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3-UNIFORM HYPERGRAPHS: DECOMPOSITION AND

REALIZATION

A. BOUSSAÏRI, B. CHERGUI, P. ILLE, AND M. ZAIDI

Abstract. Let H be a 3-uniform hypergraph. A tournament T defined
on V (T ) = V (H) is a realization of H if the edges of H are exactly the
3-element subsets of V (T ) that induce 3-cycles. We characterize the 3-
uniform hypergraphs that admit realizations by using a suitable modular
decomposition.

1. Introduction

Let H be a 3-uniform hypergraph. A tournament T , with the same vertex
set as H, is a realization of H if the edges of H are exactly the 3-element
subsets of the vertex set of T that induce 3-cycles. The aim of the paper
is to characterize the 3-uniform hypergraphs that admit realizations (see [2,
Problem 1]). This characterization is in the vein of that of comparability
graphs, that is, the graphs admitting a transitive orientation (see [9]).

In Section 2, we recall some of the classic results on modular decomposi-
tion of tournaments.

In the section below, we introduce a new notion of module for hyper-
graphs. We introduce also the notion of a modular covering, which general-
izes the notion of a partitive family. In Appendices A and B, we show that
the set of modules of a hypergraph is a modular covering.

In Section 3, we consider the notion of a strong module, which is the usual
strengthening of the notion of a module (for instance, see Subsection 2.1 for
tournaments). We establish the analogue of Gallai’s modular decomposition
theorem for hypergraphs.

Let H be a realizable and 3-uniform hypergraph. Clearly, the modules
of the realizations of H are modules of H as well, but the converse is false.
Consider a realization T of H. In Section 4, we characterize the modules of
H that are not modules of T . We deduce that a realizable and 3-uniform hy-
pergraph and its realizations share the same strong modules. Using Gallai’s
modular decomposition theorem, we prove that a realizable and 3-uniform
hypergraph is prime (i.e. all its modules are trivial) if and only if each of
its realizations is prime too. We have parallel results when we consider a
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comparability graph and its transitive orientations (for instance, see [11,
Theorem 3] and [11, Corollary 1]).

In Section 5, by using the modular decomposition tree, we demonstrate
that a 3-uniform hypergraph is realizable if and only if all its prime, 3-
uniform and induced subhypergraphs are realizable. We pursue an inductive
characterization of the prime and 3-uniform hypergraphs that are realizable.
Hence [2, Problem 1] is solved. From this characterization, we deduce a new
proof of [2, Corollary 1], the main result of [2] for tournaments. We conclude
by counting the realizations of a realizable and 3-uniform hypergraph by
using the modular decomposition tree. There is an analogue counting when
we determine the number of transitive orientations of a comparability graph
by using the modular decomposition tree of the comparability graph. The
number of transitive orientations of a comparability graph was determined
by Filippov and Shevrin [6]. They used the notion of a saturated module,
which is close to that of a strong module.

Next, we formalize our presentation. We consider only finite structures. A
hypergraph H is defined by a vertex set V (H) and an edge set E(H), where

E(H) ⊆ 2V (H) ∖ {∅}. Given a hypergraph H, v(H) denotes the cardinality
of V (H). In the sequel, we consider only hypergraphs H such that

E(H) ⊆ 2V (H) ∖ ({∅} ∪ {{v} ∶ v ∈ V (H)}).

Given k ≥ 2, a hypergraph H is k-uniform if

E(H) ⊆ (
V (H)

k
).

A hypergraph H is empty if E(H) = ∅. Let H be a hypergraph. With
each W ⊆ V (H), we associate the subhypergraph H[W ] of H induced by W ,
which is defined by V (H[W ]) =W and E(H[W ]) = {e ∈ E(H) ∶ e ⊆W}.

Definition 1. Let H be a hypergraph. A subset M of V (H) is a module
of H if for each e ∈ E(H) such that e ∩M ≠ ∅ and e ∖M ≠ ∅, there exists
m ∈M such that e ∩M = {m} and for every n ∈M , we have

(e ∖ {m}) ∪ {n} ∈ E(H).

Definition 1 is not the classic definition of a module of a hypergraph. The
classic definition is provided in Definition 24. We compare both definitions
in Remark 25. We motivate the choice of Definition 1 in Remark 26.

Notation 2. Given a hypergraph H, the set of the modules of H is denoted
by M (H). For instance, if H is an empty hypergraph, then M (H) = 2V (H).

We study the set of the modules of a hypergraph. Let S be a set. A
family F of subsets of S is a partitive family [3, Definition 6] on S if it
satisfies the following assertions.

● ∅ ∈ F , S ∈ F , and for every x ∈ S, {x} ∈ F .
● For any M,N ∈ F , M ∩N ∈ F .
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● For any M,N ∈ F , if M ∩N ≠ ∅, M ∖N ≠ ∅ and N ∖M ≠ ∅, then
M ∪N ∈ F and (M ∖N) ∪ (N ∖M) ∈ F .

Proposition 3. Given a hypergraph H, M (H) is a partitive family.

Proposition 3 is well-known for 2-uniform hypergraphs, that is, graphs.
Its proof for graphs is easy whereas it is more difficult in the general case.
Since the proof of Proposition 3 is long and technical in the general case, we
provide it in Appendix A. We generalize the notion of a partitive family as
follows.

Definition 4. Let S be a set. A modular covering of S is a function M
which associates with each W ⊆ S a set M(W ) of subsets of W , and which
satisfies the following assertions.

(A1) For each W ⊆ S, M(W ) is a partitive family on W .
(A2) For any W,W ′ ⊆ S, if W ⊆W ′, then

{M ′
∩W ∶M ′

∈M(W ′
)} ⊆M(W ).

(A3) For any W,W ′ ⊆ S, if W ⊆W ′ and W ∈M(W ′), then

{M ′
∈M(W ′

) ∶M ′
⊆W} =M(W ).

(A4) Let W,W ′ ⊆ S such that W ⊆ W ′. For any M ∈ M(W ) and M ′ ∈

M(W ′), if M ∩M ′ = ∅ and M ′ ∩W ≠ ∅, then M ∈M(W ∪M ′).
(A5) Let W,W ′ ⊆ S such that W ⊆ W ′. For any M ∈ M(W ) and M ′ ∈

M(W ′), if M ∩M ′ ≠ ∅, then M ∪M ′ ∈M(W ∪M ′).

We obtain the following result.

Proposition 5. Given a hypergraph H, the function defined on 2V (H),
which maps each W ⊆ V (H) to M (H[W ]), is a modular covering of V (H).

As for Proposition 3, we provide the proof of Proposition 5 in Appendix B.
Let H be a hypergraph. By Proposition 3, ∅, V (H), and {v}, where v ∈

V (H), are modules of H, called trivial. A hypergraph H is indecomposable
if all its modules are trivial, otherwise it is decomposable. An hypergraph H
is prime if it is indecomposable with v(H) ≥ 3.

To state Gallai’s modular decomposition theorem for hypergraphs, we
need to define the quotient of a hypergraph by a modular partition (see
Subsection 2.1 for tournaments).

Definition 6. Let H be a hypergraph. A partition P of V (H) is a modular
partition of H if P ⊆ M (H). Given a modular partition P of H, the quotient
H/P ofH by P is defined on V (H/P ) = P as follows. For E ⊆ P , E ∈ E(H/P )

if ∣E ∣ ≥ 2, and there exists e ∈ E(H) such that E = {X ∈ P ∶X ∩ e ≠ ∅}.

As for tournaments, we introduce the following strengthening of the no-
tion of a module. Let H be a hypergraph. A module M of H is strong if for
every module N of H, we have

if M ∩N ≠ ∅, then M ⊆ N or N ⊆M .
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Notation 7. Let H be a hypergraph. Recall that a subset W of V (H) is a
proper subset of V (H) if W ≠ V (H). We denote by Π(H) the set of proper
strong modules of H that are maximal under inclusion. Clearly, Π(H) is a
modular partition of H when v(H) ≥ 2.

Gallai’s modular decomposition theorem for hypergraphs follows. It is
the analogue of Theorem 17.

Theorem 8. Given a hypergraph H with v(H) ≥ 2, H/Π(H) is an empty
hypergraph, a prime hypergraph, or a complete graph (i.e. E(H/Π(H)) =

(
Π(H)

2
)).

A realization of a 3-uniform hypergraph is defined as follows. To begin,
we associate with each tournament a 3-uniform hypergraph in the following
way.

Definition 9. The 3-cycle is the tournament C3 = ({0,1,2},{01,12,20}).
Given a tournament T , the C3-structure of T is the 3-uniform hypergraph
C3(T ) defined on V (C3(T )) = V (T ) by

E(C3(T )) = {X ⊆ V (T ) ∶ T [X] is isomorphic to C3} (see [2]).

Definition 10. Given a 3-uniform hypergraph H, a tournament T , with
V (T ) = V (H), realizes H if H = C3(T ). We say also that T is a realization
of H.

Whereas a realizable and 3-uniform hypergraph and its realizations do
not have the same modules, they share the same strong modules.

Theorem 11. Consider a realizable and 3-uniform hypergraph H. Given a
realization T of H, H and T share the same strong modules.

Theorem 11 is a key result, it necessitates long and technical preliminaries
(see Proposition 42). The next result follows from Theorems 8 and 11.

Theorem 12. Consider a realizable and 3-uniform hypergraph H. For a
realization T of H, we have H is prime if and only if T is prime.

Lastly, we characterize the realizable and 3-uniform hypergraphs. To be-
gin, we establish the following theorem by using the modular decomposition
tree.

Theorem 13. Given a 3-uniform hypergraph H, H is realizable if and only
if for every W ⊆ V (H) such that H[W ] is prime, H[W ] is realizable.

We conclude by characterizing the prime and 3-uniform hypergraphs that
are realizable (see Theorems 49 and 52).

2. Background on tournaments

Given a tournament T , v(T ) denotes the cardinality of V (T ). A tour-
nament is a linear order if it does not contain C3 as a subtournament.
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Given n ≥ 2, the usual linear order on {0, . . . , n − 1} is the tournament
Ln = ({0, . . . , n − 1},{pq ∶ 0 ≤ p < q ≤ n − 1}). With each tournament T , as-
sociate its dual T ⋆ defined on V (T ⋆) = V (T ) by A(T ⋆) = {vw ∶ wv ∈ A(T )}.

2.1. Modular decomposition of tournaments. To begin, we consider a
digraph D. A subset M of V (D) is a module [16] of D provided that for any
x, y ∈ M and v ∈ V (D) ∖M , we have xv ∈ A(D) if and only if yv ∈ A(D),
and vx ∈ A(D) if and only if vy ∈ A(D). (A module is also called a closed
set [8], an autonomous set [13], or a homogeneous set [14].)

Let T be a tournament. We obtain that a subset M of V (T ) is a module
of T provided that for any x, y ∈ M and v ∈ V (T ), if xv, vy ∈ A(T ), then
v ∈ M . Note that the notions of a module and of a convex subset [10]
coincide for tournaments. Moreover, note that the notions of a module and
of an interval coincide for linear orders.

Notation 14. Given a tournament T , the set of the modules of T is denoted
by M (T ).

We study the set of the modules of a tournament. We need the following
weakening of the notion of a partitive family. Given a set S, a family F of
subsets of S is a weakly partitive family [12] on S if it satisfies the following
assertions.

● ∅ ∈ F , S ∈ F , and for every x ∈ S, {x} ∈ F .
● For any M,N ∈ F , M ∩N ∈ F .
● For any M,N ∈ F , if M ∩N ≠ ∅, then M ∪N ∈ F .
● For any M,N ∈ F , if M ∖N ≠ ∅, then N ∖M ∈ F .

The set of the modules of a tournament is a weakly partitive family (for
instance, see [5]). We generalize the notion of a weakly partitive family as
follows.

Definition 15. Let S be a set. A weak modular covering of S is a function
M which associates with each W ⊆ S a set M(W ) of subsets of W , and
which satisfies assertions (A2)–(A5) (see Definition 4), and the following
assertion. For each W ⊆ S, M(W ) is a weakly partitive family on W .

Since the proof of the next proposition is easy and long, we omit it.

Proposition 16. Given a tournament T , the function defined on 2V (T ),
which maps each W ⊆ V (T ) to M (T [W ]), is a weak modular covering of
V (T ).

Let T be a tournament. By Proposition 16, ∅, V (T ) and {v}, where
v ∈ V (T ), are modules of T , called trivial. A tournament is indecomposable
if all its modules are trivial, otherwise it is decomposable. A tournament T
is prime if it is indecomposable with v(T ) ≥ 3.

We define the quotient of a tournament by considering a partition of its
vertex set in modules. Precisely, let T be a tournament. A partition P of
V (T ) is a modular partition of T if P ⊆ M (T ). With each modular partition
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P of T , associate the quotient T /P of T by P defined on V (T /P ) = P as
follows. Given X,Y ∈ P such that X ≠ Y , XY ∈ A(T /P ) if xy ∈ A(T ),
where x ∈X and y ∈ Y .

We need the following strengthening of the notion of module to obtain
an uniform decomposition theorem. Given a tournament T , a subset X of
V (T ) is a strong module of T provided that X is a module of T and for
every module M of T , if X ∩M ≠ ∅, then X ⊆ M or M ⊆ X. With each
tournament T , with v(T ) ≥ 2, associate the set Π(T ) of the maximal strong
module of T under the inclusion amongst all the proper and strong modules
of T . Gallai’s modular decomposition theorem follows.

Theorem 17 (Gallai [8, 14]). Given a tournament T such that v(T ) ≥ 2,
Π(T ) is a modular partition of T , and T /Π(T ) is a linear order or a prime
tournament.

Theorem 17 is deduced from the following result.

Theorem 18. Given a tournament T , all the strong modules of T are trivial
if and only if T is a linear order or a prime tournament.

Definition 19. Given a tournament T , the set of the nonempty strong
modules of T is denoted by D(T ). Clearly, D(T ) ordered by inclusion is a
tree called the modular decomposition tree of T .

Let T be a tournament. The next proposition allows us to obtain all
the elements of D(T ) by using successively Theorem 17 from V (T ) to the
singletons.

Proposition 20 (Ehrenfeucht et al. [4]). Given a tournament T , consider
a strong module M of T . For every N ⊆M , the following two assertions are
equivalent:

(1) N is a strong module of T ;
(2) N is a strong module of T [M].

We use the analogue of Proposition 20 for hypergraphs (see Proposi-
tion 39) to prove Proposition 42.

2.2. Critical tournaments.

Definition 21. Given a prime tournament T , a vertex v of T is critical if
T − v is decomposable. A prime tournament is critical if all its vertices are
critical.

Schmerl and Trotter [15] characterized the critical tournaments. They
obtained the tournaments T2n+1, U2n+1, and W2n+1 defined on {0, . . . ,2n},
where n ≥ 1, as follows.

● The tournament T2n+1 is obtained from L2n+1 by reversing all the
arcs between even and odd vertices (see Figure 1).

● The tournament U2n+1 is obtained from L2n+1 by reversing all the
arcs between even vertices (see Figure 2).
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Figure 2. The tournament U2n+1.

● The tournament W2n+1 is obtained from L2n+1 by reversing all the
arcs between 2n and the even elements of {0, . . . ,2n − 1} (see Fig-
ure 3).
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Figure 3. The tournament W2n+1.

Theorem 22 (Schmerl and Trotter [15]). Given a tournament τ , with
v(τ) ≥ 5, τ is critical if and only if v(τ) is odd, and τ is isomorphic to
Tv(τ), Uv(τ), or Wv(τ).

2.3. The C3-structure of a tournament. The C3-structure of a tourna-
ment (see Definition 9) is clearly a 3-uniform hypergraph. We recall the
main theorem of [2].
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Theorem 23 (Boussäıri et al. [2]). Let T be a prime tournament. For every
tournament T ′, if C3(T

′) = C3(T ), then T ′ = T or T ⋆.

We provide a new proof of Theorem 23 at the end of Section 5. It follows
easily from the proof of Theorem 52 (see Corollary 53).

3. Modular decomposition of hypergraphs

The classic definition of a module for hypergraphs follows.

Definition 24. Let H be a hypergraph. A subset M of V (H) is a module [1,
Definition 2.4] of H if for any e, f ⊆ V (H) such that ∣e∣ = ∣f ∣, e∖M = f ∖M ,
and e ∖M ≠ ∅, we have e ∈ E(H) if and only if f ∈ E(H).

In this paper, we use Definition 1 instead of Definition 24.

Remark 25. Definitions 1 and 24 coincide for 2-uniform hypergraphs, that
is, for graphs. They do not in the general case. Given a hypergraph H,
a module of H in the sense of Definition 1 is a module in the sense of
Definition 24. The converse is not true. Given n ≥ 3, consider the 3-uniform
hypergraph H defined by V (H) = {0, . . . , n − 1} and E(H) = {{0,1, p} ∶ 2 ≤

p ≤ n − 1}. In the sense of Definition 24, {0,1} is a module of H whereas it
is not a module of H in the sense of Definition 1.

Remark 26. Let H be a realizable and 3-uniform hypergraph. Consider
a realization T of H. Given e ∈ E(H), all the modules of T [e] are trivial.
In order to have modular decompositions for H and T as close as possible,
we try to find a definition of a module of H for which all the modules of
H[e] are trivial as well. This is the case with Definition 1, and not with
Definition 24. Moreover, note that, with Definition 24, H and T do not share
the same strong modules, but they do with Definition 1 (see Theorem 11).
Indeed, consider the 3-uniform hypergraph H defined on {0, . . . , n − 1} in
Remark 25. In the sense of Definition 24, {0,1} is a strong module of H.
Now, consider the tournament T obtained from Ln be reversing all the arcs
between 0 and p ∈ {2, . . . , n − 1}. Clearly, T realizes H. Since T [{0,1,2}] is
a 3-cycle, {0,1} is not a module of T , so it is not a strong module.

The purpose of this section is to demonstrate Theorem 8. We use the
following notation and definition.

Notation 27. Let P be a partition of a set S. For W ⊆ S, W /P denotes
the subset {X ∈ P ∶X ∩W ≠ ∅} of P . For Q ⊆ P , set

∪Q = ⋃
X∈Q

X.

Definition 28. Let P be a partition of a set S. Consider Q ⊆ P . A subset
W of S is a transverse of Q if W ⊆ ∪Q and ∣W ∩X ∣ = 1 for each X ∈ Q.

The next remark makes Definition 6 clearer.
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Remark 29. Consider a modular partition P of a hypergraph H. Let
e ∈ E(H) such that ∣e/P ∣ ≥ 2. Given X ∈ e/P , we have e ∩ X ≠ ∅, and
e∖X ≠ ∅ because ∣e/P ∣ ≥ 2. Since X is a module of H, we obtain ∣e∩X ∣ = 1.
Therefore, e is a transverse of e/P . Moreover, since each element of e/P is
a module of H, we obtain that each transverse of e/P is an edge of H.

Given E ⊆ P such that ∣E ∣ ≥ 2, it follows that E ∈ E(H/P ) if and only if
every transverse of E is an edge of H.

Lastly, consider a transverse t of P . The function θt from t to P , which
maps each x ∈ t to the unique element of P containing x, is an isomorphism
from H[t] onto H/P .

In the next proposition, we study the links between the modules of a
hypergraph with those of its quotients.

Proposition 30. Given a modular partition P of a hypergraph H, the fol-
lowing two assertions hold:

(1) if M is a module of H, then M/P is a module of H/P ;
(2) if M is a module of H/P , then ∪M is a module of H.

Proof. For the first assertion, consider a module M of H. Consider a trans-
vere t of P such that

(1) for each X ∈M/P , t ∩X ⊆M .

Clearly M ∩ t is a module of H[t]. Since θt is an isomorphism from H[t]
onto H/P (see Remark 29),

θt(M ∩ t), that is, M/P

is a module of H/P .
For the second assertion, consider a module M of H/P . Let t be any

transverse of P . Since θt is an isomorphism from H[t] onto H/P , (θt)
−1(M)

is a module of H[t]. Set
µ = (θt)

−1
(M).

Denote the elements of M by X0, . . . ,Xm. We verify by induction on i ∈
{0, . . . ,m} that µ ∪ (X0 ∪ . . . ∪ Xi) is a module of H[t ∪ (X0 ∪ . . . ∪ Xi)].
It follows from Lemma 63 that µ ∪ X0 is a module of H[t ∪ X0]. Given
0 ≤ i <m, suppose that µ∪(X0∪. . .∪Xi) is a module of H[t∪(X0∪. . .∪Xi)].
Similarly, it follows from Lemma 63 that µ∪ (X0 ∪ . . .∪Xi+1) is a module of
H[t ∪ (X0 ∪ . . . ∪Xi+1)]. By induction, we obtain that µ ∪ (X0 ∪ . . . ∪Xm)

is a module of H[t ∪ (X0 ∪ . . . ∪Xm)]. Observe that

µ ∪ (X0 ∪ . . . ∪Xm) = ∪M.

Lastly, denote the elements of P ∖M by Y0, . . . , Yn. Using Lemma 62, we
show by induction on 0 ≤ j ≤ n that (∪M) is a module of H[t ∪ (X0 ∪ . . . ∪
Xm) ∪ (Y0 ∪ . . . ∪ Yj)]. Consequently, we obtain that (∪M) is a module of
H[t ∪ (X0 ∪ . . . ∪Xm) ∪ (Y0 ∪ . . . ∪ Yn)], that is, H. �

The next proposition is similar to Proposition 30, but is devoted to strong
modules.
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Proposition 31. Given a modular partition P of a hypergraph H, the fol-
lowing two assertions hold.

(1) If M is a strong module of H, then M/P is a strong module of H/P .
(2) Suppose that all the elements of P are strong modules of H. If M

is a strong module of H/P , then ∪M is a strong module of H.

Proof. For the first assertion, consider a strong module M of H. By the
first assertion of Proposition 30, M/P is a module of H/P . To show that
M/P is strong, consider a moduleM of H/P such that (M/P )∩M ≠ ∅. By
the second assertion of Proposition 30, ∪M is a module of H. Furthermore,
since (M/P )∩M ≠ ∅, there exists X ∈ (M/P )∩M. We get X ∩M ≠ ∅ and
X ⊆ ∪M. Therefore, M ∩ (∪M) ≠ ∅. Since M is a strong module of H, we
obtain ∪M ⊆M or M ⊆ ∪M. In the first instance, we get M ⊆M/P , and,
in the second one, we get M/P ⊆M.

For the second assertion, suppose that all the elements of P are strong
modules of H. Consider a strong module M of H/P . To begin, we make
two observations. First, if M = ∅, then ∪M = ∅, and hence ∪M is a strong
module of H. Second, if ∣M∣ = 1, then ∪M ∈ P , and hence ∪M is a strong
module of H because all the elements of P are. Now, suppose that

(2) ∣M∣ ≥ 2.

By the second assertion of Proposition 30, ∪M is a module of H. To show
that ∪M is strong, consider a module M of H such that M ∩(∪M) ≠ ∅. Let
x ∈M ∩ (∪M). Denote by X the unique element of P containing x. We get
X ∈ (M/P )∩M. SinceM is a strong module of H/P , we obtain M/P ⊆M

or M ⊆ M/P . In the first instance, we obtain ∪(M/P ) ⊆ ∪M, so we have
M ⊆ ∪(M/P ) ⊆ ∪M. Lastly, suppose M ⊆M/P . It follows from (2) that

∣M/P ∣ ≥ 2.

Let Y ∈M/P . We have Y ∩M ≠ ∅. Let Z ∈ (M/P )∖Y . We have Z∩M ≠ ∅,
and hence M ∖ Y ≠ ∅. Since Y is a strong module of H, we obtain Y ⊆M .
It follows that M = ∪(M/P ). Since M ⊆M/P , we obtain ∪M ⊆ ∪(M/P ),
and hence ∪M ⊆M . �

We use the characterization of disconnected hypergaphs in terms of the
quotient (see Lemma 35 below) to prove the analogue of Theorem 18 (see
Theorem 36 below). Recall the following definition.

Definition 32. A hypergraph H is connected if for distinct v,w ∈ V (H),
there exists a sequence (e0, . . . , en) of edges of H, where n ≥ 0, satisfying
v ∈ e0, w ∈ en, and (when n ≥ 1) ei ∩ ei+1 ≠ ∅ for every 0 ≤ i ≤ n − 1.
Given a hypergraph H, a maximal connected subhypergraph of H is called
a component of H.

Notation 33. Given a hypergraph H, the set of the components of H is
denoted by C(H).
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Remark 34. Let H be a hypergraph. For each component C of H, V (C)

is a module of H. Thus, {V (C) ∶ C ∈ C(H)} is a modular partition of H.
Furthermore, for each component C of H, V (C) is a strong module of H.
We conclude the remark with the following result.

Lemma 35. Given a hypergraph H with v(H) ≥ 2, the following assertions
are equivalent:

(1) H is disconnected;
(2) H admits a modular bipartition P such that H/P is empty;
(3) Π(H) = {V (C) ∶ C ∈ C(H)}, ∣Π(H)∣ ≥ 2, and H/Π(H) is empty.

Let H be a hypergraph such that v(H) ≥ 2. Because of the maximality of
the elements of Π(H) (see Notation 7), it follows from the second assertion
of Proposition 31 that all the strong modules of H/Π(H) are trivial. To
prove Theorem 8, we establish the following result, which is the analogue of
Theorem 18.

Theorem 36. Given a hypergraph H, all the strong modules of H are trivial
if and only if H is an empty hypergraph, a prime hypergraph, or a complete
graph.

Proof. Clearly, if H is an empty hypergraph, a prime hypergraph, or a
complete graph, then all the strong modules of H are trivial.

To demonstrate the converse, we prove the following. Given a hypergraph
H, if all the strong modules of H are trivial, and H is decomposable, then
H is an empty hypergraph or a complete graph.

To begin, we show that H admits a modular bipartition. (This part also
appears in the proof of Theorem 18, see [2, Proposition 2].) Since H is
decomposable, we can consider a maximal nontrivial module M of H under
inclusion. Since M is a nontrivial module, M is not strong. Consequently,
there exists a module N of H such that M ∩ N ≠ ∅, M ∖ N ≠ ∅, and
N ∖M ≠ ∅. Since M ∩ N ≠ ∅, M ∪ N is a module of H by Lemma 57.
Clearly, M ⊊M ∪N because N ∖M ≠ ∅. Since M is a maximal nontrivial
module of H, M ∪ N is a trivial module of H, so M ∪ N = V (H). Since
M ∖N ≠ ∅, N ∖M is a module of H by Lemma 58. But, N ∖M = V (H)∖M
because M ∪ N = V (H). It follows that {M,V (H) ∖M} is a modular
bipartition of H.

We have H/{M,V (H)∖M} is an empty hypergraph or a complete graph.
We distinguish the following two cases.

(1) Suppose that H/{M,V (H)∖M} is an empty hypergraph. We prove
that H is an empty hypergraph. By Lemma 35, H is disconnected.
Let C ∈ C(H). As recalled in Remark 34, V (C) is a strong module
of H. By hypothesis, V (C) is trivial. Since H is disconnected,
V (C) ⊊ V (H). It follows that v(C) = 1. Therefore, H is isomorphic
to H/{V (C) ∶ C ∈ C(H)}. It follows from Lemma 35 that H is
empty.
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(2) Suppose that H/{M,V (H)∖M} is a complete graph. We prove that
H is a complete graph. Consider the graph Hc defined on V (H) by

(3) E(Hc
) = (E(H) ∖ (

V (H)

2
)) ∪ ((

V (H)

2
) ∖E(H)).

It is easy to verify thatH andHc share the same modules. Therefore,
they share the same strong modules. Consequently, all the strong
modules of Hc are trivial, Hc is decomposable, and {M,V (H)∖M}

is a modular bipartition of H. Since H/{M,V (H)∖M} is a complete
graph, Hc/{M,V (H) ∖M} is empty. It follows from the first case
that Hc is empty. Hence E(Hc) = ∅, and it follows from (3) that

E(H) = (
V (H)

2
). �

Remark 37. Theorem 36 is stated as follows for hypergraphs that are not
graphs. Given a hypergraph H such that

E(H) ∖ (
V (H)

2
)) ≠ ∅,

all the strong modules of H are trivial if and only if H is empty or prime.

Proof of Theorem 8. For a contradiction, suppose that H/Π(H) admits a
nontrivial strong module S. By the second assertion of Proposition 31, ∪S
is a strong module of H. Given X ∈ S, we obtain X ⊊ ∪S ⊊ V (H), which
contradicts the maximality of X. Consequently, all the strong modules
of H/Π(H) are trivial. To conclude, it suffices to apply Theorem 36 to
H/Π(H). �

Definition 38. Let H be a hypergraph. As for tournaments (see Defini-
tion 19), the set of the nonempty strong modules of H is denoted by D(H).
Clearly, D(H) ordered by inclusion is a tree. It is called the modular de-
composition tree of H. For convenience, set

D≥2(H) = {X ∈ D(H) ∶ ∣X ∣ ≥ 2}.

Moreover, we associate with each X ∈ D≥2(H), the label εH(X) defined
as follows

εH(X) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

△ if H[X]/Π(H[X]) is prime,

◯ if H[X]/Π(H[X]) is empty,

or

● if H[X]/Π(H[X]) is a complete graph.

To conclude, we prove the analogue of Proposition 20 for hypergraphs.

Proposition 39. Given a hypergraph H, consider a strong module M of
H. For every N ⊆M , the following two assertions are equivalent:

(1) N is a strong module of H;
(2) N is a strong module of H[M].
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Proof. Let N be a subset of M . To begin, suppose that N is a strong module
of H. Since N is a module of H, N is a module of H[M] by Lemma 60. To
show that N is a strong module of H[M], consider a module X of H[M]

such that N ∩X ≠ ∅. Since M is a module of H, X is a module of H by
Lemma 61. Since N is a strong module of H, we obtain N ⊆X or X ⊆ N .

Conversely, suppose that N is a strong module of H[M]. Since M is a
module of H, N is a module of H by Lemma 61. To show that N is a strong
module of H, consider a module X of H such that N ∩X ≠ ∅. We have
M ∩X ≠ ∅ because N ⊆ M . Since M is a strong module of H, we obtain
M ⊆X or X ⊆M . In the first instance, we get N ⊆M ⊆X. Hence, suppose
that X ⊆M . By Lemma 60, X is a module of H[M]. Since N is a strong
module of H[M] and N ∩X ≠ ∅, we obtain N ⊆X or X ⊆ N . �

4. Realization and decomposability

We need the following notation for the next proposition.

Notation 40. Let H be a 3-uniform hypergraph. For W ⊆ V (H) such that

W ≠ ∅, W̃H denotes the intersection of the strong modules of H containing
W . Note that W̃H is the smallest strong module of H containing W .

Notation 41. Let T be a tournament. For a subset W of V (T ), set

⌝TW = {v ∈ V (T ) ∖W ∶W is not a module of T [W ∪ {v}]}.

Consider a realizable and 3-uniform hypergraph. Let T be a realization of
H. A module of T is clearly a module of H, but the converse is false. Nev-
ertheless, we have the following result. Its proof is arduous and somewhat
long, but it is central to establish Theorem 11.

Proposition 42. Let H be a realizable and 3-uniform hypergraph. Consider
a realization T of H. Let M be a module of H. If M is not a module of T ,
then the following four assertions hold:

(1) M ∪ (⌝TM) is a module of T ;
(2) M is not a strong module of H;

(3) M ∪ (⌝TM) ⊆ M̃H ;

(4) εH(M̃H) = ◯ (see Definition 38) and ∣Π(H[M̃H])∣ ≥ 3.

Proof. Since M is not a module of T , we have ⌝TM ≠ ∅. Let v ∈ ⌝TM .
Since M is not a module of T [M ∪ {v}], we obtain

(4)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

N−

T (v) ∩M ≠ ∅

and

N+

T (v) ∩M ≠ ∅.

Furthermore, consider v− ∈ N−

T (v) ∩M and v+ ∈ N+

T (v) ∩M . Since M is a
module of H, v−vv+ /∈ E(H). Hence v−vv+ /∈ E(C3(T )). Since v−v, vv+ ∈

A(T ), we get v−v+ ∈ A(T ). Therefore, for each v ∈ ⌝TM , we have

(5) for v− ∈ N−

T (v) ∩M and v+ ∈ N+

T (v) ∩M , v−v+ ∈ A(T ).
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Now, consider v,w ∈ ⌝TM such that vw ∈ A(T ). Let v− ∈ N−

T (v) ∩M .
Suppose for a contradiction that v− ∈ N+

T (w)∩M . We get v−vw ∈ E(C3(T )),
and hence v−vw ∈ E(H). Since M is a module of H, we obtain µvw ∈ E(H)

for every µ ∈ M . Thus, since vw ∈ A(T ), µv ∈ A(T ) for every µ ∈ M .
Therefore, M ⊆ N−

T (v), so N+

T (v) ∩M = ∅, which contradicts (4). It follows
that for v,w ∈ ⌝TM , we have

(6) if vw ∈ A(T ), then N−

T (v) ∩M ⊆ N−

T (w) ∩M .

For the first assertion, set

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

M− = {v ∈ V (H) ∖M ∶ vm ∈ A(T ) for every m ∈M}

and

M+ = {v ∈ V (H) ∖M ∶mv ∈ A(T ) for every m ∈M}.

Note that {M−,M,⌝TM,M+} is a partition of V (H). Let m− ∈ M− and
v ∈ ⌝TM . By (4), there exist v− ∈ N−

T (v)∩M and v+ ∈ N+

T (v)∩M . Suppose
for a contradiction that vm− ∈ A(T ). We get vm−v− ∈ E(C3(T )). Hence
vm−v− ∈ E(H). Since m−v+, vv+ ∈ A(T ), we have vm−v+ /∈ E(C3(T )).
Thus vm−v+ /∈ E(H), which contradicts the fact that M is a module of
H. It follows that m−v ∈ A(T ) for any m− ∈ M− and v ∈ ⌝TM . Similarly,
vm+ ∈ A(T ) for any m+ ∈M+ and v ∈ ⌝TM . It follows that M ∪ (⌝TM) is
a module of T .

For the second assertion, consider v ∈ (⌝TM). Set

(7) Nv = (N−

T (v) ∩M) ∪ {w ∈ (⌝TM) ∶ N−

T (w) ∩M ⊆ N−

T (v) ∩M}.

We show that Nv is a module of T . If m− ∈ M−, then m−n ∈ A(T ) for
every n ∈ Nv because M ∪ (⌝TM) is a module of T . Similarly, if m+ ∈M+,
then nm+ ∈ A(T ) for every n ∈ Nv. Now, consider m ∈ M ∖ Nv. We get
m ∈ M ∖N−

T (v). Therefore, we have m ∈ M ∖N−

T (w
′) for every w′ ∈ {w ∈

(⌝TM) ∶ N−

T (w) ∩M ⊆ N−

T (v) ∩M}. Thus, m ∈ N+

T (w
′) ∩M for every

w′ ∈ {w ∈ (⌝TM) ∶ N−

T (w) ∩M ⊆ N−

T (v) ∩M}. Since m ∈ N+

T (v) ∩M , it
follows from (5) that v−m ∈ A(T ) for every v− ∈ N−

T (v) ∩M . Furthermore,
since m ∈ N+

T (w
′)∩M for every w′ ∈ {w ∈ (⌝TM) ∶ N−

T (w)∩M ⊆ N−

T (v)∩M},
we have w′m ∈ A(T ) for every w′ ∈ {w ∈ (⌝TM) ∶ N−

T (w)∩M ⊆ N−

T (v)∩M}.
Therefore, we obtain nm ∈ A(T ) for every n ∈ Nv. Lastly, consider u ∈

(⌝TM) ∖Nv. We get u ∈ (⌝TM) and N−

T (u) ∩M /⊆ N−

T (v) ∩M . It follows
from (6) that vu ∈ A(T ). By (6) again, we have N−

T (v) ∩M ⊊ N−

T (u) ∩M .
Thus v−u ∈ A(T ) for each v− ∈ N−

T (v) ∩M . Let w′ ∈ {w ∈ (⌝TM) ∶ N−

T (w) ∩

M ⊆ N−

T (v) ∩M}. We get N−

T (w
′) ∩M ⊊ N−

T (u) ∩M . It follows from (6)
that w′u ∈ A(T ). Consequently, Nv is a module of T for each v ∈ (⌝TM).
Hence Nv is a module of H for each v ∈ (⌝TM). Let v ∈ (⌝TM). Clearly,
v ∈ Nv ∖M . Moreover, it follows from (4) that there exist v− ∈ N−

T (v) ∩M
and v+ ∈ N+

T (v) ∩M . We get v− ∈M ∩Nv and v+ ∈M ∖Nv. Since Nv is a
module of H, M is not a strong module of H.

For the third assertion, consider v ∈ (⌝TM). As previously proved, Nv

is a module of H. Furthermore, by considering v− ∈ N−

T (v) ∩M and v+ ∈
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N+

T (v) ∩M , we obtain M ∩Nv ≠ ∅ and M ∖Nv ≠ ∅. Hence M̃H ∩Nv ≠ ∅

and M̃H ∖Nv ≠ ∅. Since M̃H is a strong module of H, we get Nv ⊆ M̃
H .

Thus v ∈ M̃H for every v ∈ (⌝TM). Therefore M ∪ (⌝TM) ⊆ M̃H .
For the fourth assertion, we prove that for each v ∈ (⌝TM),

Pv = {N−

T (v) ∩M,N+

T (v) ∩M,⌝TM}

is a modular partition of H[M∪(⌝TM)]. Let v ∈ (⌝TM). By (5), N−

T (v)∩M
and N+

T (v)∩M are modules of T [M]. Thus, N−

T (v)∩M and N+

T (v)∩M are
modules of H[M]. Since M is a module of H, it follows from Lemma 61 that
N−

T (v) ∩M and N+

T (v) ∩M are modules of H. By Lemma 60, N−

T (v) ∩M
and N+

T (v) ∩M are modules of H[M ∪ (⌝TM)]. Now, we prove that ⌝TM
is a module of H[M ∪ (⌝TM)]. It suffices to prove that there exists no
e ∈ E(H[M ∪ (⌝TM)]) such that e ∩ (⌝TM) ≠ ∅ and e ∩M ≠ ∅. Indeed,
suppose to the contrary that there exists e ∈ E(H[M ∪ (⌝TM)]) such that
e∩ (⌝TM) ≠ ∅ and e∩M ≠ ∅. Since M is a module of H, we get ∣e∩M ∣ = 1
and ∣e ∩ (⌝TM)∣ = 2. Therefore, there exist v,w ∈ e ∩ (⌝TM) and m ∈

e ∩M such that vwm ∈ E(H). By replacing v by w if necessary, we can
suppose that vw ∈ A(T ). Since H = C3(T ), we obtain vw,wm,mv ∈ A(T ),
which contradicts (6). Therefore, ⌝TM is a module of H[M ∪ (⌝TM)].
Consequently, Pv = {N−

T (v)∩M,N+

T (v)∩M,⌝TM} is a modular partition of
H[M ∪ (⌝TM)]. Furthermore, given v ∈ (⌝TM), consider v− ∈ N−

T (v) ∩M
and v+ ∈ N+

T (v) ∩M . It follows from (5) that v−v+v /∈ E(C3(T )), and hence
v−v+v /∈ E(H). Consequently,

(8) H[M ∪ (⌝TM)]/Pv is empty.

Since M∪(⌝TM) is a module of T by the first assertion above, M∪(⌝TM)

is a module of H. By Lemma 60, M ∪(⌝TM) is a module of H[M̃H]. Given
v ∈ (⌝TM), it follows from Lemma 61 that each element of Pv is a module

of H[M̃H].
Let v ∈ (⌝TM). For a contradiction, suppose that there exist Y ∈ Pv and

X ∈ Π(H[M̃H]) such that Y ⊊ X. We get X ∩ (M ∪ (⌝TM)) ≠ ∅. Since

M ∪ (⌝TM) is a module of H[M̃H] and X is a strong module of H[M̃H],
we have M ∪ (⌝TM) ⊆ X or X ⊊ M ∪ (⌝TM). Furthermore, since X is a

strong module of H[M̃H] and M̃H is a strong module of H, it follows from

Proposition 39 that X is a strong module of H. Since X ⊊ M̃H , it follows
from the minimality of M̃H that we do not have M∪(⌝TM) ⊆X. Therefore,
X ⊊M ∪ (⌝TM). Let x ∈X ∖Y . We have x ∈ (M ∪ (⌝TM))∖Y . Denote by
Y ′ the unique element of Pv ∖ {Y } such that x ∈ Y ′. Also, denote by Z the
unique element of Pv ∖ {Y,Y ′}. We get X ∩ Y ′ ≠ ∅ and Y ⊆ X ∖ Y ′. Since

X is a strong module of H[M̃H], we get Y ′ ⊆ X. Since X ⊊ M ∪ (⌝TM),
we obtain X ∩ Z = ∅. Thus X = Y ∪ Y ′. Since H[M ∪ (⌝TM)]/Pv is
empty, {Y,Z} is a module of H[M ∪ (⌝TM)]/Pv. By the second assertion
of Proposition 30, Y ∪Z is a module of H[M ∪(⌝TM)]. As previously seen,

M ∪ (⌝TM) is a module of H[M̃H]. By Lemma 61, Y ∪ Z is a module of

H[M̃H], which contradicts the fact that X is a strong module of H[M̃H].
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Consequently,

(9) for any Y ∈ Pv and X ∈ Π(H[M̃H
]), we do not have Y ⊊X.

Let Y ∈ Pv. Set

QY = {X ∈ Π(H[M̃H
]) ∶X ∩ Y ≠ ∅}.

For every X ∈ QY , we have Y ⊊ X or X ⊆ Y because X is a strong module
of H[M̃H]. By (9), we have X ⊆ Y . It follows that

(10) for each Y ∈ Pv, we have Y = ∪QY .

Therefore, ∣Π(H[M̃H])∣ ≥ ∣Pv ∣, that is,

∣Π(H[M̃H
])∣ ≥ 3.

Finally, we prove that H[M̃H]/Π(H[M̃H]) is empty. Suppose that M ∪

(⌝TM) ⊊ M̃H , and set

QM∪(⌝TM) = {X ∈ Π(H[M̃H
]) ∶X ∩ (M ∪ (⌝TM)) ≠ ∅}.

Since M ∪ (⌝TM) is a module of H[M̃H], it follows from the first asser-

tion of Proposition 30 that QM∪(⌝TM) is a module of H[M̃H]/Π(H[M̃H]).
Moreover, it follows from (10) that ∣QM∪(⌝TM)∣ ≥ 3. Since each element of

Π(H[M̃H]) is a strong element of M̃H , we get M ∪ (⌝TM) = ∪QM∪(⌝TM).

Since M ∪ (⌝TM) ⊊ M̃H , we obtain that QM∪(⌝TM) is a nontrivial module

of H[M̃H]/Π(H[M̃H]). Hence H[M̃H]/Π(H[M̃H]) is decomposable. It

follows from Theorem 8 that H[M̃H]/Π(H[M̃H]) is empty. Lastly, sup-

pose that M ∪ (⌝TM) = M̃H . Suppose also that there exists Y ∈ Pv such
that ∣QY ∣ ≥ 2. As previously, we obtain that QY is a nontrivial module of

H[M̃H]/Π(H[M̃H]), and hence H[M̃H]/Π(H[M̃H]) is empty. Therefore,

suppose that ∣QY ∣ = 1 for every Y ∈ Pv. By (10), Π(H[M̃H]) = Pv. Hence

H[M̃H]/Π(H[M̃H]) is empty by (8). �

Remark 43. Let T be a tournament. Consider a subset M of V (T ) such
that M is not a module of T . In general, M ∪ (⌝TM) is not a module of
T . Nevertheless, if M is a module of C3(T ), then it follows from the first
assertion of Proposition 42 that M ∪ (⌝TM) is a module of T . In this case,
M ∪ (⌝TM) is the convex envelope of M in T .

The next result is an easy consequence of Proposition 42.

Corollary 44. Consider a realizable 3-uniform hypergraph H, and a real-
ization T of H. The following two assertions are equivalent:

● H and T share the same modules;
● for each strong module X of H such that ∣X ∣ ≥ 2, we have

if εH(X) = ◯, then ∣Π(H[X])∣ = 2.
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Proof. To begin, suppose that H and T do not share the same modules.
There exists a module M of H, which is not a module of T . By the last
assertion of Proposition 42, we obtain εH(M̃H) = ◯ and ∣Π(H[M̃H])∣ ≥ 3.

Conversely, suppose that there exists a strong module X of H, with ∣X ∣ ≥

2, such that εH(X) = ◯ and ∣Π(H[X])∣ ≥ 3. It follows from the second
assertion of Proposition 42 that X is a module of T . Observe that T [X]

realizes H[X]. Let Y ∈ Π(H[X]). Since Y is a strong module of H[X],
it follows from the second assertion of Proposition 42 applied to H[X] and
T [X] that Y is a module of T [X]. Thus, Π(H[X]) is a modular partition
of T [X]. Since H[X]/Π(H[X]) is empty, T [X]/Π(H[X]) is a linear order.
Denote by Ymin the smallest element of T [X]/Π(H[X]). Similarly, denote
by Ymax the largest element of T [X]/Π(H[X]). Since H[X]/Π(H[X]) is
empty, {Ymin, Ymax} is a module ofH[X]/Π(H[X]). By the second assertion
of Proposition 30, Ymin ∪ Ymax is a module of H[X]. Since X is a module
of H, it follows from Lemma 61 that Ymin ∪ Ymax is a module of H. Lastly,
since ∣Π(H[X])∣ ≥ 3, there exists Y ∈ Π(H[X]) ∖ {Ymin, Ymax}. Since Ymin

is the smallest element of T [X]/Π(H[X]) and Ymax is the largest one, we
obtain YminY,Y Ymax ∈ A(T [X]/Π(H[X])). Therefore, for ymin ∈ Ymin, y ∈ Y
and ymax ∈ Ymax, we have yminy, yymax ∈ A(T [X]), and hence yminy, yymax ∈

A(T ). Consequently, Ymin ∪ Ymax is not a module of T . �

Now, we prove Theorem 11 by using Proposition 42.

Proof of Theorem 11. To begin, consider a strong module M of H. By the
second assertion of Proposition 42, M is a module of T . Let N be a module
of T such that M ∩N ≠ ∅. Since N is a module of T , N is a module of H.
Furthermore, since M is a strong module of H, we obtain M ⊆ N or N ⊆M .
Therefore, M is a strong module of T .

Conversely, consider a strong module M of T . Since M is a module of
T , M is a module of H. Let N be a module of H such that M ∩N ≠ ∅. If
N is a module of T , then M ⊆ N or N ⊆M because M is a strong module
of T . Hence suppose that N is not a module of T . By the last assertion
of Proposition 42, εH(ÑH) = ◯ and ∣Π(H[ÑH])∣ ≥ 3. Since M ∩ N ≠ ∅,

M ∩ ÑH ≠ ∅. Since ÑH is a strong module of H, we get ÑH ⊆ M or
M ⊊ ÑH . Clearly, if ÑH ⊆M , then N ⊆M . Thus, suppose that

M ⊊ ÑH .

We prove that M ⊆ N . As previously proved, ÑH is a strong module of
T because it is a strong module of H. Since M is a strong module of T ,
it follows from Proposition 20 that M is a strong module of T [ÑH]. For

each X ∈ Π(H[ÑH]), X is a strong module of T [ÑH] because it is a strong

module of H[ÑH]. Therefore, Π(H[ÑH]) is a modular partition of T [ÑH].
Set

QM = {X ∈ Π(H[ÑH
]) ∶M ∩X ≠ ∅}.
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By the first assertion of Proposition 31, QM is a strong module of T [ÑH]/

Π(H[ÑH]). Since H[ÑH]/Π(H[ÑH]) is empty, T [ÑH]/Π(H[ÑH]) is a

linear order. Therefore, QM is a trivial module of T [ÑH]/Π(H[ÑH]). For a

contradiction, suppose that QM = Π(H[ÑH]). Since M is a strong module

of T [ÑH], we get M = ÑH , which contradicts M ⊊ ÑH . It follows that

∣QM ∣ = 1. Hence there exists XM ∈ Π(H[ÑH]) such that

M ⊆XM .

Since N is not a module of T , it follows from the second assertion of Propo-
sition 42 that N is not a strong module of H. Thus N ⊊ ÑH . Set

QN = {X ∈ Π(H[ÑH
]) ∶ N ∩X ≠ ∅}.

Since ÑH is a strong module of H, it follows from Proposition 39 that
each element of Π(H[ÑH]) is a strong module of H. It follows from the

minimality of ÑH that ∣QN ∣ ≥ 2. Since each element of Π(H[ÑH]) is a
strong module of H, we obtain

N = ∪QN .

Since M ∩N ≠ ∅, we get XM ∈ QN . We obtain M ⊆XM ⊆ N . �

Lastly, we establish Theorem 12 by using Theorems 8 and 11.

Proof of Theorem 12. Suppose that H is prime. Since all the modules of T
are modules of H, T is prime.

Conversely, suppose that T is prime. Hence, all the strong modules of
T are trivial. By Theorem 11, all the strong modules of H are trivial. We
obtain

Π(H) = {{v} ∶ v ∈ V (H)}.

Thus, H is isomorphic to H/Π(H). It follows from Theorem 8 that H is
an empty hypergraph, a prime hypergraph, or a complete graph. Since T
is prime, we have E(C3(T )) ≠ ∅. Since E(C3(T )) = E(H), there exists
e ∈ E(H) such that ∣e∣ = 3. Therefore, H is not an empty hypergraph and
H is not a graph. It follows that H is prime. �

5. Realizability of 3-uniform hypergraphs

The next proposition is useful to construct realizations from the modular
decomposition tree. We need the following notation and remark.

Notation 45. Let H be a 3-uniform hypergraph. We denote by R(H) the
set of the realizations of H.

Remark 46. Let H be a 3-uniform hypergraph. Consider T ∈ R(H). It
follows from Theorem 11 that

D(H) = D(T ).

By the same theorem, for each X ∈ D≥2(H), we have

Π(H[X]) = Π(T [X]).
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Therefore, for each X ∈ D≥2(H), T [X]/Π(T [X]) realizes H[X]/Π(H[X]),
that is,

T [X]/Π(T [X]) ∈ R(H[X]/Π(H[X])).

Set
RD(H) = ⋃

X∈D≥2(H)

R(H[X]/Π(H[X])).

We denote by θH(T ) the function

D≥2(H) Ð→ RD(H)

Y z→ T [Y ]/Π(T [Y ]).

Lastly, we denote by Q(H) the set of the functions f from D≥2(H) to
RD(H) satisfying f(Y ) ∈ R(H[Y ]/Π(H[Y ])) for each Y ∈ D≥2(H). Under
this notation, we obtain the function

θH ∶ R(H) Ð→ Q(H)

T z→ θH(T ).

Proposition 47. For a 3-uniform hypergraph, θH is a bijection.

Proof. To begin, we show that θH is injective. Let T and T ′ be distinct
realizations of H. There exist distinct v,w ∈ V (H) such that vw ∈ A(T )

and wv ∈ A(T ′). Consider Zv, Zw ∈ Π(H[{̃v,w}
H
]) (see Notation 40) such

that v ∈ Zv and w ∈ Zw. Since {̃v,w}
H

is the smallest strong module of
H containing {v,w}, we obtain Zv ≠ Zw. It follows from Theorem 11 that

Π(H[{̃v,w}
H
]) = Π(T [{̃v,w}

H
]) and Π(H[{̃v,w}

H
]) = Π(T ′[{̃v,w}

H
]).

Since vw ∈ A(T ) and wv ∈ A(T ′), we obtain

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ZvZw ∈ A(T [{̃v,w}
H
]/Π(T [{̃v,w}

H
]))

and

ZwZv ∈ A(T ′[{̃v,w}
H
]/Π(T ′[{̃v,w}

H
])).

Consequently, θH(T )({̃v,w}
H
) ≠ θH(T ′)({̃v,w}

H
). Thus, θH(T ) ≠ θH(T ′).

Now, we prove that θH is surjective. Consider f ∈ Q(H), that is, f is
a function from D≥2(H) to RD(H) satisfying f(Y ) ∈ R(H[Y ]/Π(H[Y ]))

for each Y ∈ D≥2(H). We construct T ∈ R(H) such that θH(T ) = f in the

following manner. Consider distinct vertices v and w of H. Clearly, {̃v,w}
H

is a strong module of H such that ∣{̃v,w}
H
∣ ≥ 2. There exist Zv, Zw ∈

Π(H[{̃v,w}
H
]) such that v ∈ Zv and w ∈ Zw. Since {̃v,w}

H
is the smallest

strong module of H containing v and w, we obtain Zv ≠ Zw. Set

(11)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

vw ∈ A(T ) if ZvZw ∈ A(f({̃v,w}
H
)),

and

wv ∈ A(T ) if ZwZv ∈ A(f({̃v,w}
H
)).

We obtain a tournament T defined on V (H).
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Lastly, we verify that T realizes H. First, consider distinct vertices u, v,w

of H such that uvw ∈ E(H). There exist Zu, Zv, Zw ∈ Π(H[ ̃{u, v,w}
H
])

such that u ∈ Zu, v ∈ Zv, and w ∈ Zw. For a contradiction, suppose
that Zu = Zv. Since Zu is a module of H and uvw ∈ E(H), we get

w ∈ Zu. Thus, Zu = Zv = Zw, which contradicts the fact that ̃{u, v,w}
H

is the smallest strong module of H containing u, v and w. It follows that
Zu ≠ Zv. Similarly, we have Zu ≠ Zw and Zv ≠ Zw. It follows that

ZuZvZw ∈ E(H[ ̃{u, v,w}
H
]/Π(H[ ̃{u, v,w}

H
])). Since f( ̃{u, v,w}

H
) real-

izes H[ ̃{u, v,w}
H
]/Π(H[ ̃{u, v,w}

H
]), we obtain ZuZv, ZvZw, ZwZu ∈ A(

f( ̃{u, v,w}
H
)) or ZuZw, ZwZv, ZvZu ∈ A(f( ̃{u, v,w}

H
)). By exchanging

u and v if necessary, assume that

ZuZv, ZvZw, ZwZu ∈ A(f( ̃{u, v,w}
H
)).

Since Zu ≠ Zv, we obtain {̃u, v}
H
= ̃{u, v,w}

H
. Similarly, we have {̃u,w}

H
=

̃{u, v,w}
H

and {̃v,w}
H
= ̃{u, v,w}

H
. It follows from (11) that uv, vw,wu ∈

A(T ). Hence, T [{u, v,w}] is a 3-cycle.
Conversely, consider distinct vertices u, v,w of T such that T [{u, v,w}] is

a 3-cycle. There exist Zu, Zv, Zw ∈ Π(H[ ̃{u, v,w}
H
]) such that u ∈ Zu, v ∈

Zv, and w ∈ Zw. For a contradiction, suppose that Zu = Zv. Since ̃{u, v,w}
H

is the smallest strong module ofH containing u, v, and w, we obtain Zu ≠ Zw.

Therefore, we have {̃u,w}
H
= ̃{u, v,w}

H
and {̃v,w}

H
= ̃{u, v,w}

H
. For in-

stance, assume that ZuZw ∈ A(f( ̃{u, v,w}
H
)). It follows from (11) that

uw, vw ∈ A(T ), which contradicts the fact that T [{u, v,w}] is a 3-cycle.

Consequently, Zu ≠ Zv. It follows that {̃u, v}
H

= ̃{u, v,w}
H

. Similarly,

we have {̃u,w}
H

= ̃{u, v,w}
H

and {̃v,w}
H

= ̃{u, v,w}
H

. For instance, as-
sume that uv, vw,wu ∈ A(T ). It follows from (11) that ZuZv, ZvZw, ZwZu ∈

A(f( ̃{u, v,w}
H
)). Since f( ̃{u, v,w}

H
) realizes

H[ ̃{u, v,w}
H
]/Π(H[ ̃{u, v,w}

H
]),

we obtain ZuZvZw ∈ E(H[ ̃{u, v,w}
H
]/Π(H[ ̃{u, v,w}

H
])). It follows that

uvw ∈ E(H[ ̃{u, v,w}
H
]), and hence uvw ∈ E(H).

Consequently, T ∈ R(H). Let X ∈ D≥2(H). As seen at the beginning of
Remark 46, we have Π(H[X]) = Π(T [X]), and

T [X]/Π(T [X]) ∈ R(H[X]/Π(H[X])).

Consider distinct elements Y and Z of Π(H[X]). For instance, suppose
that Y Z ∈ A(T [X]/Π(T [X])). Let v ∈ Y and w ∈ Z. We obtain vw ∈ A(T ).

Moreover, we have {̃v,w}
H

= X because Y,Z ∈ Π(H[X]) and Y ≠ Z. It



3-UNIFORM HYPERGRAPHS: DECOMPOSITION AND REALIZATION 141

follows from (11) that Y Z ∈ A(f(X)). Therefore,

(12) T [X]/Π(T [X]) = f(X).

Since (12) holds for every X ∈ D≥2(H), we have θH(T ) = f . �

Theorem 13 is an easy consequence of Proposition 47.

Proof of Theorem 13. Clearly, if H is realizable, then H[W ] is also for every
W ⊆ V (H). Conversely, suppose that H[W ] is realizable for every W ⊆

V (H) such that H[W ] is prime. We define an element f of Q(H) as
follows. Consider Y ∈ D≥2(H). By Theorem 8, H[Y ]/Π(H[Y ]) is empty or
prime.

First, suppose that H[Y ]/Π(H[Y ]) is empty. We choose for f(Y ) any
linear order defined on Π(H[Y ]). Clearly, f(Y ) ∈ R(H[Y ]/Π(H[Y ])).

Second, suppose that H[Y ]/Π(H[Y ]) is prime. Consider a transverse W
of Π(H[Y ]) (see Definition 28). The function

ϕW W ∶ Ð→ Π(H[Y ])

w z→ Z, where w ∈ Z,

is an isomorphism from H[W ] onto H[Y ]/Π(H[Y ]). Thus, H[W ] is prime.
By hypothesis, H[W ] admits a realization TW . We choose for f(Y ) the
unique tournament defined on Π(H[Y ]) such that ϕW is an isomorphism
from TW onto f(Y ). Clearly, f(Y ) ∈ R(H[Y ]/Π(H[Y ])).

By Proposition 47, (θH)−1(f) is a realization of H. �

Theorem 13 leads us to study the realization of prime and 3-uniform
hypergraphs. We need to introduce the analogue of Defintion 21 for 3-
uniform hypergraphs.

Definition 48. Given a prime and 3-uniform hypergraph H, a vertex v of
H is critical if H − v is decomposable. A prime and 3-uniform hypergraph
is critical if all its vertices are critical.

For critical and 3-uniform hypergraphs, we obtain the following charac-
terization, which is an immediate consequence of Theorems 12 and 22.

Theorem 49. Given a critical and 3-uniform hypergraph H, H is realizable
if and only if v(H) is odd and H is isomorphic to C3(Tv(H)), C3(Uv(H)),
or C3(Wv(H)).

Now, we characterize the noncritical, prime, and 3-uniform hypergraphs
that are realizable. We need the following notation.

Notation 50. Let H be a 3-uniform hypergraph. Consider a vertex w of
H. Set

Vw = V (H) ∖ {w}.

We denote byGw the graph defined on Vw as follows. Given distinct elements
v and v′ of Vw,

vv′ ∈ E(Gw) if wvv′ ∈ E(H) (note that the graph Gw is used in [7]) .
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Also, we denote by Iw the set of the isolated vertices of Gw.

Notation 51. Let T be a tournament. Consider W,W ′ ⊆ V (T ) such that
W ∩W ′ = ∅. We denote by (W ↠ W ′)T the subset of w′ ∈ W ′ such that
there exists a sequence w0, . . . ,wn satisfying

● w0 ∈W and wn = w
′;

● w1, . . . ,wn ∈W
′;

● for i = 0, . . . , n − 1, wiwi+1 ∈ A(T ).

Theorem 52. Let H be a noncritical, prime, and 3-uniform hypergraph.
Consider a vertex w of H such that H − w is prime. The 3-uniform hy-
pergraph H is realizable if and only if H − w admits a realization, say Tw,
satisfying the following two assertions.

(M1) There exists a bipartition {X,Y } of Vw ∖ Iw (see Notation 50) sat-
isfying
● for each component C of Gw, with v(C) ≥ 2, C is bipartite with

bipartition {X ∩ V (C), Y ∩ V (C)};
● for x ∈X and y ∈ Y , we have

(13) xy ∈ E(Gw) if and only if xy ∈ A(Tw).

(M2) We have (X ↠ Iw)Tw ∩ (Y ↠ Iw)(Tw)⋆ = ∅ (see Notation 51) and
(X ↠ Iw)Tw ∪ (Y ↠ Iw)(Tw)⋆ = Iw. Furthermore, for x ∈ X, y ∈ Y ,
x+ ∈ (X ↠ Iw)Tw , and y− ∈ (Y ↠ Iw)(Tw)⋆, we have y−x, yx+, y−x+ ∈
A(Tw).

Proof. To begin, suppose that H admits a realization T . Clearly, T −w is a
realization of H −w. Set

Tw = T −w.

For assertion (M1), consider a component C of Gw such that v(C) ≥ 2.
Consider distinct vertices c0, c1, c2 of C such that c0c1, c1c2 ∈ E(Gw). We
show that

(14)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c0c1, c2c1 ∈ A(T )

or

c1c0, c1c2 ∈ A(T ).

Suppose that c0c1 ∈ A(T ). Since c0c1 ∈ E(Gw), T [{w, c0, c1}] is a 3-
cycle. Hence, wc0, c1w ∈ A(T ) because c0c1 ∈ A(T ). Since c1c2 ∈ E(Gw),
T [{w, c1, c2}] is a 3-cycle. Since c1w ∈ A(T ), we obtain c2c1 ∈ A(T ). Dually,
if c1c0 ∈ A(T ), then c1c2 ∈ A(T ). It follows that (14) holds. We denote
by V (C)− the set of the vertices c− of C such that there exists c+ ∈ V (C)

satisfying c−c+ ∈ E(Gx) and c−c+ ∈ A(T ). Dually, we denote by V (C)+

the set of the vertices c+ of C such that there exists c− ∈ V (C) satisfying
c−c+ ∈ E(Gx) and c−c+ ∈ A(T ). Since C is a component of Gx, we have
V (C) = V (C)− ∪ V (C)+. Moreover, it follows from (14) that

V (C)
−
∩ V (C)

+
= ∅.
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Therefore, it follows from the definition of V (C)− and V (C)+ that V (C)−

and V (C)+ are stable subsets of C. Therefore, C is bipartite with bipartition
{V (C)−, V (C)+}. Set

X = ⋃
C∈C(Gw)

V (C)
− and Y = ⋃

C∈C(Gw)

V (C)
+ (see Notation 33).

Clearly, {X,Y } is a bipartition of Vw ∖ Iw. Consider again a component C
of Gw such that v(C) ≥ 2. Since V (C)− =X ∩V (C) and V (C)+ = Y ∩V (C),
C is bipartite with bipartition {X ∩ V (C), Y ∩ V (C)}. To prove that (13)
holds, consider x ∈ X and y ∈ Y . Denote by C the component of Gw
containing x. Since x ∈ X, x /∈ Iw, so v(C) ≥ 2. We obtain x ∈ V (C)−.
First, suppose that xy ∈ E(Gw). Hence y ∈ V (C). We obtain y ∈ V (C)+.
By definition of V (C)−, there exists x+ ∈ V (C) such that xx+ ∈ E(Gw) and
xx+ ∈ A(T ). Since xy ∈ E(Gw), it follows from (14) that xy ∈ A(T ). Second,
suppose that xy ∈ A(T ). Since x ∈ V (C)−, there exists x+ ∈ V (C) such that
xx+ ∈ E(Gw) and xx+ ∈ A(T ). It follows that wx,x+w ∈ A(T ). Denote by
D the component of Gw containing y. Since y ∈ Y , we obtain y ∈ V (D)+.
Similarly, there exists y− ∈ V (D) such that wy−, yw ∈ A(T ). We obtain
wx,xy, yw ∈ A(T ). Thus, T [{w,x, y}] is a 3-cycle, so xy ∈ E(Gw).

For assertion (M2), consider x ∈ X. Denote by C the component of Gw
such that x ∈ V (C). We have x ∈ V (C)−. Therefore, there exists x+ ∈ V (C)

satisfying xx+ ∈ E(Gx) and xx+ ∈ A(T ). Since T [{w,x, x+}] is a 3-cycle and
xx+ ∈ A(T ), we get wx ∈ A(T ). Hence,

(15) wx ∈ A(T ) for every x ∈X.

Dually, we have

(16) yw ∈ A(T ) for every y ∈ Y .

Set

X+
= (X ↠ Iw)(T−w) and Y −

= (Y ↠ Iw)(T−w)⋆ .

Now, consider x+ ∈X+. There exists a sequence x0, . . . , xn satisfying x0 ∈X,
xn = x+, x1, . . . , xn ∈ Iw, and xixi+1 ∈ A(T ) for i = 0, . . . , n − 1. We show
that wxi ∈ A(T ) by induction on i = 0, . . . , n. By (15), this is the case when
i = 0. Consider i ∈ {0, . . . , n − 1}, and suppose that wxi ∈ A(T ). Since
xi+1 ∈ Ix, xixi+1 /∈ E(Gx). Thus T [{w,xi, xi+1}] is a linear order. Since
wxi, xixi+1 ∈ A(T ), we obtain wxi+1 ∈ A(T ). It follows that

(17) wx+ ∈ A(T )

for every x+ ∈X+. Dually, we have

(18) y−w ∈ A(T )

for every y− ∈ Y −. It follows from (17) and (18) that X+ ∩ Y − = ∅. By
definition of X+ and Y −, X+ ⊆ Ix and Y − ⊆ Ix. Set

Z = Ix ∖ (X+
∪ Y −

).
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Let z ∈ Z. Since z /∈X+, we have zx ∈ A(T ) for every x ∈X ∪X+. Therefore,

(19) zx ∈ A(T )

for z ∈ Z and x ∈X ∪X+. Dually,

(20) yz ∈ A(T )

for z ∈ Z and y ∈ Y ∪Y −. It follows from (15), (16), (17), (18), (19), and (20)
that {w}∪Z is a module of T . Since H is prime, it follows from Theorem 12
that T is prime as well. Therefore, Z = ∅, so

X+
∪ Y −

= Ix.

To conclude, consider x ∈ X, y ∈ Y , x+ ∈ X+, and y− ∈ Y −. Since x+ /∈ Y −,
yx+ ∈ A(T ). Dually, we have y−x ∈ A(T ). It follows from (17) and (18) that
y−w,wx+ ∈ A(T ). Since x+, y− ∈ Ix, x+y− /∈ E(Gx). Thus, T [{w,x+, y−}] is
a linear order. Consequently, we have y−x+ ∈ A(T ).

Conversely, suppose that H−x admits a realization Tx such that assertions
(M1) and (M2) hold. As previously, set

X+
= (X ↠ Iw)(T−w) and Y −

= (Y ↠ Iw)(T−w)⋆ .

Let T be the tournament defined on V (H) by

(21)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T −w = Tw,

for every x ∈X ∪X+, wx ∈ A(T ),

and

for every y ∈ Y ∪ Y −, yw ∈ A(T ).

We verify that T is a realization of H. Since Tw realizes H − w, it suffices
to verify that for distinct u, v ∈ Vw, uv ∈ E(Gw) if and only if T [{u, v,w}] is
a 3-cycle. Hence, consider distinct v,w ∈ Vx.

First, suppose that uv ∈ E(Gw). Denote by C the component of Gw
containing u and v. Since assertion (M1) holds, C is bipartite with bipar-
tition {X ∩ V (C), Y ∩ V (C)}. By exchanging u and v if necessary, we can
assume that u ∈ X ∩ V (C) and v ∈ Y ∩ V (C). It follows from (13) that
uv ∈ A(Tw). Furthermore, it follows from (21) that uv ∈ A(T ), wu ∈ A(T ),
and vw ∈ A(T ). Therefore, T [{u, v,w}] is a 3-cycle.

Second, suppose that T [{u, v,w}] is a 3-cycle. By exchanging v and w if
necessary, we can assume that uv, vw,wu ∈ A(T ). It follows from (21) that
uv ∈ A(Tw), u ∈ X ∪X+, and v ∈ Y ∪ Y −. Moreover, since assertion (M2)
holds and uv ∈ A(Tw), we obtain u ∈X and v ∈ Y . It follows from (13) that
uv ∈ E(Gw). �

The next result is an easy consequence of Theorem 52.

Corollary 53. Let H be a noncritical, prime, and 3-uniform hypergraph.
Consider a vertex w of H such that H −w is prime. Suppose that H −w is
realizable, and consider a realization Tw of H − w. If H is realizable, then
there exists a unique realization T of H such that T −w = Tw.
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Proof. Consider a realization T of H such that T −w = Tw. It follows from
the proof of Theorem 52 that T satisfies (15), (16), (17), and (18), that is,
wx, yw,wx+, y−w ∈ A(T ) for x ∈ X, y ∈ Y , x+ ∈ X+, and y− ∈ Y −. It follows
that T is uniquely determined. �

A new proof of Theorem 23. Let T be a prime tournament. Consider a tour-
nament T ′ such that C3(T

′) = C3(T ). We prove by induction on v(T ) that
T ′ = T or T ⋆. Since T is prime, we have v(T ) = 3 or v(T ) ≥ 5. The result is
clear when v(T ) = 3 because C3 is the only prime tournament defined on 3
vertices. Hence, suppose that v(T ) ≥ 5.

First, suppose that T is critical. By Theorem 22, v(T ) is odd, and T
is isomorphic to Tv(τ), Uv(τ), or Wv(τ). For instance, suppose that T =

T2n+1, where v(T ) = 2n + 1. Hence, T ′ is also defined on {0, . . . ,2n}, and
C3(T

′) = C3(T2n+1). Suppose that (2n)(2n − 1) ∈ A(T ′). We have to show
that T ′ = T2n+1 because (2n)(2n− 1) ∈ A(T2n+1). Since C3(T

′) = C3(T2n+1),
we obtain

(22) (2i − 1)(2n − 1), (2n)(2i − 1), (2n − 1)(2i), (2i)(2n) ∈ A(T ′)

for i = 0, . . . , n − 1. Moreover, we obtain

(23) (2n − 2)(2n − 3) ∈ A(T ′).

We have C3(T
′ − {2n − 1,2n}) = C3(T2n+1 − {2n − 1,2n}) because C3(T

′) =

C3(T2n+1). Therefore C3(T
′ − {2n − 1,2n}) = C3(T2n−1). Furthermore, it

follows from (23) that (2n−2)(2n−3) ∈ A(T ′ −{2n−1,2n})∩A(T2n−1). By
induction hypothesis, we have T ′ − {2n− 1,2n} = T2n−1. It follows from (22)
that T ′ = T2n+1. We proceed in a similar way when T = U2n+1 or W2n+1.

Second, suppose that T is not critical. There exists a vertex w of T such
that T−w is prime. We have C3(T

′−w) = C3(T−w) because C3(T
′) = C3(T ).

By induction hypothesis, we have T ′−w = T −w or (T −w)⋆. By exchanging
T ′ and (T ′)⋆, we can assume that T ′−w = T −w. It follows from Corollary 53
that T ′ = T . �

We conclude by counting the number of realizations of a realizable and
3-uniform hypergraph. This counting is an immediate consequence of Propo-
sition 47. We need the following notation.

Notation 54. Let H be a 3-uniform hypergraph. Set

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

D△(H) = {X ∈ D≥2(H) ∶ εH(X) =△} (see Definition 38)

and

D◯(H) = {X ∈ D≥2(H) ∶ εH(X) = ◯}.

Corollary 55. For a realizable and 3-uniform hypergraph, we have

∣R(H)∣ = 2∣D△(H)∣ × ∏
X∈D◯(H)

∣Π(H[X])∣! .
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Appendices

Appendix A. Proof of Proposition 3

Given a hypergraph H, ∅, V (H), and {v} (for v ∈ V (H)) are clearly
modules of H. Therefore, Proposition 3 is a direct consequence of the next
four lemmas.

Lemma 56. Let H be a hypergraph. For any M,N ∈ M (H), we have
M ∩N ∈ M (H).

Proof. Consider M,N ∈ M (H). To show that M ∩ N ∈ M (H), consider
e ∈ E(H) such that e∩(M∩N) ≠ ∅ and e∖(M∩N) ≠ ∅. Since e∖(M∩N) ≠ ∅,
assume for instance that e∖M ≠ ∅. Since M is a module of H and e∩M ≠ ∅,
there exists m ∈M such that e∩M = {m}. Since e∩(M ∩N) ≠ ∅, we obtain

e ∩ (M ∩N) = {m}.

Let n ∈M ∩N . Since M is a module of H, (e ∖ {m}) ∪ {n} ∈ E(H). �

Lemma 57. Let H be a hypergraph. For any M,N ∈ M (H), if M ∩N ≠ ∅,
then M ∪N ∈ M (H).

Proof. Consider M,N ∈ M (H) such that M ∩N ≠ ∅. To show that M ∪N ∈

M (H), consider e ∈ E(H) such that e ∩ (M ∪N) ≠ ∅ and e ∖ (M ∪N) ≠ ∅.
Since e∩(M ∪N) ≠ ∅, assume for instance that e∩M ≠ ∅. Clearly e∖M ≠ ∅

because e ∖ (M ∪N) ≠ ∅. Since M is a module of H, there exists m ∈ M
such that e ∩M = {m}, and

(24) (e ∖ {m}) ∪ {n} ∈ E(H) for every n ∈M .

Consider n ∈M ∩N . By (24), (e ∖ {m}) ∪ {n} ∈ E(H). Set

f = (e ∖ {m}) ∪ {n}.

Clearly n ∈ f ∩N . Furthermore, consider p ∈ e ∖ (M ∪N). Since m ∈ M ,
we have p ≠ m, and hence p ∈ f ∖N . Since N is a module of H, we obtain
f ∩N = {n} and

(25) (f ∖ {n}) ∪ {n′} ∈ E(H) for every n′ ∈ N .

Since (f ∖ {n}) ∪ {n′} = (e ∖ {m}) ∪ {n′} for every n′ ∈ N , it follows from
(25) that

(26) (e ∖ {m}) ∪ {n′} ∈ E(H) for every n′ ∈ N .

Therefore, it follows from (24) and (26) that

(e ∖ {m}) ∪ {n} ∈ E(H) for every n ∈M ∪N .

Moreover, since f ∩N = {n}, we have

e ∩N = ({m} ∪ (e ∖ {m})) ∩N

= ({m} ∪ (f ∖ {n})) ∩N

= {m} ∩N,
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and hence e ∩N ⊆ {m}. Since e ∩M = {m}, we obtain e ∩ (M ∪N) = {m}.
Consequently, M ∪N is a module of H. �

Lemma 58. Let H be a hypergraph. For any M,N ∈ M (H), if M ∖N ≠ ∅,
then N ∖M ∈ M (H).

Proof. Consider M,N ∈ M (H) such that M ∖N ≠ ∅. To show that N ∖M ∈

M (H), consider e ∈ E(H) such that e ∩ (N ∖M) ≠ ∅ and e ∖ (N ∖M) ≠ ∅.
We distinguish the following two cases.

(1) Suppose that e ∖N ≠ ∅. Since N is a module of H and e ∩N ≠ ∅,
there exists n ∈ N such that e∩N = {n}, and (e∖{n})∪{n′} ∈ E(H)

for every n′ ∈ N . Since e ∩N = {n} and e ∩ (N ∖M) ≠ ∅, we obtain
e ∩ (N ∖M) = {n}. Therefore,

(27)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e ∩ (N ∖M) = {n}

and

(e ∖ {n}) ∪ {n′} ∈ E(H) for every n′ ∈ N ∖M .

(2) Suppose that e ⊆ N . Since e∖(N ∖M) ≠ ∅, we have e∩(M ∩N) ≠ ∅.
Thus e ∩M ≠ ∅, and e ∖M ≠ ∅ because e ∩ (N ∖M) ≠ ∅. Since M
is a module of H, there exists m ∈M such that e ∩M = {m}, and

(28) (e ∖ {m}) ∪ {m′
} ∈ E(H) for every m′

∈M .

Since e ∩ (M ∩ N) ≠ ∅, m ∈ M ∩ N . Consider p ∈ M ∖ N and
q ∈ e ∩ (N ∖M). Set

f = (e ∖ {m}) ∪ {p}.

By (28), f ∈ E(H). Clearly, p ∈ f ∖N and q ∈ f ∩N . Since N is a
module of H, we have f ∩N = {q}, and

(29) (f ∖ {q}) ∪ {r} ∈ E(H) for every r ∈ N ∖M .

Since f ∩N = {q}, we obtain e =mq, and hence

(30) e ∩ (N ∖M) = {q}.

Since e =mq, we get f = pq. Moreover, for each r ∈ N ∖M , set

gr = (f ∖ {q}) ∪ {r}.

Since f = pq, we have gr = pr. By (29), gr ∈ E(H). Clearly, p ∈ gr∩M
and r ∈ gr∖M . Since M is a module of H, we obtain (gr∖{p})∪{m} ∈

E(H). Since gr = pr, we have

(gr ∖ {p}) ∪ {m} =mr = (e ∖ {q}) ∪ {r}

because e = mq. Thus, for each r ∈ N ∖M , (e ∖ {q}) ∪ {r} ∈ E(H).
It follows from (30) that

(31)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e ∩ (N ∖M) = {q}

and

for each r ∈ N ∖M , (e ∖ {q}) ∪ {r} ∈ E(H).
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Consequently, it follows from (27) and (31) that, in both cases, there exists
n ∈ N ∖M such that e ∩ (N ∖M) = {n}, and (e ∖ {n}) ∪ {n′} ∈ E(H) for
each n′ ∈ N ∖M . Thus N ∖M is a module of H. �

Lemma 59. Let H be a hypergraph. For any M,N ∈ M (H), if M ∖N ≠ ∅,
N ∖M ≠ ∅, and M ∩N ≠ ∅, then (M ∖N) ∪ (N ∖M) ∈ M (H).

Proof. Consider M,N ∈ M (H) such that M ∖ N ≠ ∅, N ∖M ≠ ∅, and
M ∩N ≠ ∅. We show that (M ∖N)∪ (N ∖M) ∈ M (H). Hence consider e ∈
E(H) such that e∩((M∖N)∪(N∖M)) ≠ ∅ and e∖((M∖N)∪(N∖M)) ≠ ∅.
Since e∩((M ∖N)∪(N ∖M)) ≠ ∅, assume for instance that e∩(M ∖N) ≠ ∅.
Clearly e∖(M∖N) ≠ ∅ because e∖((M∖N)∪(N∖M)) ≠ ∅. Since N∖M ≠ ∅,
it follows from Lemma 58 that M ∖N is a module of H. Thus, there exists
m ∈M ∖N such that e ∩ (M ∖N) = {m}. We distinguish the following two
cases.

(1) Suppose that e ⊆M . Since e∖((M∖N)∪(N∖M)) ≠ ∅, e∩(M∩N) ≠

∅. Therefore e ∩N ≠ ∅. Furthermore, since e ∩ (M ∖N) ≠ ∅, we
have e ∖N ≠ ∅. Since N is a module of H, there exists n ∈ N such
that e ∩N = {n}. Since e ∩ (M ∩N) ≠ ∅, we get e ∩ (M ∩N) = {n}.
Since e ⊆ M and e ∩ (M ∖N) = {m}, we obtain e = mn. It follows
that

(32) e ∩ ((M ∖N) ∪ (N ∖M)) = {m}.

Let p ∈ (M ∖N) ∪ (N ∖M). We have to show that

(33) (e ∖ {m}) ∪ {p} = np ∈ E(H).

Recall that M ∖N is a module of H. Consequently (33) holds when-
ever p ∈M ∖N . Suppose that p ∈ N ∖M . Since N is a module of H
and mn ∈ E(H), we get mp ∈ E(H). Now, since M is a module of
H and mp ∈ E(H), we obtain np ∈ E(H). It follows that (33) holds
for each p ∈ (M ∖N) ∪ (N ∖M). Lastly, it follows from (32) that
there exists m ∈M ∖N such that

(34)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e ∩ ((M ∖N) ∪ (N ∖M)) = {m}

and

for each p ∈ (M ∖N) ∪ (N ∖M), (e ∖ {m}) ∪ {p} ∈ E(H).

(2) Suppose that e∖M ≠ ∅. Since e∩ (M ∖N) = {m}, m ∈ e∩M . Since
M is a module of H, there exists m′ ∈ M such that e ∩M = {m′}.
Since e ∩ (M ∖N) = {m}, we have m =m′, and hence

e ∩ (M ∖N) = e ∩M = {m}.

It follows that e∩ (M ∩N) = ∅. Since e∖ ((M ∖N)∪ (N ∖M)) ≠ ∅,
we obtain

e ∖ (M ∪N) ≠ ∅.

Since M ∩N ≠ ∅, it follows from Lemma 57 that M ∪N is a module
of H. Therefore, there exists p ∈M ∪N such that e∩(M ∪N) = {p},
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and for every q ∈M ∪N , (e∖ {p})∪ {q} ∈ E(H). Since e∩M = {m},
we get p =m. Thus, e ∩ (M ∪N) = {m}, and hence

(35) e ∩ ((M ∖N) ∪ (N ∖M)) = {m}.

Since p =m, we have (e∖ {m})∪ {q} ∈ E(H) for every q ∈M ∪N . It
follows that

(36) (e ∖ {m}) ∪ {q} ∈ E(H) for every q ∈ (M ∖N) ∪ (N ∖M).

Combining (35) and (36), we obtain that there exists m ∈ M ∖ N
such that

(37)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e ∩ ((M ∖N) ∪ (N ∖M)) = {m}

and

for every q ∈ (M ∖N) ∪ (N ∖M), (e ∖ {m}) ∪ {q} ∈ E(H).

Consequently, it follows from (34) and (37) that, in both cases, there exists
m ∈ M ∖ N such that e ∩ ((M ∖ N) ∪ (N ∖ M)) = {m}, and for every
r ∈ (M ∖N) ∪ (N ∖M), we have (e ∖ {m}) ∪ {r} ∈ E(H). �

Appendix B. Proof of Proposition 5

Proposition 5 follows from Proposition 3, and from the next four lemmas.

Lemma 60. Given a hypergraph H, consider subsets W and W ′ of V (H). If
W ⊆W ′, then {M ′ ∩W ∶M ′ ∈ M (H[W ′])} ⊆ M (H[W ]) (see Definition 4,
assertion (A2)).

Proof. Let M ′ be a module of H[W ′]. To show that M ′ ∩W is a module of
H[W ], consider e ∈ E(H[W ]) such that e∩(M ′∩W ) ≠ ∅ and e∖(M ′∩W ) ≠

∅. We obtain e ∈ E(H[W ′]) and e ∩M ′ ≠ ∅. Since e ∖ (M ′ ∩W ) ≠ ∅ and
e ⊆ W , we get e ∖M ′ ≠ ∅. Since M ′ is a module of H[W ′], there exists
m′ ∈ M ′ such that e ∩M ′ = {m′}, and (e ∖ {m′}) ∪ {n′} ∈ E(H[W ′]) for
each n′ ∈ M ′. Let n′ ∈ M ′ ∩W . Since e ⊆ W , (e ∖ {m′}) ∪ {n′} ⊆ W .
Hence (e∖ {m′})∪ {n′} ∈ E(H[W ]) because (e∖ {m′})∪ {n′} ∈ E(H[W ′]).
Moreover, since e∩(M ′∩W ) ≠ ∅ and e∩M ′ = {m′}, we obtain e∩(M ′∩W ) =

{m′}. �

Lemma 61. Given a hypergraph H, consider subsets W and W ′ of V (H)

such that W ⊆W ′. If W ∈ M (H[W ′]), then {M ′ ∈ M (H[W ′]) ∶M ′ ⊆W} =

M (H[W ]) (see Definition 4, assertion (A3)).

Proof. By Lemma 60, {M ′ ∈ M (H[W ′]) ∶ M ′ ⊆ W} ⊆ M (H[W ]). Con-
versely, consider a module M of H[W ]. To prove that M is a module of
H[W ′], consider e ∈ E(H[W ′]) such that e ∩M ≠ ∅ and e ∖M ≠ ∅. We
distinguish the following two cases.

(1) Suppose that e ⊆W . We obtain e ∈ E(H[W ]). Since M is a module
of H[W ], there exists m ∈ M such that e ∩M = {m}, and for each
n ∈M , we have (e∖{m})∪{n} ∈ E(H[W ]). Hence (e∖{m})∪{n} ∈
E(H[W ′]).
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(2) Suppose that e∖W ≠ ∅. Clearly, e∩W ≠ ∅ because e∩M ≠ ∅. Since
W is a module of H[W ′], there exists w ∈W such that e∩W = {w}.
Furthermore,

(38) for each w′
∈W , (e ∖ {w}) ∪ {w′

} ∈ E(H[W ′
]).

Since e ∩M ≠ ∅, we get e ∩M = {w}. Clearly, it follows from (38)
that (e ∖ {w}) ∪ {w′} ∈ E(H[W ′]) for each w′ ∈M . �

Lemma 62. Given a hypergraph H, consider subsets W and W ′ of V (H)

such that W ⊆ W ′. For any M ∈ M (H[W ]) and M ′ ∈ M (H[W ′]), if
M ∩M ′ = ∅ and M ′ ∩W ≠ ∅, then M ∈ M (H[W ∪M ′]) (see Definition 4,
assertion (A4)).

Proof. Consider a module M of H[W ] and a module M ′ of H[W ′] such
that M ∩M ′ = ∅ and M ′ ∩W ≠ ∅. We have to show that M is a module
of H[W ∪M ′]. Hence consider e ∈ E(H[W ∪M ′]) such that e ∩M ≠ ∅ and
e ∖M ≠ ∅. We distinguish the following two cases.

(1) Suppose that e ⊆W . We obtain e ∈ E(H[W ]). Since M is a module
of H[W ], there exists m ∈ M such that e ∩M = {m}, and for each
n ∈M , we have (e∖{m})∪{n} ∈ E(H[W ]). Hence (e∖{m})∪{n} ∈
E(H[W ∪M ′]).

(2) Suppose that e∖W ≠ ∅. We obtain e∩(M ′∖W ) ≠ ∅. Since e∩M ≠ ∅,
we have e ∖M ′ ≠ ∅. Since M ′ is a module of H[W ′], there exists
m′ ∈M ′ such that e ∩M ′ = {m′}, and

(39) for each n′ ∈M ′, (e ∖ {m′
}) ∪ {n′} ∈ E(H[W ′

]).

Since e∩(M ′∖W ) ≠ ∅ and e∩M ′ = {m′}, we get e∩(M ′∖W ) = {m′}.
Let w′ ∈W ∩M ′. Set

f = (e ∖ {m′
}) ∪ {w′

}.

By (39), f ∈ E(H[W ′]). Furthermore, since e ∩ (M ′ ∖W ) = {m′},
we obtain f ⊆ W , and hence f ∈ E(H[W ]). Since e ∩M ≠ ∅, we
have f ∩M ≠ ∅. Moreover, w′ ∈ f ∖M because w′ ∈ W ∩M ′ and
M ∩M ′ = ∅. Since M is a module of H[W ], there exists m ∈M such
that f ∩M = {m}. Since f = (e ∖ {m′}) ∪ {w′}, with m′,w′ /∈M , we
get e ∩M = f ∩M , so

(40) e ∩M = {m}.

Lastly, consider n ∈ M . We have to verify that (e ∖ {m}) ∪ {n} ∈

E(H[W ′]). Set

gn = (f ∖ {m}) ∪ {n}.

Since M is a module of H[W ] such that f∩M = {m} and w′ ∈ f∖M ,
gn ∈ E(H[W ]). Hence gn ∈ E(H[W ′]). Since n ∈ gn ∩M and
M ∩M ′ = ∅, n ∈ gn ∖M

′. Clearly, w′ ∈ M ′ because w′ ∈ W ∩M ′.
Furthermore, w′ ∈ f because f = (e ∖ {m′}) ∪ {w′}. Since gn =

(f ∖ {m}) ∪ {n}, m ∈ M , and M ∩M ′ = ∅, we have w′ ∈ gn. It
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follows that w′ ∈ gn ∩M
′. Since M ′ is a module of H[W ′]), we have

gn ∩M
′ = {w′} and (gn ∖ {w′}) ∪ {m′} ∈ E(H[W ′]). We have

(gn ∖ {w′
}) ∪ {m′

} = (((f ∖ {m}) ∪ {n}) ∖ {w′
}) ∪ {m′

}

= (f ∖ {m,w′
}) ∪ {m′, n}

= (((e ∖ {m′
}) ∪ {w′

}) ∖ {m,w′
}) ∪ {m′, n}

= (e ∖ {m,m′,w′
}) ∪ {m′, n,w′

}

= (e ∖ {m}) ∪ {n}.

Therefore, (e ∖ {m}) ∪ {n} ∈ E(H[W ′]), and hence (e ∖ {m}) ∪

{n} ∈ E(H[W ∪M ′]). It follows from (40) that there exists m ∈M
satisfying e ∩M = {m}, and for every n ∈ M , (e ∖ {m}) ∪ {n} ∈

E(H[W ∪M ′]). �

Lemma 63. Given a hypergraph H, consider subsets W and W ′ of V (H)

such that W ⊆W ′. For any M ∈ M (H[W ]) and M ′ ∈ M (H[W ′]), if M ∩

M ′ ≠ ∅, then M ∪M ′ ∈ M (H[W ∪M ′]) (see Definition 4, assertion (A5)).

Proof. Consider a module M of H[W ] and a module M ′ of H[W ′] such that
M∩M ′ ≠ ∅. We have to prove that M∪M ′ is a module of H[W∪M ′]. Hence
consider e ∈ E(H[W ∪M ′]) such that e∩(M ∪M ′) ≠ ∅ and e∖(M ∪M ′) ≠ ∅.
Let m ∈M ∩M ′. We distinguish the following two cases.

(1) Suppose that e∩M ′ ≠ ∅. Clearly e ∈ E(H[W ′]). Moreover, e∖M ′ ≠

∅ because e ∖ (M ∪M ′) ≠ ∅. Since M ′ is a module of H[W ′], there
exists m′ ∈ M ′ such that e ∩M ′ = {m′}, and (e ∖ {m′}) ∪ {n′} ∈

E(H[W ′]) for every n′ ∈M ′. Hence, for every n′ ∈M ′, we have

(41) (e ∖ {m′
}) ∪ {n′} ∈ E(H[W ∪M ′

]).

In particular, (e ∖ {m′}) ∪ {m} ∈ E(H[W ∪M ′]). Set

f = (e ∖ {m′
}) ∪ {m}.

Since e ∩M ′ = {m′}, we obtain f ∩M ′ = {m}. Hence m ∈ f ∩M .
It follows that f ∈ E(H[W ]) because e ∈ E(H[W ∪M ′]). Clearly
e∖M ≠ ∅ because e∖ (M ∪M ′) ≠ ∅. Since M is a module of H[W ],
there exists n ∈ M such that f ∩M = {n}, and (f ∖ {n}) ∪ {p} ∈

E(H[W ]) for every p ∈M . Sincem ∈ f∩M , we getm = n. Therefore,
f ∩M = f ∩M ′ = {m}. It follows that f ∩ (M ∪M ′) = {m}, so

e ∩ (M ∪M ′
) = {m′

}.

By (41), it remains to show that (e ∖ {m′}) ∪ {n} ∈ E(H[W ∪M ′])

for each n ∈ M . Let n ∈ M . Recall that f ∩ (M ∪M ′) = {m} and
e ∩ (M ∪M ′) = {m′}. Thus e ∖ (M ∪M ′) = f ∖ (M ∪M ′). Hence
f ∖(M ∪M ′) ≠ ∅ because e∖(M ∪M ′) ≠ ∅. It follows that f ∖M ≠ ∅.
Recall that f ∈ E(H[W ]). Since M is a module of H[W ], we obtain
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(f ∖ {m}) ∪ {n} ∈ E(H[W ]). We have

(f ∖ {m}) ∪ {n} = ((e ∖ {m′
}) ∪ {m}) ∖ {m}) ∪ {n}

= (e ∖ {m′
}) ∪ {n}.

Therefore (e∖{m′})∪{n} ∈ E(H[W ]), so (e∖{m′})∪{n} ∈ E(H[W∪

M ′]).
(2) Suppose that e ∩M ′ = ∅. We get e ∈ E(H[W ]). Clearly e ∖M ≠ ∅

because e∖ (M ∪M ′) ≠ ∅. Furthermore, since e∩ (M ∪M ′) ≠ ∅ and
e ∩M ′ = ∅, we obtain e ∩ (M ∖M ′) ≠ ∅. Since M is a module of
H[W ], there exists q ∈M such that

(42) e ∩M = {q}

and

(43) for every r ∈M , (e ∖ {q}) ∪ {r} ∈ E(H[W ]).

Since e ∩M ′ = ∅, it follows from (42) that q ∈M ∖M ′ and

(44) e ∩ (M ∪M ′
) = {q}.

By (43), (e ∖ {q}) ∪ {m} ∈ E(H[W ]). Set

e′ = (e ∖ {q}) ∪ {m}.

Clearly, m ∈ e′ ∩M ′. Moreover, since e ∩ (M ∪M ′) = {q}, we obtain

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e′ ∩ (M ∪M ′) = {m}

and

e ∖ (M ∪M ′) = e′ ∖ (M ∪M ′).

Therefore e′∩(M ∪M ′) ≠ ∅, and e′∖(M ∪M ′) ≠ ∅ because e∖(M ∪

M ′) ≠ ∅. It follows from the first case above applied with e′ that

(45) for every s ∈M ∪M ′, (e′ ∖ {m}) ∪ {s} ∈ E(H[W ∪M ′
]).

Recall that e ∩ (M ∪M ′) = {q} by (44). Consequently, we have to
show that (e∖{q})∪{s} ∈ E(H[W ∪M ′]) for every s ∈M ∪M ′. Let
s ∈M ∪M ′. We have

(e′ ∖ {m}) ∪ {s} = ((e ∖ {q}) ∪ {m}) ∖ {m}) ∪ {s}

= (e ∖ {q}) ∪ {s}.

It follows from (45) that (e ∖ {q}) ∪ {s} ∈ E(H[W ∪M ′]). �
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7. P. Frankl and Z. Füredi, An exact result for 3-graphs, Discrete Math. 50 (1984),
323–328.

8. T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967),
25–66.
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