
HAL Id: hal-02575252
https://hal.science/hal-02575252

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Traffic-Aware Scheduling of Computing Resources
in Cloud-RAN

Hatem Khedher, Sahar Hoteit, Patrick Brown, Véronique Vèque, Ruby
Krishnaswamy, William Diego, Makhlouf Hadji

To cite this version:
Hatem Khedher, Sahar Hoteit, Patrick Brown, Véronique Vèque, Ruby Krishnaswamy, et al.. Real
Traffic-Aware Scheduling of Computing Resources in Cloud-RAN. 2020 International Conference on
Computing, Networking and Communications (ICNC), Feb 2020, Big Island, United States. pp.422-
427, �10.1109/ICNC47757.2020.9049679�. �hal-02575252�

https://hal.science/hal-02575252
https://hal.archives-ouvertes.fr

Dynamic Placement of Extended Service Function
Chains: Steiner-based Approximation Algorithms

Selma Khebbache
Institut Mines-Telecom

Telecom SudParis
UMR 5157, Samovar

selma.khebbache@telecom-sudparis.eu

Makhlouf Hadji
Technological Research

Institute SystemX
Palaiseau, France

makhlouf.hadji@irt-systemx.fr

Djamal Zeghlache
Institut Mines-Telecom

Telecom SudParis
UMR 5157, Samovar

djamal.zeghlache@telecom-sudparis.eu

Abstract—This paper proposes Steiner-based algorithms to
extend already deployed tenant slices or Virtualized Network
Functions Forwarding Graphs (or Service Function Chains) as
demand grows or additional services are appended to prior
service functions and chains. The tenant slices are hosted
by Network Function Virtualization Infrastructure (NVFI)
providers that can make use of the proposed algorithms to
extend tenant slices on demand for growing traffic loads
and service extensions including protection and security ser-
vices(such as extending a slice with a dedicated security slice).
The paper proposes a Steiner-based ILP as an exact solution
for small graphs and Steiner based approximation algorithms
to improve scalability for larger problems.

I. INTRODUCTION

Network Function Virtualization addressed by ETSI [3]
has the potential of changing the way future shared and vir-
tualized infrastructures are used to support service providers.
NFV enables provisioning of on demand networking ser-
vices, offers connectivity as a service and eases development
of network services and their management [7]. NFV imple-
ments networking functions as software that can be run on
a variety of physical hosts (see [1] and [3]). By decoupling
network services and functions from the hardware, NFV
enables service providers or tenants to request on a need
basis hosting resources to physical infrastructure providers.
In NFV the providers can acquire Virtualized Network
Functions (VNFs) from third party and combine them with
their own VNFs to build dynamically their dedicated virtual
infrastructures and deploy the resulting service graphs in the
hosting platforms offered and managed by the infrastructure
providers. The service providers will build their infrastruc-
ture gradually as consumer and customer demand grow
and hence will request additional resources and services to
extend their already deployed services. The service providers
(or tenants) may add new VNFs, that the providers will need
to host and connect to previously deployed and activated
tenant services, may insert new VNFs in existing forwarding
paths, may remove, replace or migrate VNFs dynamically.

This foreseen usage of NFV Infrastructure services by
tenants or service providers put new optimization and
hosting requirements to the infrastructure providers. The
current state of the art is mainly concerned by optimal

initial embedding and placement of virtual networks and
services in provider networks and their dynamic adaptation
for varying demand and traffic conditions. The problem of
extending an already deployed tenant slices has not been
addressed at large. In previous works dynamic changes are
minor, local or very basic extensions of deployed service
graphs such as spawning new VNFs, up and down scaling
of hosts and containers. Adding complex service graphs
to already deployed slices has not been considered to the
extent presented in this paper that focusses the study on
the extension of already deployed service function chains
(SFC in IETF terms) in shared infrastructures.The solution
proposed in this work is applicable not only to extensions
of already running service graphs but also to insertions in
and modification of service graphs. The problem is hence
approached by searching for an optimal placement, of com-
plex service chains extensions in physical infrastructures,
that meets the requested connectivity with the previously
deployed service graph and that does not disrupt the initial
deployment. Our contribution consists in proposing an In-
teger Linear Programming Steiner-based approach and two
new approximation algorithms based on the construction of
a Steiner tree that covers a large part of the convex hull of the
considered Extended-SFC (E-SFC) placement problem. To
the best of our knowledge this is the first time the problem
of extending already deployed complex SFCs is addressed
and treated using Steiner-based algorithms.

Section II of this paper presents related work on SFC
placement that usually takes only into account placement
constraints and addresses scalability of the algorithms and
typically does not consider extension requests of already
deployed service chains. Section III is dedicated to the
SFC extension problem description and formulation. New
approximation algorithms based on a smart Steiner-tree
construction, to improve scalability and find solutions in
practical times, are also presented in section III. Section
IV reports performance evaluation results.

II. RELATED WORK

Authors of [5] address the placement problem of SFCs
or VNF-FG using approximation solutions to realize near-

optimal simultaneous placement of the VNFs and the chains.
An exact formulation is provided by a 2-Factor modeling of
the placement problem. Two approximation solutions based
on a matrix approach and a multi-stage algorithm are also
presented. The algorithms address only initial placement
of the tenant requested service function chains. The ex-
tension of already deployed graphs due to new requests
and dynamic variations is not considered while this is our
central objective. Authors of [2] propose an orchestrator
framework including a resource monitoring system for auto-
mated placement of VNFs and VNF chains. The framework
manages the creation, configuration, instantiation, activation
and removal of the VNFs but does not address the extension
of operational SFCs requested by tenants to evolve their
services and respond to increasing demand. Our objective is
to propose algorithms to extend already running SFCs with
new network forwarding paths and new service graphs. This
type of extension is harder to achieve since the previous
services and service chains should not be affected and the
connectivity with the requested extensions established while
respecting old and new requirements and constraints.

In our case, we build our placement and extension al-
gorithms using a Steiner-tree representation, construction
and resolution of the problem. We consequently provide the
needed background on Steiner trees and their relationship
to graphs. Reference [6] is recommended reading for the
minimum Steiner tree problem. Our work relies on this
background to address the service graph extension problem
in the NFV context.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Figure 1 depicts a typical scenario for the optimal place-
ment of SFC extension requests composed of a chain with
two VNFs f4 and f5 strongly connected to the previously
deployed SFC composed of f1, f2 and f3. The new chain
(extended request) starts from f1 (already deployed on
server S3) and ends in VNF f3 (already deployed on server
S5).

f1

f2 f3

f4 f5

s1

s2
s3

s4

s6

s5

s7
s Steiner nodes

s Terminals
Extension request

Fig. 1: A Steiner-based tree for E-SFC placement

For this scenario, the objective is to extend the already
deployed VNF chain f1 → f2 → f3 with a new chain f1 →
f4 → f5 → f3. The solution must ensure that the new VNFs
f4 and f5 , part of the graph extension request, are connected
to the previously deployed VNFs f1 and f3, respectively.
The optimal placement of f4 and f5 has to comply with
this connectivity obligation, namely f1 → f4 and f5 → f3

as depicted in Figure 1. The objective is to find the best
hosts for f4 and f5 and the optimal path connecting them
while ensuring that the best links to the previously deployed
VNFs f1 and f3 are also provided by the algorithm.

A. Steiner trees background and construction

Definition The addressed graphs are represented by an
undirected graph G = (V,E) with a finite set of vertices
V , and set E of associated edges. Each edge e has a weight
we ∈ R+. In the optimal Steiner tree problem, we start from
a set X ⊆ V of special vertices and search for minimum
cost tree T ⊆ G connecting all the vertices in X with extra
intermediate vertices and edges. The vertices in X are called
Terminals and the vertices in V (T)\X are Steiner vertices.

The E-SFC extension can be cast into the previous def-
inition of the Steiner tree problem by considering X =
{S3, S5}, the hosts of VNFs f1 and f3 respectively in Figure
1, as terminals, and V (T)\X = {S1, S2, S7} as the Steiner
vertices. This representation shows that the E-SFC problem
can be seen as a minimum cost Steiner tree problem.

B. Mathematical formulations and modeling

1) Exact formulation: The proposed exact mathematical
formulation adapts the construction of the Steiner tree to
the E-SFC problem. In the model, the hosting physical
infrastructure is represented by a graph G = (V,E) with
a set V of vertices (physical servers) and a set E of edges.
Each edge e has a nonnegative weight we that represents the
amount of bandwidth available on the edge e. Our objective
is to construct a minimum cost (in terms of total weight of
selected edges) that covers a subset of nodes or vertices
noted by T and corresponding to the notion of terminals in
the Steiner tree problem. We accordingly construct a tree
covering the identified terminal nodes T , when selecting a
subset of other nodes S different from T , that is S 6= T .
The set S of selected nodes correspond to Steiner nodes.

The exact formulation consists of an objective function
that minimizes the total cost of the Steiner tree. In Figure
1, we express as req the amount of flow requested by the
SFC extension and check if this amount is lower then the
available bandwidth on edge (link) e using the following
function:

1e =

{
1, if we − req ≥ 0;
0, else. (1)

For each edge e ∈ E, we introduce a binary variable xe
to indicate if edge e is in the Steiner tree (xe = 1) or not
(xe = 0). Based on these notations, the objective function
to minimize is expressed as follows:

minZ =
∑
e∈E

(we − req)1exe (2)

This objective function is combined with valid inequalities
and constraints to ensure that nodes selected for hosting will
be part of the Steiner tree resolution.

To simplify the notations for the used constraints by the
Branch-and-Cut algorithm, we introduce for each set of

nodes X , a set δ(X) composed of edges with one end node
in X and the other one in the complement of X (i.e. X̄).
The first constraint that should be taken into account by the
ILP is:

x (δ(W)) ≥ 1,∀W ⊆ V,W ∩T 6= ∅, (V \W)∩T 6= ∅ (3)

The role of this constraint is to push the objective function
towards a Steiner tree of minimum weight as a function of
the identified terminal nodes. The objective function actually
eliminates edges that do not fulfill the SFC extension request
while the constraint steers the solution to Steiner tree that
covers the desired terminal nodes or set T.

The final model of the ILP using a Branch-and-Cut
approach is summarized as:

minZ =
∑

e∈E (we − req)1exe
S.T. :{
x (δ(W)) ≥ 1, ∀W ⊆ V,W ∩ T 6= ∅, (V \W) ∩ T 6= ∅ ;
xe ∈ {0; 1}, ∀e ∈ E;

(4)
2) Approximation algorithms: We propose two heuristic

approaches (Shortest Path-based Heuristic and Minimum
Spanning Tree-based Heuristic) described below.

Algorithm 1 SP-Heuristic algorithm

Input: A weighted graph G (physical infrastructure after
removing edges that do not satisfy the request), and a set
of Terminals T
Initialization: Steiner-tree = ∅
Choose an arbitrary node r in T
while T 6= ∅ do

Select a node s ∈ T
Calculate the Shortest Path Psr from s to r
Steiner-tree + = Psr

T = T \ s
end while
Check the chaining feasibility on the obtained Steiner tree

Algorithm 2 MST-Heuristic algorithm

Input: A weighted graph G (physical infrastructure after
removing edges that do not satisfy the request), and a set
of Terminals T
Calculate a minimum spanning tree SPtree of G
Using the previous tree SPtree, delete all of the leaves
that are not terminals in T

IV. NUMERICAL RESULTS

The performance evaluation of the algorithms, is con-
ducted using a 2.40 GHz PC with 8 GB RAM. Each SFC
comprises a random number of VNFs in the [2; 10] interval.
The physical hosts have random number of available CPUs
drawn from a [100; 150] CPUs range, while each VNF
in the SFC has a required processing capability in the
[1, 20] CPU range. The traffic loads for the requested VNFs
(expected traffic flow across the VNFs) in the SFCs are

drawn randomly in the [1, 5] Mbps range. The simulation
duration is 100000 time units for each run. SFC Extension
requests arrive following a Poisson process with an average
arrival rate λ of 1 arrival per 120 time units and have an
exponential service rate µ of 1 departure every 350 time
units, corresponding to a rather heavy system load condition.

The simulation and experiments use CPLEX as an opti-
mization solver for the Steiner-based ILP (4), and assess the
performance of our algorithms using a real topology from
the library of test instances for Survivable fixed telecommu-
nication Network Design [4].

Table I reports the performance of the approximate al-
gorithms compared with the exact ILP formulation. The
metrics used for this comparison are:

• Convergence time: is the time needed by the algo-
rithms to converge to their best solutions to the E-SFC
problem.

• Gap: is used to assess the relative performance (cost)
of the approximation algorithms compared with the
performance (cost) of the exact ILP formulation algo-
rithm used as “the reference and optimal solution”. This
metric reflects the relative quality of the approximate
algorithms compared with the exact ILP achieved cost
and this is given by Gap1(%) =

Z∗
SP−Z∗

ILP
Z?

ILP
× 100

(Gap2(%) =
Z∗

MST−Z∗
ILP

Z∗
ILP

×100 , respectively) represent-
ing the gap between the best solution of the SP method
(Z∗SP) (MST method with a best solution Z∗MST ,
respectively) compared with the optimum Z∗ILP ;

TABLE I: Exact vs Approximation Algorithms Performance

Servers
SP

Time (s)
MST

Time (s)
ILP

Time (s)
SP

Gap1(%)
MST

Gap2(%)

5 <0.01 <0.01 0.11 0.17 0.15
10 <0.01 <0.01 0.11 3.20 5.80
30 <0.01 <0.01 0.20 3.50 5.90
50 0.02 0.03 0.22 3.70 6.10
80 0.13 0.12 0.59 3.80 6.80
100 0.23 0.27 1.44 3.90 6.80
130 0.67 0.73 1.57 3.90 6.74
150 1.07 0.78 2.19 3.93 8.10
180 1.96 1.38 17.21 6.81 9.30
200 2.54 3.04 > 3mn 9.76 10.13

Table I, that reports the convergence time performance
results for the ILP and the approximation algorithms, high-
lights the efficiency of the SP and MST algorithms in finding
solutions much faster than the Exact ILP algorithm. They
also scale much better than the ILP. The SP algorithm needs
2.54s for infrastructures with 200 nodes while the MST
requires slightly longer times as problem size increases.
Both have much closer performance for smaller graphs. The
exact ILP formulation, that explores all solutions, and finds
the optimum can be used for graphs of around a hundred
nodes (still usable up to 180 nodes but convergence time
increases to tens of seconds, around 18 s). This is expected
since the E-SFC extension problem is NP-Hard. Larger
problem sizes require the use of the proposed Steiner based
heuristics that can find solutions in a few seconds (2.54 s

for SP and 3.04 s for 200 physical nodes, servers or hosts).
The convergence time performance of the algorithms

has to be taken into account jointly with other metrics,
especially with the cost of the solution assessed as gap
between the approximation algorithms and the exact ILP
solution as well as with the proportion of E-SFC requests
that are rejected in the simulation runs. The gap between
the approximation algorithms and the ILP increases with
problem size (increasing number of hosts) as reported in the
two right most columns of Table I. The gap for small sizes
is negligible for example for 5 servers, it is as low as 0.17%
and 0.15% respectively for the SP and MST heuristics. The
gap increases however beyond 5% above 10 servers and can
reach around 10% for hundreds of candidate hosts.

The exact ILP solution outperforms the approximation so-
lutions (SP and MST) in rejection rate since the ILP explores
all the space and finds the optimal paths for the E-SFC
extension request if enough physical resources are available.
Figure 2 depicts the rejection rate simulation results for
increasing infrastructure sizes. As the load decreases, the
rejection rate drops from the maximum of 1.15% for 5 hosts
to zero (0%) for more than 80 servers. For this simulated
operating zone, the SP and MST reject 4% (for 50 hosts or
less) and 3% (when the number of servers is in the range
50 to 200 hosts) which can be considered quite acceptable.
These results show that the approximation algorithms can
provide good solutions much faster than the ILP while
not sacrificing that much rejection rate and quality of the
solutions. ThE SP and MST are equivalent in terms of
rejection rate.

50 100 150 200
0

1

2

3

4

Physical Servers or Hosts

R
ej

ec
tio

n
R

at
e

(%
)

SP Method
MST Method

ILP

Fig. 2: Rejection rate comparison

To extend the analysis and performance assessment using
random graph generations for the proposed algorithms, a
real European topology (with 37 nodes and 57 edges) is
used to complete the study. Figures 3a and 3b report the
proposed algorithms performance results for this European
network topology [4]. Figure 3a reveals for this topology,
small differences in convergence time between the SP and
MST algorithms (∼ 20 ms for SP and ∼ 25 ms for MST to
find feasible solutions) while the ILP requires an order of
magnitude more time to find the optimal solution (250 ms).
This real network instance is in fact ”easy” to solve using our
approximation algorithms. Even the exact approach based on

SP MST ILP

50

100

150

200

250

Convergence time (ms)

(a) Convergence time on a
real toplogy

SP MST

4

4.5

5

5.5

6

Gap with respect to ILP (%)

(b) SP and MST gap com-
parison on a real topology

the Branch-and-Cut method manages to find the optimal in
250 ms.

Note, however, that for more complex extensions (con-
taining multiple forwarding paths and dense neworks with
high connectivty), the MST will outperform the SP in
convergence time and will improve in performance with
gaps closer to the SP algorithm. The simulations results
reported in Figures 3a and 3b are more favorable to the
SP, since the extensions contain typically few paths and
VNFs and weakly connected hosting infrastructures. When
multiple paths are involved, the SP will be called multiple
times and will take longer to find solutions whereas the MST
will provide in a single run the solution much faster.

V. CONCLUSION

This paper proposes Steiner-based algorithms to extend
already deployed tenant slices with new virtualized network
functions organized in complex chains and service graphs.
An exact ILP algorithm based on the description of the
convex hull of the extension problem, appropriate for small
and medium size instances, is compared with two proposed
Steiner based approximation algorithms (Shortest Path and
Minimum Spanning Tree algorithms). Simulations based
on randomly generated graphs and performance evaluations
using real topologies and traces show that the proposed
Steiner based approximation algorithms find good solutions
(close to the ILP) much faster than the ILP and scale much
better with problem size. To the best of our knowledge this is
the first time the extension of slices (service function chains
or VNF forwarding graphs) is addressed with minimum
Steiner trees approaches for their near optimal placement.

REFERENCES

[1] “A comprehensive survey of network function virtualization,” Com-
puter Networks, vol. 133, pp. 212 – 262, 2018.

[2] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca,
“The dynamic placement of virtual network functions,” in 2014 IEEE
Network Operations and Management Symposium (NOMS), May 2014,
pp. 1–9.

[3] ETSI, “Network functions virtualization (nfv); architectural frame-
work.”

[4] http://sndlib.zib.de/home.action, 2018.
[5] S. Khebbache, M. Hadji, and D. Zeghlache, “Virtualized network

functions chaining and routing algorithms,” Computer Networks, vol.
114, pp. 95–110, 2017.

[6] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms.

[7] ONF, “Software-defined-networking: The new norm of networks, onf
white paper.”

