

t

)
x+

1

β
y,−

(
1

β
− α

t
+
αβ

t2

)
x+

1

β
y + βe(t)

)
.

According to the Lipschitz continuity property of the Yosida approximation of a
maximally monotone operator, the existence and uniqueness of a strong global
solution (x, y) : [t0,+∞[→ H × H is relevant of the Cauchy-Lipschitz theorem.
Precisely, we can apply the non-autonomous version of this theorem given in [28,
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Proposition 6.2.1]. Thus, we obtain a strong solution, that is, t 7→ ẋ(t) is locally
absolutely continuous. If, moreover, we suppose that the functions λ(·) and e(·)
are continuous, then the solution is a classical solution of class C2.

b) Case β = 0. We then get the system

ẍ(t) +
α

t
ẋ(t) +Aλ(t)(x(t)) = e(t).

In this case, we use the equivalent Hamiltonian formulation ẋ(t)− y(t) = 0;

ẏ(t) + α
t y(t) +Aλ(t)(x(t))− e(t) = 0,

which, thanks to the Lipschitz continuity of Aλ, is relevant of the classical Cauchy-
Lipschitz theorem.

3 Asymptotic convergence properties of (DIN-AVD)

Given α > 1, β ≥ 0 and e ∈ L1
loc(t0,+∞;H), we consider the evolution system

(DIN-AVD) ẍ(t) +
α

t
ẋ(t) + β

d

dt

(
Aλ(t)(x(t))

)
+Aλ(t)(x(t)) = e(t), t > t0 > 0.

The existence of strong global solutions to this system is guaranteed by Theorem
1. The convergence properties as t → +∞ of the trajectories generated by this
system are summarized in the following theorem.

Theorem 2 Let A : H → 2H be a maximally monotone operator such that S =
A−1(0) 6= ∅. Consider the evolution equation (DIN-AVD) where the parameters satisfy

the following conditions

α > 1, β ≥ 0, and λ(t) = λt2 with λ >
1

(α− 1)2
.

Assume further that∫ +∞

t0

t3‖e(t)‖2dt < +∞ and

∫ +∞

t0

t‖e(t)‖dt < +∞.

Then, for any trajectory x : [t0,+∞[→ H of (DIN-AVD) the following properties are

satisfied:

(i) (convergence) x(t) is bounded, and x(t) converges weakly, as t → +∞, to an

element of S.

(ii) (integral estimates)

∫ +∞

t0

t‖ẋ(t)‖2dt < +∞,
∫ +∞

t0

t3‖ẍ(t)‖2dt < +∞ and∫ +∞

t0

t3‖Aλ(t)(x(t))‖2dt < +∞.

(iii) (pointwise estimates) lim
t→+∞

‖ẋ(t)‖ = 0, ‖ẋ(t)‖ = o

(
1

t

)
as t → +∞ and,

for all 0 < η < 1, one has

‖Aλ(t)(x(t))‖ = o

(
1

t2

)
,

∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ = o

(
1

t2+η

)
as t→ +∞.
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Proof Lyapunov analysis. Take z ∈ S. For 0 < b < α − 1 consider the energy
functional

Eb(t) :=
1

2
‖b(x(t)− z) + t(ẋ(t) + βAλ(t)(x(t)))‖2 +

b(α− 1− b)
2

‖x(t)− z‖2. (3)

Using the classical derivation chain rule and (DIN-AVD), we get

Ėb(t) =〈
(b+ 1− α)ẋ(t) + (β − t)Aλ(t)(x(t)) + te(t), b(x(t)− z) + t(ẋ(t) + βAλ(t)(x(t)))

〉
+b(α− 1− b)〈ẋ(t), x(t)− z〉. (4)

After reduction, we obtain

Ėb(t) = b(β − t)
〈
Aλ(t)(x(t)), x(t)− z

〉
+ (−t2 + β(b+ 2− α)t)

〈
Aλ(t)(x(t)), ẋ(t)

〉
+ (b+ 1− α)t‖ẋ(t)‖2 + β(β − t)t‖Aλ(t)(x(t))‖2

+ bt〈e(t), x(t)− z〉+ t2〈e(t), ẋ(t)〉+ βt2〈e(t), Aλ(t)(x(t))〉. (5)

We have for all p1 > 0

bt〈e(t), x(t)− z〉 ≤ bt‖e(t)‖‖x(t)− z‖, (6)

t2〈e(t), ẋ(t)〉 ≤ p1t
3‖e(t)‖2 +

t

4p1
‖ẋ(t)‖2, (7)

βt2〈e(t), Aλ(t)(x(t))〉 ≤ β

2

(
t3‖e(t)‖2 + t‖Aλ(t)(x(t))‖2

)
. (8)

Combining (5), (6), (7) and (8), we obtain

Ėb(t) ≤ b(β − t)
〈
Aλ(t)(x(t)), x(t)− z

〉
+

(
b+ 1− α+

1

4p1

)
t‖ẋ(t)‖2 (9)

+ (−t2 + β(b+ 2− α)t)
〈
Aλ(t)(x(t)), ẋ(t)

〉
+

(
β(β − t)t+

β

2
t

)
‖Aλ(t)(x(t))‖2

+ bt‖e(t)‖‖x(t)− z‖+

(
p1 +

β

2

)
t3‖e(t)‖2.

Now, using the fact that Aλ(t) is λ(t) cocoercive, and that z ∈ S, we get, for all
t ≥ t1 = max(t0, β)

b(β − t)
〈
Aλ(t)(x(t)), x(t)− z

〉
≤ b(β − t)λ(t)‖Aλ(t)(x(t))‖2. (10)

Let us choose b =
α− 1

2
> 0. According to the assumption λ > 1

(α−1)2
, we can find

ε such that

0 < ε < α− 1− 1√
λ
< 2(α− 1− b), (11)
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where the last inequality comes from the choice of b. Further, take p1 =
1

ε
. Then,

(9) and (10) lead to

Ėb(t) +
ε

4
t‖ẋ(t)‖2 +

ε

2
tλ(t))‖Aλ(t)(x(t))‖2 ≤

(
b+ 1− α+

ε

2

)
t‖ẋ(t)‖2 (12)

+ (−t2 + β(b+ 2− α)t)
〈
Aλ(t)(x(t)), ẋ(t)

〉
+

((
b(β − t) +

ε

2
t
)
λ(t) + β(β − t)t+

β

2
t

)
‖Aλ(t)(x(t))‖2

+ bt‖e(t)‖‖x(t)− z‖+

(
1

ε
+
β

2

)
t3‖e(t)‖2,

for all t ≥ t1. By (11) we have b+ 1 − α+ ε
2 < 0. Moreover, still by (11) we have

−b+ ε
2 = −α−1

2 + ε
2 < 0. Since λ(t) = λt2 with λ > 0, we deduce that there exists

t2 ≥ t1 such that, for all t ≥ t2(
b(β − t) +

ε

2
t
)
λ(t) + β(β − t)t+

β

2
t < 0.

According to Lemma 2, we deduce that the sum

S(t) =
(
b+ 1− α+

ε

2

)
t‖ẋ(t)‖2 + (−t2 + β(b+ 2− α)t)

〈
Aλ(t)(x(t)), ẋ(t)

〉
+

((
b(β − t) +

ε

2
t
)
λ(t) + β(β − t)t+

β

2
t

)
‖Aλ(t)(x(t))‖2

in the right hand side of (12) is nonpositive whenever

R(t) :=(−t2 + β(b+ 2− α)t)2

− 4
(
b+ 1− α+

ε

2

)
t

((
b(β − t) +

ε

2
t
)
λ(t) + β(β − t)t+

β

2
t

)
≤ 0.

Taking into account the fact that λ(t) = λt2 we obtain

R(t) =
(

1 + 4
(
b+ 1− α+

ε

2

)(
b− ε

2

)
λ
)
t4 +O(t3).

Since ε < α− 1− 1√
λ

, we get that λ > 1
(α−1−ε)2 . From b = α−1

2 we deduce that

1 + 4
(
b+ 1− α+

ε

2

)(
b− ε

2

)
λ = 1− (α− 1− ε)2λ < 0.

Consequently, there exists t3 ≥ t2 such that R(t) < 0, for all t ≥ t3. Hence, (12)
leads to, for all t ≥ t3

Ėb(t)+
ε

4
t‖ẋ(t)‖2 +

ε

2
tλ(t))‖Aλ(t)(x(t))‖2 ≤ bt‖e(t)‖‖x(t)−z‖+

(
1

ε
+
β

2

)
t3‖e(t)‖2.

(13)

Estimates. By integrating (13) on an interval [t3, t], and by denoting

C0 =

(
1

ε
+
β

2

)∫ +∞

t3

t3‖e(t)‖2dt+ Eb(t3) < +∞
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we obtain that for all t ≥ t3

Eb(t)+
ε

4

∫ t

t3

s‖ẋ(s)‖2ds+ ε

2

∫ t

t3

sλ(s)‖Aλ(s)(x(s))‖2ds ≤ C0+b

∫ t

t3

s‖e(s)‖‖x(s)−z‖ds.

(14)
Taking into account the form of the energy functional Eb(t) and the fact that
b = α−1

2 , the latter relation leads to

(α− 1)2

8
‖x(t)− z‖2 ≤ C0 +

α− 1

2

∫ t

t3

s‖e(s)‖‖x(s)− z‖ds.

More precisely, we have

1

2
‖x(t)− z‖2 ≤ C1 +

2

α− 1

∫ t

t3

s‖e(s)‖‖x(s)− z‖ds, (15)

where C1 = 4C0

(α−1)2
. Now, applying the Gronwall lemma (see [22, Lemma A.5]) to

(15) we obtain

‖x(t)− z‖ ≤
√

2C1 +
2

α− 1

∫ t

t3

s‖e(s)‖ds.

Therefore, ‖x(t)− z‖ and consequently x(t) are bounded.
Further, the boundedness of ‖x(t)− z‖ and the assumption on e leads to∫ +∞

t3

s‖e(s)‖‖x(s)− z‖ds < +∞.

Therefore, (14) becomes

Eb(t) +
ε

4

∫ t

t3

s‖ẋ(s)‖2ds+
ε

2

∫ t

t3

sλ(s)‖Aλ(s)(x(s))‖2ds ≤ C, (16)

where C = C0 + b
∫+∞
t3

s‖e(s)‖‖x(s)− z‖ds.
From this we immediately deduce that∫ ∞

t0

t‖ẋ(t)‖2dt < +∞, (17)∫ +∞

t0

t3‖Aλ(t)(x(t))‖2dt < +∞, (18)

sup
t≥t0
‖b(x(t)− z) + t(ẋ(t) + βAλ(t)(x(t)))‖2 < +∞. (19)

Moreover, the 1
λ(t) Lipschitz continuity of Aλ(t), and z ∈ S leads to

‖Aλ(t)(x(t))‖ = ‖Aλ(t)(x(t))−Aλ(t)(z)‖ ≤
1

λ(t)
‖x(t)− z‖.

Taking into account that λ(t) = λt2 and ‖x(t)− z‖ is bounded, we deduce that

‖Aλ(t)(x(t))‖ = O
(

1

t2

)
, as t→ +∞. (20)
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Further, from the boundedness of the trajectory x(·) and (19) we deduce that

‖ẋ(t)‖ = O
(

1

t

)
, as t→ +∞.

In particular, we have limt→+∞ ‖ẋ(t)‖ = 0. According to Lemma 1 we have∥∥∥∥ ddtλ(t)Aλ(t)(x(t))

∥∥∥∥ ≤ 2‖ẋ(t)‖+ 2
|λ′(t)|
λ(t)

‖x(t)− z‖ = O
(

1

t

)
, as t→ +∞. (21)

Combining the latter relation with (20), we deduce that∥∥∥∥λ(t)
d

dt
Aλ(t)(x(t))

∥∥∥∥ = O
(

1

t

)
, as t→ +∞.

Consequently, we have∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ = O
(

1

t3

)
, as t→ +∞, (22)

which implies∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ = o

(
1

t2+η

)
, as t→ +∞, for all 0 < η < 1.

Let us improve the estimate (20), and show that

‖Aλ(t)(x(t))‖ = o

(
1

t2

)
, as t→ +∞.

We have∣∣∣∣ ddt‖λ(t)Aλ(t)(x(t))‖4
∣∣∣∣ = 4

∣∣∣∣〈λ(t)Aλ(t)(x(t)),
d

dt
(λ(t)Aλ(t)(x(t)))

〉∣∣∣∣ ‖λ(t)Aλ(t)(x(t))‖2.

(23)

According to (20) and (21) there exists K > 0 such that∣∣∣∣〈λ(t)Aλ(t)(x(t)),
d

dt
(λ(t)Aλ(t)(x(t)))

〉∣∣∣∣ ≤ ∥∥λ(t)Aλ(t)(x(t))
∥∥∥∥∥∥ ddt (λ(t)Aλ(t)(x(t)))

∥∥∥∥ ≤ K

t
.

Hence, (23) leads to∣∣∣∣ ddt‖λ(t)Aλ(t)(x(t))‖4
∣∣∣∣ ≤ 4K

t
‖λ(t)Aλ(t)(x(t))‖2. (24)

According to (18) the right hand side of (24) belongs to L1(t0,+∞), which implies

d

dt
‖λ(t)Aλ(t)(x(t))‖4 ∈ L1(t0,+∞).

Therefore

lim
t→+∞

‖λ(t)Aλ(t)(x(t))‖4 exists.
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But then, L := limt→+∞ ‖λ(t)Aλ(t)(x(t))‖2 also exists. Using (18) again, i.e.∫ +∞

t0

1

t
‖λ(t)Aλ(t)(x(t))‖2dt = λ

∫ +∞

t0

tλ(t)‖Aλ(t)(x(t))‖2dt < +∞,

we deduce that L = 0. Therefore, limt→+∞ ‖λ(t)Aλ(t)(x(t))‖2 = 0, which gives

‖Aλ(t)(x(t))‖ = o

(
1

t2

)
, as t→ +∞. (25)

Finally, by using (DIN-AVD) we have

‖ẍ(t)‖2 =

∥∥∥∥e(t)− α

t
ẋ(t)− β d

dt
Aλ(t)(x(t))−Aλ(t)(x(t))

∥∥∥∥2 .
According to an elementary convexity inequality, we get

t3‖ẍ(t)‖2 ≤ 4t3‖e(t)‖2 + 4α2t‖ẋ(t)‖2 + 4β2t3
∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥2 + 4t3
∥∥Aλ(t)(x(t))

∥∥2 .
According to

∫+∞
t0

t3‖e(t)‖2dt < +∞, (17), (22) and (18) we obtain that∫ +∞

t0

t3‖ẍ(t)‖2dt < +∞. (26)

Let us now prove that ‖ẋ(t)‖ = o
(
1
t

)
, as t→ +∞. We have

d

dt
t2‖ẋ(t)‖2 = 2t‖ẋ(t)‖2 + 2t2〈ẍ(t), ẋ(t)〉

2t2〈ẍ(t), ẋ(t)〉 ≤ t3‖ẍ(t)‖2 + t‖ẋ(t)‖2.

Hence,
d

dt
t2‖ẋ(t)‖2 ≤ t3‖ẍ(t)‖2 + 3t‖ẋ(t)‖2.

According to (26) and (17) we have t3‖ẍ(t)‖2 + 3t‖ẋ(t)‖2 ∈ L1(t0,+∞). Therefore,
from [1, Lemma 5.1] there exists limt→+∞ t2‖ẋ(t)‖2 ∈ R. Using (17) again, we have∫ ∞

t0

1

t
(t2‖ẋ(t)‖2)dt =

∫ ∞
t0

t‖ẋ(t)‖2dt < +∞.

Therefore, limt→+∞ t2‖ẋ(t)‖2 = 0, and ‖ẋ(t)‖ = o
(
1
t

)
as t→ +∞.

The limit. To prove the existence of the weak limit of x(t), we use Opial lemma.
Let us introduce the anchor function hz(t) = 1

2‖x(t)−z‖2. The classical derivation
chain rule gives

ḧz(t) +
α

t
ḣz(t) =

〈
ẍ(t) +

α

t
ẋ(t), x(t)− z

〉
+ ‖ẋ(t)‖2.

By using (DIN-AVD) we get

β

〈
d

dt
Aλ(t)(x(t)), x(t)− z

〉
=
〈
e(t)− ẍ(t)− α

t
ẋ(t)−Aλ(t)(x(t)), x(t)− z

〉
=
〈
e(t)−Aλ(t)(x(t)), x(t)− z

〉
−
(
ḧz(t) +

α

t
ḣz(t)

)
+ ‖ẋ(t)‖2.
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Therefore

tḧz(t) + αḣz(t) + t
〈
Aλ(t)(x(t)), x(t)− z

〉
(27)

= t‖ẋ(t)‖2 + t〈e(t), x(t)− z〉 − βt
〈
d

dt
Aλ(t)(x(t)), x(t)− z

〉
.

By Cauchy-Schwarz inequality

−βt
〈
d

dt
Aλ(t)(x(t)), x(t)− z

〉
≤ βt

∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ ‖x(t)− z‖,

t〈e(t), x(t)− z〉 ≤ t‖e(t)‖‖x(t)− z‖.

According to (27), we deduce that

tḧz(t) + αḣz(t) + t
〈
Aλ(t)(x(t)), x(t)− z

〉
≤ t‖ẋ(t)‖2 + βt

∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ ‖x(t)− z‖+ t‖e(t)‖‖x(t)− z‖.

According to ‖x(t)− z‖ is bounded, t‖e(t)‖ ∈ L1(t0,+∞), (17) and (22) we have

t‖ẋ(t)‖2 + βt

∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ ‖x(t)− z‖+ t‖e(t)‖‖x(t)− z‖ ∈ L1(t0,+∞).

Moreover t 7→ t
〈
Aλ(t)(x(t)), x(t)− z

〉
is a non-negative function. So, we can apply

Lemma A.6 from [16], and obtain that limt→+∞ hz(t) exists. In other words,

lim
t→+∞

‖x(t)− z‖ exists for all z ∈ S.

To complete the proof via the Opial’s lemma, we need to prove that every weak
sequential cluster point of x(t) belongs to S. To this end, we use the following
property of the Yosida approximation of a maximally monotone operator:

Aλ(x) ∈ A(x− λAλ(x)), for all x ∈ H and λ > 0. (28)

Let tn → +∞ such that x(tn) ⇀ x∗, n→ +∞. Since the graph of A is demi-closed,
by using (25) we have

0 = lim
n→+∞

Aλ(tn)(x(tn)) ∈ A( lim
n→+∞

(x(tn)− λ(tn)Aλ(tn)(x(tn))) = A(x∗).

Consequently, x(t) converges weakly to an element of S. ut
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4 Some numerical experiments

Take A : R2 → R2, A(x, y) = (−y, x), which is a linear skew symmetric operator.
Clearly, A is a maximally monotone whose single zero is x∗ = (0, 0). Further, A can

be identified with the matrix

(
0 −1
1 0

)
, and an easy computation shows that the

Yosida regularization of A can be identified with the matrix Aλ =

(
λ

1+λ2
−1

1+λ2

1
1+λ2

λ
1+λ2

)
.

As a standing assumption, throughout the following numerical experiments, we
take the coefficients λ(t) of the form λ(t) = λt2, and the perturbation errors of

the form e(t) =
(
e1
tp
,
e2
tq

)
, p, q > 2. Further, we consider the starting points u0 =

(1, 1), v0 = (1, 1). Note that this choice of the initial speed vector v0 means that,
at the start, the trajectory tends to move away from the origin. Obviously, a
trajectory of (DIN-AVD) in this case is of the form x(t) = (x1(t), x2(t)). In order to
solve the dynamical system (DIN-AVD) with starting points x(t0) = u0, ẋ(t0) = v0
on an interval [t0, T ], we use the MATLAB function ode45. To this purpose we
rewrite (DIN-AVD) as the first order system used in Proposition 1, that is,

ẋ1(t) =
(

1
β −

α
t −

βλt2

1+λ2t4

)
x1(t) + β

1+λ2t4 x2(t)− 1
β y1(t)

ẋ2(t) = − β
1+λ2t4 x1(t) +

(
1
β −

α
t −

βλt2

1+λ2t4

)
x2(t)− 1

β y2(t)

ẏ1(t) =
(

1
β −

α
t + αβ

t2

)
x1(t)− 1

β y1(t)− βe1
tp

ẏ2(t) =
(

1
β −

α
t + αβ

t2

)
x2(t)− 1

β y2(t)− βe2
tq

(x1(t0), x2(t0), y1(t0), y2(t0)) =(
1, 1,−β2 λt20−1

1+λ2t40
− αβ

t0
− β + 1,−β2 λt20+1

1+λ2t40
− αβ

t0
− β + 1

)
.

(29)

In the case β = 0, we rewrite (DIN-AVD) as in Theorem 1 (b), that is

ẋ1(t) = y1(t)

ẋ2(t) = y2(t)

ẏ1(t) = − λt2

1+λ2t4 x1(t) + 1
1+λ2t4 x2(t)− α

t y1(t) + e1
tp

ẏ2(t) = − 1
1+λ2t4 x1(t)− λt2

1+λ2t4 x2(t)− α
t y2(t) + e2

tq

(x1(t0), x2(t0), y1(t0), y2(t0) = (1, 1, 1, 1).

(30)

I. In our first experiment, we are interested in the asymptotic behavior of
the components x1 and x2, obtained by taking different values of the parame-
ters α, β, λ, e1, e2, p, q. According to Theorem 2 (i), limt→+∞(x1(t), x2(t)) = (0, 0),
under the conditions

α > 1, β ≥ 0, λ >
1

(α− 1)2
,

∫ +∞

t0

t3‖e(t)‖2dt < +∞,
∫ +∞

t0

t‖e(t)‖dt < +∞.
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We are interested in the gain that the term β d
dt

(
Aλ(t)(x(t))

)
brings in (DIN-AVD)

(considered with error term or without error term). We consider the following cases
which fit the assumptions of Theorem 2 (recalled just above).

α β λ e1 e2 p q Figure

2.5 0 0.5 0 0 - - Fig.1 (a)
2.5 0.5 0.5 0 0 - - Fig.1 (b)
2.5 0 0.5 1 1 3.1 3.1 Fig.1 (c)
2.5 0.5 0.5 1 1 3.1 3.1 Fig.1 (d)

The trajectories obtained by solving (29) and (30) with the ode45 function in
Matlab on the interval [0.1, 50] are depicted at Figure 1, (a)-(d), where we represent
the component x1(t) with red and x2(t) with black.
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(c)
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t
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10

(d)

Fig. 1: Trajectories of (DIN-AVD) for different instances of the parameters α, β, λ, e

II. In our second experiment, we examine the rapid convergence of the speed
towards 0. According to Theorem 2, we have ‖ẋ(t)‖ = o

(
1
t

)
as t→ +∞. So, next

to ‖ẋ(t)‖, we also represent the entity t‖ẋ(t)‖. We solve (29) and (30) with the
ode45 function in Matlab on the interval [0.1, 50] by considering the following
instances.

α β λ e1 e2 p q Figure

2.1 0 1 0 0 - - Fig.2 (a)
2.1 0 1 1 1 3 3 Fig.2 (b)
2.1 0.25 1 0 0 - - Fig.2 (c)
2.1 0.75 1 1 1 3 3 Fig.2 (d)

Note that for these values also, the hypotheses of Theorem 2 are verified, and,
therefore, its conclusions are valid. The results obtained are depicted at Figure 2,
(a)-(d), where we represent t‖ẋ(t)‖ with red and ‖ẋ(t)‖ with black.
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Fig. 2: Fast convergence of the velocity for different instances of α, β, λ, e
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A conclusion that these experiment give, is that indeed the term β d
dt

(
Aλ(t)(x(t))

)
in (DIN-AVD) has an accelerating effect, even in the presence of an error term e.

III. In our third experiment, we are interested in the behavior of the error
‖x(t) − x∗‖. Since the operator A has a single zero at x∗ = (0, 0), according to
Theorem 4, ‖x(t)‖ must converge to 0. Our experiment shows the importance of
the correction term β d

dt

(
Aλ(t)(x(t))

)
in (DIN-AVD) as well as the sensitivity of

the trajectories with respect to the error e.
Hence, we solve (29) and (30) with the ode45 function in Matlab on the interval

[0.1, 50] where we take at first the error e(t) ≡ 0 that is e1 = e2 = 0. For the values
β ∈ {0, 0.25, 0.5, 0.75, 1} we consider (α, λ) = (2.5, 0.5) depicted at Figure 3, (a)
and (α, λ) = (3.1, 0.25) depicted at Figure 3, (b), respectively. Obviously, for these
values the hypotheses of Theorem 2 are satisfied, and consequently its conclusions
hold.
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Fig. 3: Comparison of the iteration error ‖x(t) − x∗‖ for different instances of
(DIN-AVD) without error

Consider now e1 = e2 = 1 and p = q = 3, that is e(t) =
(

1
t3 ,

1
t3

)
. For the values

β ∈ {0, 0.25, 0.5, 0.75, 1} we consider (α, λ) = (2.5, 0.5) depicted at Figure 4, (a)
and (α, λ) = (3.1, 1) depicted at Figure 4, (b), respectively.
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Fig. 4: Comparison of the iteration error ‖x(t) − x∗‖ for different instances of
(DIN-AVD) with error

Besides the importance of the correction term (β > 0), these numerical exper-
iments show that the trajectories of (DIN-AVD) are quite sensitive to the param-
eters α, β, λ as well as to the error e(t).
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5 The convex case

Let us specialize the previous results to the case of convex minimization, and show
the rapid convergence of values. Given a lower semicontinuous convex and proper
function f : H → R∪ {+∞} such that argmin f 6= ∅, we consider the minimization
problem

(P) inf
x∈H

f(x).

Fermat’s rule states that x is a global minimum of f if and only if

0 ∈ ∂f(x). (31)

Therefore, (P) is equivalent to the monotone inclusion problem (1) with A = ∂f .
Moreover, argmin f = (∂f)−1(0). The Yosida approximation of ∂f is equal to the
gradient of the Moreau envelope of f : for any λ > 0

(∂f)λ = ∇fλ. (32)

Recall that fλ : H → R is a C1,1 function, which is defined by: for any x ∈ H

fλ(x) = inf
ξ∈H

{
f(ξ) +

1

2λ
‖x− ξ‖2

}
.

We deduce at once that minx∈H fλ(x) = minx∈H f(x). In this context, (DIN-AVD)
reads as, for t ≥ t0 > 0

(DIN-AVD)-convex ẍ(t) +
α

t
ẋ(t) + β

d

dt

(
∇fλ(t)(x(t))

)
+∇fλ(t)(x(t)) = e(t),

where α > 1, β ≥ 0 and e ∈ L1
loc(t0,+∞;H).

As a direct consequence of Theorem 2 we have the following result.

Theorem 3 Let f : H → R∪{+∞} be a lower semicontinuous convex proper function

such that S = argmin f 6= ∅. Assume further that λ(t) = λt2 with λ >
1

(α− 1)2
and

∫ +∞

t0

t3‖e(t)‖2dt < +∞ and

∫ +∞

t0

t‖e(t)‖dt < +∞.

Then, for any trajectory x : [t0,+∞[→ H of (DIN-AVD)-convex the following prop-

erties are satisfied:

(i) (convergence) x(t) is bounded, and x(t) converges weakly, as t → +∞, to an

element of S.

(ii) (integral estimates)

∫ +∞

t0

t‖ẋ(t)‖2dt < +∞,
∫ +∞

t0

t3‖ẍ(t)‖2dt < +∞ and∫ +∞

t0

t3‖∇fλ(t)(x(t))‖2dt < +∞.

(iii) (pointwise estimates) limt→+∞ ‖ẋ(t)‖ = 0, ‖ẋ(t)‖ = o
(
1
t

)
as t→ +∞

and, for all 0 < η < 1, as t→ +∞ we have
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‖∇fλ(t)(x(t))‖ = o

(
1

t2

)
,

∥∥∥∥ ddt∇fλ(t)(x(t))

∥∥∥∥ = o

(
1

t2+η

)
.

(iv) (fast convergence of the values) As t→ +∞

fλ(t)(x(t))−min
H

f = o

(
1

t2

)
and f(proxλ(t)f (x(t)))−min

H
f = o

(
1

t2

)
.

In addition, ‖proxλ(t)f (x(t))− x(t)‖ → 0 as t→ +∞.

Proof (i)-(iii) follow directly from Theorem 2 applied to ∂f and using (32).
(iv) Take x∗ ∈ argmin f. From the gradient inequality, and x(t) bounded, we have

fλ(t)(x(t))−min
H

f = fλ(t)(x(t))− fλ(t)(x
∗) ≤ 〈∇fλ(t)(x(t)), x(t)− x∗〉

≤ ‖∇fλ(t)(x(t))‖‖x(t)− x∗‖ ≤M‖∇fλ(t)(x(t))‖,

where M := supt≥t0 ‖x(t) − x∗‖. Combining the above relation with the estimate

obtained in (25)), ‖∇fλ(t)(x(t))‖ = o
(

1
t2

)
as t→ +∞, we obtain

fλ(t)(x(t))−min
H

f = o

(
1

t2

)
as t→ +∞. (33)

By definition of fλ(t) and of the proximal mapping, we have

fλ(t)(x(t))−min
H

f = f(proxλ(t)f (x(t)))−min
H

f +
1

2λ(t)
‖x(t)− proxλ(t)f (x(t))‖2.

(34)
Combining (33) with (34), we obtain, as t→ +∞

f(proxλ(t)f (x(t)))−min
H

f = o

(
1

t2

)
, lim

t→+∞
t2

1

2λ(t)
‖x(t)−proxλ(t)f (x(t))‖2 = 0.

Therefore, limt→+∞ ‖x(t)− proxλ(t)f (x(t))‖ = 0, which completes the proof. ut

Remark 1 When A = ∂f , f convex, we have additional tools, such as the gra-
dient inequality. We will show in the following theorem that, in this case, some
assumptions can be weakened.

Theorem 4 Let f : H → R∪{+∞} be a lower semicontinuous convex, proper function

such that S = argminH f 6= ∅. Assume that the parameters of (DIN-AVD) satisfy

α > 3, β ≥ 0 and λ(t) = λtr, with λ > 0, r ≥ 0.

Suppose that the error terms satisfy the integrability properties∫ +∞

t0

t3‖e(t)‖2dt < +∞ and

∫ +∞

t0

t‖e(t)‖dt < +∞.

Then, for any trajectory x : [t0,+∞[→ H of (DIN-AVD)-convex the following prop-

erties are satisfied.
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a) In the general case of β ≥ 0, r ≥ 0 we have the following properties:

(pointwise estimates) The trajectory x(t) is bounded, and as t→ +∞

fλ(t)(x(t))−min
H

f = O
(

1

t2

)
.

f(proxλ(t)f (x(t)))−minH f = O
(

1
t2

)
, and ‖x(t)−proxλ(t)f (x(t))‖ = O

(√
λ(t)
t

)
.

Further we have ‖∇fλ(t)(x(t))‖ = O
(

1

t
√
λ(t)

)
, and ‖ẋ(t)‖ = O

(
1
t

)
.

Whenever r = 2, one has ‖ẋ(t)‖ = o
(
1
t

)
as t→ +∞.

(integral estimates)

∫ +∞

t0

t(fλ(t)(x(t))−min
H

f)dt < +∞,
∫ ∞
t0

t‖ẋ(t)‖2dt < +∞,∫ ∞
t0

tλ(t)‖∇fλ(t)(x(t))‖2dt < +∞ and β

∫ ∞
t0

t2‖∇fλ(t)(x(t))‖2dt < +∞.

Further, if r ≤ 2

∫ +∞

t0

tλ(t)‖ẍ(t)‖2dt < +∞.

b) In the case β = 0 or β > 0 and r > 1 we have the following properties:

fλ(t)(x(t))−minH f = o
(

1
t2

)
, as t→ +∞, f(proxλ(t)f (x(t)))−minH f = o

(
1
t2

)
,

‖x(t)−proxλ(t)f (x(t))‖ = o

(√
λ(t)
t

)
as t→ +∞. Further we have ‖∇fλ(t)(x(t))‖ =

o

(
1

t
√
λ(t)

)
as t→ +∞. Moreover, ‖ẋ(t)‖ = o

(
1
t

)
as t→ +∞.

c) In the case β = 0 and r ∈ [0, 2] or β > 0 and r ∈]1, 2] the trajectory x(t) converges

weakly, as t→ +∞, to an element of S.

Proof Lyapunov analysis. Take z ∈ S. Since α > 3 we can take 2 < b < α− 1. In
this particular case, the energy functional (3) becomes

Eb(t) =
1

2
‖b(x(t)− z) + t(ẋ(t) + β∇fλ(t)(x(t)))‖2 +

b(α− 1− b)
2

‖x(t)− z‖2. (35)

Using the same arguments as in the proof of Theorem 2, we obtain (9)), which in
this particular case reads as

Ėb(t) ≤ b(β − t)
〈
∇fλ(t)(x(t)), x(t)− z

〉
+

(
b+ 1− α+

1

4p1

)
t‖ẋ(t)‖2 (36)

+ (−t2 + β(b+ 2− α)t)
〈
∇fλ(t)(x(t)), ẋ(t)

〉
+

(
β(β − t)t+

β

2
t

)
‖∇fλ(t)(x(t))‖2

+ bt‖e(t)‖‖x(t)− z‖+

(
p1 +

β

2

)
t3‖e(t)‖2.

Further we have

(−t2 + β(b+ 2− α)t)
〈
∇fλ(t)(x(t)), ẋ(t)

〉
=

d

dt

(
(−t2 + β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f)

)
+ (2t− β(b+ 2− α))(fλ(t)(x(t))−min

H
f). (37)
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Take 0 < ε < b − 2. Then there exists t1 ≥ t0 such that b(β − t) + εt < 0 for all
t ≥ t1. So, by the gradient inequality we get, for all t ≥ t1

(b(β − t) + εt)
〈
∇fλ(t)(x(t)), x(t)− z

〉
≤ (b(β − t) + εt)(fλ(t)(x(t))−min

H
f). (38)

By adding (37) with (38), we obtain, for all t ≥ t1

b(β − t)
〈
∇fλ(t)(x(t)), x(t)− z

〉
+ (−t2 + β(b+ 2− α)t)

〈
∇fλ(t)(x(t)), ẋ(t)

〉
≤ d

dt

(
(−t2 + β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f)

)
+(b(β − t) + εt+ 2t− β(b+ 2− α))(fλ(t)(x(t))−min

H
f)

−εt
〈
∇fλ(t)(x(t)), x(t)− z

〉
. (39)

Combining (36) and (39) we get, for all t ≥ t1

Ėb(t) +
d

dt

(
(t2 − β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f)

)
+ εt

〈
∇fλ(t)(x(t)), x(t)− z

〉
≤ ((−b+ ε+ 2)t− β(2− α))(fλ(t)(x(t))−min

H
f)

+

(
b+ 1− α+

1

4p1

)
t‖ẋ(t)‖2 +

(
β(β − t)t+

β

2
t

)
‖∇fλ(t)(x(t))‖2

+ bt‖e(t)‖‖x(t)− z‖+

(
p1 +

β

2

)
t3‖e(t)‖2. (40)

By using the cocoerciveness of ∇fλ(t) and the gradient inequality, we obtain

εt
〈
∇fλ(t)(x(t)), x(t)− z

〉
≥ ε

2
tλ(t)‖∇fλ(t)(x(t))‖2 +

ε

2
t(fλ(t)(x(t))−min

H
f).

Further, take

ε1 < 2(α− 1− b), p1 =
1

ε1
, 0 < ε2 < 1.

Then, (40) leads to

Ėb(t) +
d

dt

(
(t2 − β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f)

)
(41)

+
ε

2
tλ(t)‖∇fλ(t)(x(t))‖2 +

ε

2
t(fλ(t)(x(t))−min

H
f) +

ε1
4
t‖ẋ(t)‖2

+ βε2t
2‖∇fλ(t)(x(t))‖2

≤ ((−b+ ε+ 2)t− β(2− α))(fλ(t)(x(t))−min
H

f)

+
(
b+ 1− α+

ε1
2

)
t‖ẋ(t)‖2 +

(
β(β − t)t+ βε2t

2 +
β

2
t

)
‖∇fλ(t)(x(t))‖2

+ bt‖e(t)‖‖x(t)− z‖+

(
1

ε1
+
β

2

)
t3‖e(t)‖2, for all t ≥ t1.

Now, obviously there exists t2 ≥ t1 such that for all t ≥ t2 one has

t2 − β(b+ 2− α)t > 0,
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(−b+ ε+ 2)t− β(2− α) ≤ 0

β(β − t)t+ βε2t
2 +

β

2
t ≤ 0.

Hence, for all t ≥ t2, it holds

Ėb(t) +
d

dt

(
(t2 − β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f)

)
+
ε

2
tλ(t)‖∇fλ(t)(x(t))‖2

+
ε

2
t(fλ(t)(x(t))−min

H
f) +

ε1
4
t‖ẋ(t)‖2 + βε2t

2‖∇fλ(t)(x(t))‖2 ≤

+ bt‖e(t)‖‖x(t)− z‖+

(
1

ε1
+
β

2

)
t3‖e(t)‖2. (42)

Estimates. By integrating (42) on an interval [t2, t], and by denoting

C0 =

(
1

ε
+
β

2

)∫ +∞

t2

t3‖e(t)‖2dt+Eb(t2)+(t22−β(b+2−α)t2)(fλ(t2)(x(t2))−min
H

f)

we obtain that, for all t ≥ t2

Eb(t) +

(
(t2 − β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f)

)
+
ε

2

∫ t

t2

sλ(s)‖∇fλ(s)(x(s))‖2ds

+
ε

2

∫ t

t2

s(fλ(s)(x(s))−min
H

f)ds+
ε1
4

∫ t

t2

s‖ẋ(s)‖2ds+ βε2

∫ t

t2

s2‖∇fλ(s)(x(s))‖2ds

≤ C0 + b

∫ t

t2

s‖e(s)‖‖x(s)− z‖ds. (43)

Taking into account the form of the energy functional Eb(t), (43) leads to

b(α− 1− b)
2

‖x(t)− z‖2 ≤ C0 + b

∫ t

t2

s‖e(s)‖‖x(s)− z‖ds.

More precisely, we have

1

2
‖x(t)− z‖2 ≤ C1 +

1

α− 1− b

∫ t

t2

s‖e(s)‖‖x(s)− z‖ds, (44)

where C1 = C0

b(α−1−b) . Now, applying the Gronwall lemma (see [22, Lemma A.5])

to (44), we obtain

‖x(t)− z‖ ≤
√

2C1 +
1

α− 1− b

∫ t

t2

s‖e(s)‖ds.

Therefore, ‖x(t)−z‖ and consequently x(t) are bounded. Further, the boundedness
of ‖x(t)− z‖ leads to ∫ +∞

t2

s‖e(s)‖‖x(s)− z‖ds < +∞.
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Consequently, (43) becomes

Eb(t) +

(
(t2 − β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f)

)
+
ε

2

∫ t

t2

sλ(s)‖∇fλ(s)(x(s))‖2ds

+
ε

2

∫ t

t2

s(fλ(s)(x(s))−min
H

f)ds+
ε1
4

∫ t

t2

s‖ẋ(s)‖2ds

+ βε2

∫ t

t2

s2‖∇fλ(s)(x(s))‖2ds ≤ C := C0 + b

∫ +∞

t2

s‖e(s)‖‖x(s)− z‖ds. (45)

From (45) we get

sup
t≥t0
‖b(x(t)− z) + t(ẋ(t) + β∇fλ(t)(x(t)))‖ < +∞ (46)

fλ(t)(x(t))−min
H

f = O
(

1

t2

)
, as t→ +∞. (47)∫ +∞

t0

t(fλ(t)(x(t))−min
H

f)dt < +∞. (48)∫ ∞
t0

t‖ẋ(t)‖2dt < +∞. (49)∫ ∞
t0

tλ(t)‖∇fλ(t)(x(t))‖2dt < +∞. (50)

β

∫ ∞
t0

t2‖∇fλ(t)(x(t))‖2dt < +∞. (51)

Note that (51) provides information only in the case β > 0. Now, (46) gives

‖ẋ(t) + β∇fλ(t)(x(t))‖ = O
(

1

t

)
, as t→ +∞. (52)

Further, from (47) and

fλ(t)(x(t))−min
H

f = f(proxλ(t)f (x(t)))−min
H

f +
1

2λ(t)
‖x(t)− proxλ(t)f (x(t))‖2,

we deduce that, as t→ +∞

f(proxλ(t)f (x(t)))−min
H

f = O
(

1

t2

)
, ‖x(t)−proxλ(t)f (x(t))‖ = O

(√
λ(t)

t

)
(53)

Further we have ∇fλ(t) = (∂f)λ(t) = 1
λ(t) (I − proxλ(t)f ), hence

‖∇fλ(t)(x(t))‖ = O

(
1

t
√
λ(t)

)
as t→ +∞. (54)

Combining (52) and (54) we get

‖ẋ(t)‖ = O
(

1

t

)
, as t→ +∞. (55)
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In particular we have
lim

t→+∞
‖ẋ(t)‖ = 0.

Now, according to Lemma 1 we have∥∥∥∥ ddt∇fλ(t)(x(t))

∥∥∥∥ ≤ 2

λ(t)
‖ẋ(t)‖+ 2

|λ′(t)|
λ(t)

‖∇fλ(t)(x(t))‖

which yields∥∥∥∥ ddt∇fλ(t)(x(t))

∥∥∥∥2 ≤ 8

λ2(t)
‖ẋ(t)‖2 + 8

λ′2(t)

λ2(t)
‖∇fλ(t)(x(t))‖2.

Finally, by using (DIN-AVD)-convex, we have

‖ẍ(t)‖2 =

∥∥∥∥e(t)− α

t
ẋ(t)− β d

dt
∇fλ(t)(x(t))−∇fλ(t)(x(t))

∥∥∥∥2 .
Therefore,

tλ(t)‖ẍ(t)‖2 ≤ 4tλ(t)‖e(t)‖2 +

(
4α2λ(t)

t
+

32β2t

λ(t)

)
‖ẋ(t)‖2

+

(
32β2λ′2(t)t

λ(t)
+ 4tλ(t)

)∥∥Aλ(t)(x(t))
∥∥2 .

Recall that λ(t) = λtr and assume that r ≤ 2. Then, according to the fact that∫+∞
t0

t3‖e(t)‖2dt < +∞, (49) and (50) we obtain that∫ +∞

t0

tλ(t)‖ẍ(t)‖2dt < +∞. (56)

Let us now prove that ‖ẋ(t)‖ = o

(
1

t
1
2
+ r

4

)
, as t→ +∞. We have

d

dt
t1+

r
2 ‖ẋ(t)‖2 =

(
1 +

r

2

)
t
r
2 ‖ẋ(t)‖2 + 2t1+

r
2 〈ẍ(t), ẋ(t)〉

and
2t1+

r
2 〈ẍ(t), ẋ(t)〉 ≤ t1+r‖ẍ(t)‖2 + t‖ẋ(t)‖2.

Hence,
d

dt
t1+

r
2 ‖ẋ(t)‖2 ≤ t1+r‖ẍ(t)‖2 +

((
1 +

r

2

)
t
r
2 + t

)
‖ẋ(t)‖2.

According to (56)-(49), we have t1+r‖ẍ(t)‖2+
((

1 + r
2

)
t
r
2 + t

)
‖ẋ(t)‖2 ∈ L1[t0,+∞[.

Consequently, from [1, Lemma 5.1] we obtain that there exists

lim
t→+∞

t1+
r
2 ‖ẋ(t)‖2 ∈ R.

Now, using (49) again, we have∫ ∞
t0

1

t
(t1+

r
2 ‖ẋ(t)‖2)dt =

∫ ∞
t0

t
r
2 ‖ẋ(t)‖2dt < +∞,
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hence,

lim
t→+∞

t1+
r
2 ‖ẋ(t)‖2 = 0.

Consequently,

‖ẋ(t)‖ = o

(
1

t
1
2
+ r

4

)
, as t→ +∞.

The limit. To prove the existence of the weak limit of x(t), we use Opial
lemma. Let us introduce the anchor function

hz(t) =
1

2
‖x(t)− z‖2.

The classical derivation chain rule gives

ḧz(t) +
α

t
ḣz(t) =

〈
ẍ(t) +

α

t
ẋ(t), x(t)− z

〉
+ ‖ẋ(t)‖2.

By using (DIN-AVD)-convex, we get

β

〈
d

dt
∇fλ(t)(x(t)), x(t)− z

〉
=
〈
e(t)− ẍ(t)− α

t
ẋ(t)−∇fλ(t)(x(t)), x(t)− z

〉
=
〈
e(t)−∇fλ(t)(x(t)), x(t)− z

〉
−
(
ḧz(t) +

α

t
ḣz(t)

)
+ ‖ẋ(t)‖2.

Therefore

tḧz(t) + αḣz(t) + t
〈
∇fλ(t)(x(t)), x(t)− z

〉
= t‖ẋ(t)‖2 + t〈e(t), x(t)− z〉 − βt

〈
d

dt
∇fλ(t)(x(t)), x(t)− z

〉
. (57)

According to Cauchy-Schwarz inequality

−βt
〈
d

dt
∇fλ(t)(x(t)), x(t)− z

〉
≤ βt

∥∥∥∥ ddt∇fλ(t)(x(t))

∥∥∥∥ ‖x(t)− z‖,

t〈e(t), x(t)− z〉 ≤ t‖e(t)‖‖x(t)− z‖.

So, we deduce from (57) that

tḧz(t) + αḣz(t) + t
〈
∇fλ(t)(x(t)), x(t)− z

〉
≤ t‖ẋ(t)‖2 + βt

∥∥∥∥ ddt∇fλ(t)(x(t))

∥∥∥∥ ‖x(t)− z‖+ t‖e(t)‖‖x(t)− z‖.

Now, according to Lemma 1 d) we have∥∥∥∥ ddt∇fλ(t)(x(t))

∥∥∥∥ ≤ 2

λ(t)
‖ẋ(t)‖+ 2

|λ′(t)|
λ(t)

‖∇fλ(t)(x(t))‖.

Therefore,

tḧz(t) + αḣz(t) + t
〈
∇fλ(t)(x(t)), x(t)− z

〉
(58)

≤ t‖ẋ(t)‖2 + t‖e(t)‖‖x(t)− z‖+

(
2βt

λ(t)
‖ẋ(t)‖+ 2β

|λ′(t)|t
λ(t)

‖∇fλ(t)(x(t))‖
)
‖‖x(t)− z‖.
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Now, if β = 0 or β > 0 and r > 1 then, according to the fact that ‖x(t) − z‖ is
bounded, t‖e(t)‖ ∈ L1(t0,+∞), (49), (55) and (54) we have

t‖ẋ(t)‖2+

(
t‖e(t)‖+

2βt

λ(t)
‖ẋ(t)‖+ 2β

|λ′(t)|t
λ(t)

‖∇fλ(t)(x(t))‖
)
‖‖x(t)−z‖ ∈ L1(t0,+∞).

Moreover t
〈
∇fλ(t)(x(t)), x(t)− z

〉
is a non-negative function. So, we can apply

Lemma A.6 from [16], and obtain that limt→+∞ hz(t) exists. In other words,

lim
t→+∞

‖x(t)− z‖ exists for all z ∈ S.

Let us return to the fact that, according to (42), for all t ≥ t2

Ėb(t) +
d

dt

(
(t2 − β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f)

)
≤ bt‖e(t)‖‖x(t)− z‖

+

(
1

ε1
+
β

2

)
t3‖e(t)‖2.

The right hand side of the latter inequality belongs to L1(t0,+∞). Therefore,
according to [1, Lemma 5.1] we get that there exists

lim
t→+∞

Eb(t) + (t2 − β(b+ 2− α)t)(fλ(t)(x(t))−min
H

f) ∈ R.

Since limt→+∞ ‖x(t)− z‖ exists for all z ∈ S, we obtain that there exists

lim
t→+∞

1

2
‖t(ẋ(t) + β∇fλ(t)(x(t)))‖2 + (t2 − β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f) ∈ R.

On the other hand, from (48), (49) and (51) we get∫ +∞

t0

1

t

(
1

2
‖t(ẋ(t) + β∇fλ(t)(x(t)))‖2 + (t2 − β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f)

)
dt

≤
∫ +∞

t0

t‖ẋ(t)‖2dt+

∫ +∞

t0

β2t‖∇fλ(t)(x(t)))‖2dt

+

∫ +∞

t0

(t− β(b+ 2− α))(fλ(t)(x(t))−min
H

f)dt < +∞.

Consequently,

lim
t→+∞

1

2
‖t(ẋ(t) + β∇fλ(t)(x(t)))‖2 + (t2 − β(b+ 2− α)t)(fλ(t)(x(t))−min

H
f) = 0,

which shows that, as t→ +∞

fλ(t)(x(t))−min
H

f = o

(
1

t2

)
, and ‖ẋ(t)‖ = o

(
1

t

)
.

From

fλ(t)(x(t))−min
H

f = f(proxλ(t)f (x(t)))−min
H

f +
1

2λ(t)
‖x(t)− proxλ(t)f (x(t))‖2,
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we deduce that, as t→ +∞

f(proxλ(t)f (x(t)))−min
H

f = o

(
1

t2

)
, ‖x(t)− proxλ(t)f (x(t))‖ = o

(√
λ(t)

t

)
(59)

Further we have ∇fλ(t) = (∂f)λ(t) = 1
λ(t) (I − proxλ(t)f ), hence

‖∇fλ(t)(x(t))‖ = o

(
1

t
√
λ(t)

)
as t→ +∞. (60)

It remains to show that every weak sequential cluster point of the trajectory x(t)
belongs to argmin f. Let x∗ be a weak sequential cluster point of x(t). Then, there
exists a sequence tn → +∞, n → +∞ such that x(tn) ⇀ x∗, n → +∞. According
to (59), if r ≤ 2, we have limn→+∞ ‖x(tn)− proxλ(tn)f (x(tn))‖ = 0. Therefore,

proxλ(tn)f (x(tn)) ⇀ x∗, n→ +∞.

Since f is lower semicontinuous and convex, it is weakly lower semicontinuous.
Combined with limn→+∞(f(proxλ(tn)f (x(tn)))−minH f) = 0, it yields

0 = lim inf
x(tn)⇀x∗

(f(proxλ(tn)f (x(tn)))−min
H

f) ≥ f(x∗)−min
H

f.

The latter relation shows that x∗ ∈ argmin f . Consequently, according to Opial
lemma, x(t) converges weakly to an element x̂ ∈ argmin f as t→ +∞. ut

6 Conclusion, perspective

Recent developments in convex optimization show the importance of the intro-
duction of the Hessian driven damping in the continuous versions of the Nesterov
accelerated gradient method. It allows to control and attenuate the oscillations,
resulting in faster methods. The extension of these results to general monotone
inclusions is an important and non-trivial question. Our study of the continuous
dynamic (DIN-AVD) gives a solid mathematical basis to the algorithmic results
obtained by the authors for these questions, and confirm them. Dealing with these
issues in the context of general maximally monotone operators offers a wide range
of applications. It is a natural idea for further study to specialize this study in the
case of convex-concave saddle value problems. The convergence results are valid in
the presence of perturbations or errors. This is an important step to study other
instances. Among them, the introduction of a Tikhonov regularization term with
vanishing coefficient, in order to asymptotically obtain the solution of minimum
norm. It also suggests developing stochastic versions of (DIN-AVD) and corre-
sponding algorithms in the context of general maximally monotone operators. To
deal with concrete examples, it would be very interesting to develop corresponding
splitting methods to resolve structured monotone inclusions. Finally, it would also
be interesting to consider the closed loop version of these dynamics and algorithms
where the coefficient λ of the Yosida regularization is taken as a feedback control
of the state or the velocity of the system.
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A Auxiliary results

In the proof of Theorem 2, we use the following straightforward result.

Lemma 2 Let A,B,C ∈ R. The inequality

A‖X‖2 + 2C〈X,Y 〉+B‖Y ‖2 ≥ 0

is satisfied for all X,Y ∈ H, if and only if C2 −AB ≤ 0 and A,B ≥ 0.
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