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When a liquid jet impacts a pool of the same liquid, a bubble cloud is generated below the surface:
we address here the question of the vertical size of this bubble cloud. We have measured this size
on experiments spanning a large range of scales, from 0.3 mm to 210 mm in jet diameter, and from
0.2 m to 9.5 m in height of fall. We show that a simple model based on a balance of forces at the
scale of the bubble cloud is able to account for all experimental results over this wide range of scales
and types of jets. We derive from this model a simple expression for the prediction of the bubble
cloud penetration depth.

Many industrial processes involve a high-speed jet
plunging into a pool, and the generation of a bubble
cloud below the surface. This is in particular a configura-
tion encountered when dams spill, or in impulse turbines.
This configuration happens as well in nature, for example
in cascades. People have addressed the questions of bub-
ble formation and air entrainment over a wide range of
scales [1–3]: several mechanisms have been identified for
explaining air entrainment, which rely on a fine modelling
of the jet structure at the moment it impacts the liquid
pool. Due to the industrial necessity to predict the global
size of the bubble cloud, there has been a significant ef-
fort to measure the total depth H of this bubble cloud for
large jets (fall height of a meter or more), and to propose
semi empirical or purely empirical relations to predict
this quantity [4–7], but no physical model has been pro-
posed to predict the size of the bubble cloud in these
conditions. A modelling approach based on momentum
conservation was successfully attempted on smaller scale
jets by Clanet and Lasheras [8]: the prediction of their
model is quite precise and robust for bubble clouds as
small a a few millimeters up to fifteen centimeters. This
model also holds when the liquid jet is oscillated in a
wide range of amplitudes and frequencies, provided an
effective angle of inclination (which depends on the am-
plitude and frequency of oscillation) is taken into account
[9]. However, it fails to capture the right order of magni-
tude of H in larger size experiments, as will be illustrated
below. The aim of the present paper is to present experi-
mental measurements of the bubble cloud size over a very
wide range of scales, namely with fall heights h varying
from 20 centimeters to 10 meters and nozzle diameters D
varying from hundreds of microns up to 20 centimeters,
and to propose a physical model which predicts the mea-
sured penetration depth over this wide range of scales
without any fitting parameter.

Two set-ups were used in order to gather experimental

data over a wide range of scales. The fluids were water
and air in both set-ups. The first set-up is a cubic glass
tank (edge 50 cm), into which a round water jet can be is-
sued from needles (for the smaller diameters) or a straight
tube, of inner diameter D. The velocity at the nozzle V0
is deduced from a flowmeter measurement. The distance
h between the tip of the needle and the surface of the pool
is constant equal to h = 20 cm for this experiment. The
penetration depth is visualized with a high speed camera
(Phantom v10) via backlight lighting with a LED panel
(see figure 1). In order to keep the water level in the pool
constant, the tank is slightly tilted to the left (angle <
5◦), so that it overflows over this single lateral wall. The
second set-up is similar but at a much larger scale: five
different nozzles with diameters ranging from 2.3 cm to
21.3 cm are used to generate the jet. A honeycomb tran-
quilizing chamber is included in these larger scale nozzles
in order to attenuate the amplitude of secondary flows.
The jet then falls over a distance h = 9.5 m, and falls
into a well of diameter 5 m, and of a maximum depth of
23 m at its center. The water flows in a closed loop: two
pumps (30 kW power) are used to reinject water from the
well into the nozzle. The flow rate is monitored with two
Krohne Optiflux electromagnetic flowmeters, one for the
range [2–50] m3/h and the other for the range [50–500]
m3/h. The jet can be imaged during its fall by the same
high speed camera used in the first experiment, which
provides images of its destabilization from a round and
relatively smooth coherent jet at the nozzle, to a poten-
tially aerated flapping jet when it hits the pool. The
penetration depth is measured with an underwater cam-
era (1080 AHD Sony): the camera can be moved down
to 3.5 m below the surface. The camera is positioned
on a horizontal beam, which can be displaced vertically
until the bottom of the bubble cloud coincides with the
center of the field of view of the camera (figure 1). The
uncertainty on the penetration depth H associated with
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FIG. 1. Left: Example of bubble cloud in small set-up (D0 =
1.3 mm, V0 = 5.6 m.s−1). Right: Visualization of bubble
cloud used for measurement of the penetration depth in large
set-up (D0 = 213 mm, V0 = 5 m.s−1).
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FIG. 2. Illustration of the wide range of jet structures covered
by our experiment: a) D0 = 36.4 mm and V0 = 10.6 m.s−1.
b) D0 = 82.9 mm and V0 = 3 m.s−1. c) D0 = 82.9 mm and
V0 = 23 m.s−1 d) Same conditions as c), but just after the
nozzle exit. The center of images a), b) and c) is 6 meters
below the nozzle.

this measurement is estimated at 10 centimeters. Figure
2 shows several examples of the jet patterns observed in
our large-scale experiment. We observe a wide range of
jet structures: jets which remain coherent until the im-
pact with the pool, as in the case of the small experiment,
but also jets which develop deep corrugations, flap, be-
come aerated or end-up partially atomized after the 9.5
meters fall. High-speed videos corresponding to several
typical cases are shown as supplemental material.

The penetration depths measured on both set-ups are
presented in figure 3. As expected, the penetration depth
increases with velocity, and it also increases with the di-
ameter of the jet. The small scale data can be predicted
by the model of Clanet and Lasheras [8], which is based
on the conservation of momentum, but this model fails to
capture the larger scale data, and strongly overpredicts
the penetration depth: for the D0 = 162 mm series for
example, it predicts values of H in the range [4 m–10 m],
while experimental penetration depths vary between 2
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FIG. 3. Left: Penetration depth measured on the small scale
set-up as a function of velocity at nozzle V0, for various nozzle
diameters D0. The dotted line shows the prediction of the
model of Clanet and Lasheras [8]. Right: Same measurement
on the large scale set-up.

and 3 meters in figure 3. The semi-empirical model of
Falvey and Ervine [5], similarly overpredicts the large
scale data, since it predicts H in the range [7.4 m–12 m]
for the same D0 = 162 mm series. The good order of
magnitude of our large scale data can be captured by the
purely empirical correlation proposed by McKeogh and
Ervine [4], but this correlation fails in turn to capture
properly the small scale data.

We model the penetration depth by writing the mo-
mentum theorem for the bubble cloud. The bubble cloud
is modeled as a truncated cone, with an angle γ. Its
upper section at impact is noted Si, and we note Vi
the velocity at impact. High speed imaging of the jet
before impact shows that this velocity is within 5% of
Vi =

√
V 2
0 + 2gh for all the experimental conditions pre-

sented here. The bottom section of the cloud, where fluid
exits the cone and bubbles reach their terminal velocity
UT , is noted ST . The terminal velocity UT considered
here is the maximum terminal velocity for bubbles larger
than one millimeter: only submillimeter bubbles will be
entrained by the liquid jet once the liquid jet velocity
reaches UT [8]. We note ρi the density of the two-phase
mixture at impact, and ρT the density of the mixture in
the bottom section. The momentum theorem then writes∫∫

Si

ρiV
2
i dS −

∫∫
ST

ρTU
2
T dS = Fgravity − Fbuoyancy

In order to model the force Fbuoyancy, we assume that
the void fraction α is constant in the bubble cloud. In
particular, this implies that ρi = ρT = ρ(1 − α). This
also leads to Fgravity − Fbuoyancy = αρgVcone with :

Vcone = πH

(
RiH tan γ +R2

i +
H2 tan2 γ

3

)
where Ri is the radius of the jet at impact. This ra-
dius can be related to R0 the radius at the nozzle and
to the void fraction via the continuity equation: Ri =
R0

√
V0/
√
Vi(1− α).
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FIG. 4. Experimental probability distribution function of an-
gle γ values on the smaller experimental set-up: the most
probable value is for all conditions close to the γ = 12.5◦

value assumed by Clanet and Lasheras [8].

This finally leads to the following equation for the pen-
etration depth H:

ViV0R
2
0 − (1− α)U2

T (Ri +H tan γ)2

− αgH
(
RiH tan γ +R2

i +
H2 tan2 γ

3

)
= 0 (1)

This equation can be solved for H provided parame-
ters UT , γ and α are known. The bubble terminal ve-
locity UT is taken equal to UT = 0.22 m/s, which is the
limit value below which only submillimeter air bubbles
will be entrained in water [8]. The mixing layer angle γ
can be measured on the first experimental set-up: back-
light imaging measurements show that γ values are dis-
tributed around a mean value of 12◦ (see figure 4). In
their momentum balance, Clanet and Lasheras [8] assume
γ = 12.5◦, based on well known results for turbulent sin-
gle phase jets [10]. Given the weak difference between
both values, we follow them and assume in the following
that γ is constant and equal to 12.5◦ for all our experi-
mental conditions. The impact of possible variations of
γ on the prediction of the model will be discussed further
below.

The average void fraction α is expected to depend on
the jet size and velocity, and more specifically on its dy-
namics during its free fall. In addition, the local void
fraction varies spatially, and in particular is expected
to decrease with increasing depth as water is entrained
within the bubble cloud. Void fraction profiles such as
those measured by McKeogh and Ervine [4] show that
relatively large maximum local void fractions close to the
surface and to the jet centerline (of the order of 40% to
60%) will result into significantly lower α (of the order
of 10% to 20%), once averaged over the conical bubble
cloud modelled here.

We plot in figure 5 the experimental penetration depth
as a function of the solution of equation (1), where an
average void fraction of 15% has been assumed. The
model captures the correct values and scaling law for the
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FIG. 5. Experimental penetration depth plotted as a function
of the prediction of equation (1) for the case α = 0.15: the
data of the present paper (circles and crosses) follows the
caption of figure 3. The data of several other authors are
included for comparison. The larger dispersion for the data
of Kramer et al. [12] is due to the fact that these authors vary
the void fraction.

data of both our experimental set-ups over more than two
decades. We also plot in figure 5 the experimental data of
several authors: the model captures very well the pene-
tration depths measured by McKeogh and Ervine [4] and
Harby et al. [11]. There is more dispersion regarding the
data of Kramer et al. [12]: we attribute this dispersion to
the fact that these authors have purposedly changed the
fall height h in their experiment, and therefore explore
a wider range of void fractions α. This is evidenced in
figure 6a, which shows a blow up of the data of these
authors, where different symbols have been affected to
the different heights of fall h. The model with α = 0.15
agrees well with the data obtained for h = 1 m. The
data corresponding to lower h are underestimated by the
same model: this is probably an evidence of the role of
α, which is expected to be lower at these lower h due to
the lesser corrugation of the plunging jet when the fall
height is reduced.

One can note on figure 5 that the model slightly under-
estimates the penetration depth, in particular for smaller
jets (symbol ×): this is probably related to the strong as-
sumption made regarding the shape of the bubble cloud,
which has been assimilated to a truncated cone. In par-
ticular the lower part of the bubble cloud is usually ob-
served to be round (see figure 1), and not flat, due to
velocity fluctuations over a scale equal to the radius of
the bubble cloud at its base, namely RT = Ri+H tan γ ≈
H tan γ [8]. If we take into account this contribution in
the model, the predicted value is increased by a factor
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FIG. 6. a) Experimental data of Kramer et al. [12]: the dis-
persion between their data and our model is due to the impact
of the height of fall h, which directly impacts the void frac-
tion α. b) The model can be improved by introducing a 1+
tan γ factor to account for velocity fluctuations at the bot-
tom of the bubble cloud. Same caption as in figures 3 and
5. c) Illustration of the relatively weak impact of the mean
void fraction α on the simplified prediction for the penetration
depth via equation (3): predictions corresponding to α = 5%
and α = 35% remain close to the experimental data. Only
the data for which H > Hc = 10 cm, i.e. for which equation
(3) is valid, is represented here. The unit is meters for all
axes.

1 + tan γ, and an even better agreement is found (see
figure 6b).

Our model does not account for turbulent dissipation:
in our experiments the Reynolds number of the liquid
jet Re = 2RiUi/ν varies from 3000 (smaller jet) to 3.106

(larger jet), and turbulence is therefore expected to vary
greatly. The fact that the agreement between our model
and the experimental data is good for a wide range of
scales independently of these very large Re variations is
an indication that the impact of turbulent dissipation can
be neglected compared to the momentum loss caused by
buoyancy.

In the limit of small bubble clouds, the buoyancy force
becomes negligible compared to the momentum flux con-
tribution at the bottom of the cloud, and equation (1)
then simplifies into the model proposed by Clanet and
Lasheras [8]. For large bubble clouds, on the contrary,
the contribution due to the bottom momentum flux be-
comes negligible. In this limit, and assuming also that

H tan (γ)� Ri (lateral extent of bubble cloud large com-
pared to jet radius at impact, which is largely true for all
our data), equation (1) simplifies into:

H =
31/3(ViV0)1/3R

2/3
0

(αg)1/3 tan (γ)
2/3

(2)

This expression is independent of UT . It predicts that H

scales as V
2/3
0 R

2/3
0 when Vi is close to V0: this scaling law

is very similar to the popular empirical correlation pro-
posed by McKeogh and Ervine [4], namely H ∝ V 0.7

0 R0.7
0 .

The present model provides a physical basis for the rel-
evance of this scaling law, and shows that this exponent
2/3 results from the balance between a surface effect (mo-
mentum at impact) and a volume effect (net buoyancy).
Equation (2) can be rewritten in dimensionless form as:

H

R0
=

31/3

α1/3 tan (γ)
2/3

(
ViV0
gR0

)1/3

(3)

This expression shows that the dimensionless penetration
depth is a function of three dimensionless parameters:
the angle γ of the mixing layer (which can be safely sup-
posed to be constant [8, 10]), the Froude number, and the
void fraction. Note that the exponent 1/3 for the void
fraction in equation (3) limits the impact of void fraction
variations, and explains the robustness of the model in
figure 5: even though a precise adjustment of the void
fraction for each specific case would definitely increase
the precision of the prediction, taking a single value of
α for all experiments provides a surprisingly good agree-
ment for all experimental data. This is illustrated in fig-
ure 6c, which shows that the predictions corresponding
to respectively much smaller and larger average void frac-
tions of 5% and 35% still remain relatively close to the
experimental data. Similarly, in the scaling law of equa-
tion (3) the penetration depth H varies as tan(γ)2/3, and
a given relative error on the mixing layer angle γ there-
fore results in a smaller relative error in H.

The critical cloud size Hc for which both momentum
flux out of the cloud and buoyancy effects balance corre-
sponds to Hc = 3U2

T (1−α)/(αg). For the case of air and
water, and an average void fraction of α = 0.15, this crit-
ical size is of the order of Hc = 10 cm. This indicates that
for all large scale applications, and in particular applica-
tions related to hydraulics, equation (3) can be safely
used to estimate the penetration depth of plunging jets.

As stated above, the accuracy of the present model
could be improved with a more precise estimate of the
average void fraction α: the modelling of air entrainment
into the bubble cloud, which is in turn related to the
dynamics of the falling jet and its state at impact, is
therefore one of the main companion questions to address
in future work.
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