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Prime numbers: emergence and victories of bilinear forms

decomposition

Olivier Ramaré

July 2, 2013

1 Towards a proper question:
before 1800

Historical papers on primes often start with a
line like “The quest for the primes has a long
history that begins in ancient Greece with Eu-
clid at least twenty-three hundred years ago”.
This is fundamentally true.

Or is there a catch?

Let us change the lense to see better: there
are primes in the ring Q[X] of polynomials
in one variable over Q, though no one asks
whether one “knows” them. They are, they ex-
ist, we have a definition and sound algorithms
to recognise them. When pushed further, we
may answer: “yes, there are many of them, in-
finitely many in fact”. And a question crops
in: can you find an irreducible polynomial for
any given degree?

This is a way different problem! This ques-
tion mixes multiplicative properties together
with some size questions! It is not about
primes as such, but about their sizes. And the
problem gets even more entangled in case of
integers, for the size structure is closely linked
with the addition –

The reader can now understand why ques-
tions about primes are often difficult: they are
couched in a simple language that hides their
difficulty. Take some of the “observations” of
the early period∗:

∗Such observations had sometimes the status of the-

(1742) Exchanges initiated by Christian
Goldbach between Leonhard Euler and
himself led, on the 7th of june 1742, to
the statement: every even integer ≥ 4 is a
sum of two primes.†

(1752) C. Goldbach tells the same L. Euler
that every odd integer can be written in
the form p+2a2 where p is a prime number
and a an integer.‡

(1775) L. Euler wrote that every arith-
metic progression starting by 1 contains
infinitely many primes.

(1792) Carl Friedrich Gauss gives an ar-
gument that shows that there are approx-
imately x/ log x prime numbers below x,
when x becomes large.§

(1839) Johann Dirichlet proves (in today’s
terminology!) that every arithmetic pro-

orems, sometimes the status of truth, or maybe I should
say “experimental truth”, since the very notion of proof
was shaky at the time.

†Historians discovered later that René Descartes
had stated this property some fifty years before. One of
the modern prince of arithmetic, Pál Erdös, commented
this fact with philosophy: ” It is better that the conjec-
ture be named after Goldbach because, mathematically
speaking, Descartes was infinitely rich and Goldbach
was very poor”.

‡He was wrong: 6077 is an exception, but it seems
to be the last one!

§This will become the “prime number theorem”.
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gressions without any constant factor has
infinately many primes.

(1845) Joseph Bertand announces that,
for each integer n > 1, there exist at least
one prime p that satisfies n < p < 2n. ∗

(1849) Alphonse de Polignac announces in
an equally vague manner that every even
integer h is the difference of two primes.
The case h = 2 is known since Paul Stäckel
as the “prime twin conjecture”, according
to Heinrich Tietze en 1959 [55].

As the reader can check, all these questions
mix both the additive and the multiplicative
structure. We understand each structure indi-
vidually perfectly well; But how do they inter-
act? An obvious interaction is given by dis-
tributivity: 2a + 2b = 2(a + b), which means
that if you sum two even numbers (and this
latter property belongs to the multiplicative
realm), you still get something that has a mul-
tiplicative property: it is... even! The question
the 20th-century mathematicians endeavoured
to settle is: Is this the only relation that ex-
ists?†

There are many other confusingly simple
looking questions, as well as way too many
false proofs that keep alimenting the web ev-
ery year, some by genuine beginners who just
missed a step, and some by well-known difficult
cases‡ (some of whom sadly occupy academical
positions). I hope this paper will help the be-
ginners with mathematical background to un-
derstand where the difficulties lie, and where
the field is open. The above list contains old
questions, but modern times have shown deep

∗This not-so-easy proof is very popular; The down
effect being that few know that much more is accessible,
and for instance there is a prime p satisfying 2n < p <
3n provided n ≥ 2.

†I am skipping here the fascinating abc-conjecture,
which is known to hold in the case of Q[X] and has
created some turmoil recently in the case of Z...

‡No, I won’t give you my list!

ties between modular forms in various senses
and more classical problems, in particular via
the use of Kloosterman sums. Now classical
problems include the evaluation of

∑
p≤X λ(p)

for cusps forms in the modular case, or the
Maass case, or the automorphic case, as well
as that of

∑
p≤X λ(p)e2iπ pα for any α ∈ R/Z.

Recently, many impressive results concern-
ing primes or the Moebius function have been
proved and the second aim of this paper is
to present a main tool to attack this prob-
lems. Indeed, these achievements are of course
due to the work of some tenacious individu-
als, but also emerged after a long toiling from
a large community. As an outcome, a general
and flexible tool has been created, whose his-
tory I will now try to recount. If this tool is
now fairly common knowledge among special-
ists, this does not imply, and by far!, that all
the above questions have been answered. This
tool is however a good weapon whose concep-
tion has reached an evolved enough stage that
it should presented to a more general audi-
ence. Some of the ideas here may be useful in
other contexts and other fields may also con-
tribute; Such a crossing of borders has for in-
stance led ergodic theorists to add their own
input, among which the impressive work of Ben
Green, Terence Tao, Peter Sarnak, Jean Bour-
gain and many others.

To be complete and before embarking in my
storytelling, I should specify that several other
tools have been invented: I am only concen-
trated on the one that is the most specific to
prime numbers.

Now that we have underlined the difficulty of
the diverse questions asked, let us turn towards
the strategy that has developed to tackle them.
We start at the very beginning of this trade:
how to handle prime numbers? We make here
the first turn: instead of studying the set of
prime numbers P, we study its characteris-
tic function 1P . We further assume a posi-
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tive (large) real number X be given, and study
1X<P≤2X with takes value 1 on prime num-
bers p that are such that X < p ≤ 2X, and
0 otherwise. Studying a set of its character-
istic function are of course equivalent, but we
are now ready to express 1X<P≤2X as a linear
combination of functions, that do not have any
special geometrical interpretation.

There has been historically two main lines
of approach, that we will see will converge in
1968:

• The first branch of this story can be nick-
named combinatorial and will give birth
to the sieve.

• The second branch, which I call eulerian,
goes through what is nowadays known as
Dirichlet series.

In the sequel of this paper, we shall present
the characteristics of both approaches, try to
point out how they interact in history, and see
how they mingled to create the modern theory.

2 Dirichlet and Riemann: the
early history

The eulerian approach has been really started
by Bernhard Riemann in his 1859 memoir [52],
and came to the front scene in 1896: this is
the path followed by Jacques Hadamard and à
Charles de la Vallée - Poussin [10] to prove the
prime number theorem. The next crucial mo-
ment will be in 1968 when this method will hy-
bridate with the combinatorial approach, but
this is for later! The idea of Leonhard Euler is
to consider the decomposition

ζ(s) =
∑
n≥1

1

ns
=
∏
p≥2

(
1− 1

ps

)−1

(1)

where the variable p ranges the prime numbers.
On the right hand side, one find the primes,

while on the left hand side, one find only inte-
gers: we have potentially a machine to extract
information on the primes from information on
the integers! L. Euler used it in 1737 to prove
that there are infinitely many primes, and, in
1796, C.F. Gauss refined the analysis to guess
the prime number Theorem. It is only in 1837-
39 that serious proofs started with G. Dirich-
let, followed by B. Riemann in 1859. In fact, L.
Euler restricted the variable s above to integer
values (He even considered the case s = 1 and,
in some roundabout way, the case of negative
values of s as well!). G. Dirichlet applied the
logarithm of both side of the equation above
to handle the product, and considered s > 1
a real number. And shortly after this work,
B. Riemann simplified that in his eight pages
long epoch making memoir [52] and took the
logarithmic derivative of both members:

−ζ
′(s)

ζ(s)
=
∑
p≥2

(
Log p

ps
+

Log p

p2s
+

Log p

p3s
+ · · ·

)
=
∑
n≥2

Λ(n)

ns
(2)

where Λ(n) will be called the van Mangoldt
function... fifty years later! This formula has
still the property of the Euler formula: it is po-
tentially a machine to extract knowledge on the
primes from the information on the integers.
The reader may worry that the Λ-function does
not only detect primes but also their powers,
but these later are in negligible quantity.

B. Riemann considered complex values of s.
The reader may easily guess that an inversion
formula, akin to the formula that expresses
the Fourier coefficients of a function in terms
of this function, using complex analysis links∑

n≤N Λ(n) with −ζ ′/ζ, but to make it work,
one needs bounds for this function. The diffi-
culty lies there: the ζ(s) on the denominator
tells us that the zeroes of this function are go-
ing to give troubles. This is the beginning of
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the long and yet unfinished chase for these ze-
roes!

To make a long story short, when this
method applies, it usually gives very precise
results. Moreover it has wide generalizations
(to number fields, to curves, be they elliptic or
not, to modular forms, ...). But the weakness
of available informations on the potential ze-
roes reduces drastically its range. In modern
times, computers have entered the course and
we are now in a position to check numerically
that large but finite regions do not contain any
zeroes, but this is material for another paper!

3 Same problem, different
tune: the Moebius function

Before introducing the combinatorial ap-
proach, let me introduce another player:
the Moebius function, named after the ger-
man mathematician August Ferdinand Moe-
bius who introduced it in 1832. This player
is more discreet than the primes, because it is
less geometrical, but it is equally important.
Its formal definition reads as follows

µ(n) =

{
(−1)r when n = p1 · · · pr, (pi 6= pj),

0 else.

This function appears in the inclusion-
exclusion formula when applied to the divisor
set of an integer, and we will see below. It
has been noticed, and this was put very for-
mally in theorems by E. Landau in the early
1900’s that studying this function is equivalent
to studying the prime numbers. However it is
often far from obvious to translate a property
of the Moebius function into a property of the
prime numbers: there are no direct dictionnary
between these two worlds. Note that

1/ζ(s) =
∑
n≥1

µ(n)/ns. (3)

I said before that the difficuly in (2) lies in the
denominator. With the Moebius function, we
study directly this denominator!

4 The combinatorial approach
as seen by Legendre

No more delayong: let us embark in the com-
binatorial approach that I introduced so long
ago!

The starting point is due to Erathosthenes
and stems from the following remark: an inte-
ger from the interval (X, 2X] is prime if and
only if it has no divisor strictly larger than 1
and below

√
2X (on assuming that

√
2X ≤ X,

i.e. that X be greater than 2). Erathosthenes
deduced from this remark an efficient algo-
rithm to build tables of all the primes below
some limit. How to use theoretically this algo-
rithmic efficiency?

Adrien Marie Legendre put this idea in a
formula in 1808, but failed to turn it into any-
thing efficient (though this miss will be fruit-
ful!). Let us inspect this approach on the
problem of counting the number of primes be-
tween X and 2X. We start with the number
of integers between these two bounds, that is
X + O(1). From this number, and for each
prime p ≤

√
2X, we remove the number of in-

tegers that are divisible by p, i.e. we consider

X +O(1)

− X

2
−O(1)− X

3
−O(1)− X

5
−O(1)− · · ·

Now we have removed twice the integers that
are divisible by a product of two primes, so we
have to add

X

6
+O(1) +

X

10
+O(1) +

X

15
+O(1) + · · ·

This times integers divisible for instance by
2 × 3 × 5 are removed three times (divisible
by 2, by 3 and by 5), then added three times
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(divisible by 2 × 3, by 2 × 5 and by 3 × 5), so
we still need to remove them... The inclusion-
exclusion principle is the modern way of rigor-
ously and compactly expressing this idea but
we will need later the pedestrian mecanism
that I just described. Indeed, the formula
of A.-M. Legendre leads to an enormous dif-
ficulty: the number of O(1) that appear is

about 2π(
√

2X), where π(
√

2X) is the number of
primes below

√
2X. The addition of all these

error terms gives rise to a gigantic and final

O(2(1+o(1))
√

2X/ log
√

2X), swallowing the main
term with no second thoughts! One has to face
a sheer wall: the combinatorial explosion. This
phenomenom is often met in complexity; here
it spoils the efficiency of the formula.

But Legendre formula also suffers from a
congenital disease: if we ignore the error terms,
the supposedly main term it gives is incorrect
in view of the prime number theorem∗!

5 Two earthquakes: V. Brun,
1919 and I.M. Vinogradov,
1937

The Legendre formula has been abandoned
for more than a hundred years, period during
which the eulerian approach was developped.
In 1910, the young norwegian mathematician
Viggo Brun went to Göttingen, at the time
one of the main center of mathematics in eu-
rope. Edmund Landau was developping and
systematizing the use of analysis in number
theory, and more often than not, in prime num-
bers theory. There, the young Brun was intro-
duced to classical problems in this field, among
which the Goldbach’s conjecture, for instance
as part of E. Landau’s 1912 ICM list of prob-

∗This “main” term is
∏
p≤
√
2X

(
1 − 1

p

)
X which

is equivalent, by one of Mertens Theorems to
2e−γX/ logX. We have 2e−γ = 1.122 · · · while the
prime number theorem will almost a century later show
that it should be 1.

lems. V. Brun wanted to use combinatorial
methods but E. Landau was convinced such
methods would never yield anything of inter-
est. E. Landau waited until 1921 before read-
ing V. Brun’s memoir! But I am anticipating:
let me describe briefly this revolutionary work.

The first idea of V. Brun [5] is to give up
hope for an equality in the Legendre formula.
Since the error terms accumulate too much,
let us stop the process before the end. The
pedestrian approach I described gives the prin-
ciple: after an even number of steps, one has a
lower bound, and after an odd number of steps,
an upper bound is produced! So, if we aim
only at inequalities, the process can be made
to work! Well, when counting the number of
primes, this lower bound is... negative. But
the upper bound is much stronger than what
was then known!

The Brun method (later called the Brun
sieve) is exceptionally flexible and this first
work was the source of a wealth of activi-
ties. The technical side was however extremely
heavy, and one had to go through pages after
pages of evaluations.

For instance the Brun sieve [6] gives a sharp
upper bound for the number of representations
of the even integer N as a sum of two primes.
This upper bound is indeed sharp: it is only
a multiplicative constant larger than what is
expected to be true! This is the one of the
main ingredient that Lev Šnirel’man used in
1933 [53] to show the existence of a constant
C such that every integer is a sum of at most
C prime numbers.

The second sysmic move occured in 1937:
I.M. Vinogradov [58] proved that every large
enough odd integer is a sum of three primes.†

This achievement relies on a magnificent dis-
covery: Vinogradov found a way to deal with

†At the time, I.M. Vinogradov was also nearly
drowned under the administrative work he had to cope
with as director of the Steklov institute!
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prime numbers! This method is based of the
Brun sieve which was already very intricate
and I propose now an anachronical but much
clearer way of presenting it.

When working for my thesis, I realised in
1991 [48], [49] that one could consider that the
Brun sieve produces a larger sequence A that
contains the sequence of primes, The sequence
A envelops the primes, we loose in size, but we
gain in control. In functional form, this means
that, for any positive function f , we have∑

X<p≤2X

f(p) ≤
∑
a∈A,

X<a≤2X

f(a).

What is expressed in the above is that the Brun
sieve does not only give an upper bound for a
counting function, but also provides us with
a local upper bound! In truth, the situation
is somewhat more complicated, since the se-
quence A is maybe infinite but only serves as
an upper bound for the primes when the vari-
able is between X and 2X. Attle Selberg in
1947 extended this setting some more: it is
enough to find non-negative coefficients β(n)
such that, for any non-negative function, one
has ∑

X<p≤2X

f(p) ≤
∑

X<n≤2X

β(n)f(n)

where here and everywhere else, the letter p al-
ways denotes a prime variable. A. Selberg pro-
vides a construction of such good coefficients
β(n), which one should think of as a (weighted)
sequence. It is easier to see on these coefficients
β what has been gained by switching to an up-
per bound. There exists a parameter D > 1
(say something like X1/4; anyway strictly less
than X) and coefficients λ∗d such that

β(n) =
∑
d|n,

d≤X1/4

λ∗d. (4)

The major feature which renders this expres-
sion tractable is that D is small enough. Fur-
thermore, this parameter is at our disposal. I
developped fully this idea of envelopping sieve
in [51], but let us go back to I.M. Vinogradov.
He writes

1X<P≤2X = 1A −Θ.

Nothing has been done so far. I.M. Vinogradov
crucial observation is that Θ has the a special
shape, namely

Θ(n) = lin. comb. of
∑
`m=n

a
(i)
` b

(i)
m (5)

where the sequences (a
(i)
` ) and (b

(i)
m ) vanish as

soon as m or ` is either too large or too small;
since we have constrained n by X < n ≤ 2X,

if a
(i)
` = 0 as soon as ` ≤ L, then the m’s with

m ≥ 2X/L do not intervene, so our conditions
are somewhat redundant. In practive, we will

ensure that both a
(i)
` and b

(i)
m vanish when `

(resp. m) is small. This observation is a main
turning point. I.M. Vinogradov termed type
I sums the sums arising from (4) and type II
sums the sums arising from (5). I prefer with
many to speak of bilinear sums for (5) and, of
course, to call (4) a linear sum! More will be
said later on this bilinear structure.

This step being crucial, let me enunciate a
simple lemma that shows the power of this bi-
linear structure.

Lemma 1 (Toy lemma). Given q, L ≥ q, M ≥
q2 and two sequences |a`|, |bm| ≤ 1,∣∣∣∣ ∑

`≤L,
m≤M

a`bm e
2iπ `m/q

∣∣∣∣ ≤ 2LM/
√
q.

The condition |bm| ≤ 1 can be relaxed if the up-
per bound is replaced by 2L

√
M
∑

m |bm|2/
√
q.

The bound L can be replaced by L(m) ≤ L de-
pending on m, provided that, given `, the set
of m such that ` ≤ L(m) is an interval.
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The last condition is typically met by con-
ditions like ` ≤ X/m for some X. An early
general version of the toy lemma is to be
found in [58, Lemma 4], see also [9, Lemma
8]. The proof goes simply by writing the sum
to be studied in the form

∑
m≤M bmc(m) and

using Cauchy’s inequality. In the resulting
sum

∑
m≤M |c(m)|2, open the square and in-

vert summations, the result will follow read-
ily. What has been gained here? If one sets
γ(n) =

∑
`m=n

a`bm (ensure that a` = 0 when
` > L and similarly for bm and m), we see that
we are studying∣∣∣∣ ∑

n≤N=LM

γn e
2iπ n/q

∣∣∣∣.
When the only information we have on γn is
that it is bounded above in absolute value by 1,
the best possible upper bound is

∑
n≤N |γn|

which can be as large as N = LM . The above
lemma uses the structure and saves a factor
2/
√
q! Note the discreet conditions L ≥ q and

M ≥ q2 that are in fact essential.
Here is what A. Ingham wrote in Zentral-

blatt on I.M. Vinogradov paper:

”This is a fairly simple deduction
from Cauchy’s inequality, and the es-
sential basis of the result has been
available since 1910. It is hardly sur-
prising, however, that its possibilities
remainded so long unsuspected. For
double sums occuring in (1) do not
appear naturally in the known treat-
ments of the above problems, and in
any case a straightforward applica-
tion is liable to give only crude results
owing to the loss involved in the use
of Cauch’s inequality. It is, in fact, in
devising ways of adapting the lemma
to the various problems, and in elab-
orating techniques for bringing it to
a successful conclusion, (...), that the
author reveals his amazing powers.”

This is a flexible and powerful principle.
Our presentation is voluntarily naive; modern
versions rely heavily on the underlying bilin-
ear structure, and on Bessel type inequalities
for the relevant quasi-orthogonal system. I’m
ahead of the subject, let us go back to the be-
ginning of the previous century!

6 The eulerian approach con-
tinued

While sieves and their derivatives occupied the
front scene, the eulerian approach was still un-
der scrutiny. The main hurdle being the lack of
information of the zeroes, Harald Bohr & Ed-
mund Landau [2] decided in 1914 (somewhat
before Brun’s discovery) to look for regions
that do not have many zeroes∗. What they
showed is a density estimate; for any θ > 1/2,
we have

#{ρ = β + iγ, ζ(ρ) = 0, |γ| ≤ T, β > θ}
#{ρ = β + iγ, ζ(ρ) = 0, |γ| ≤ T, β > 0}

→ 0.

This statement says that most of the zeroes
have a real part ≤ θ, for any θ > 1/2 (and
in fact, by the functional equation, almost all
zeroes with positive real part have a real part
close to 1/2). The Riemann hypothesis states
that all these zeroes have indeed a real part
equal to 1/2; the above statement is a statisti-
cal step in this direction. And this statistical
step happened to have been a crucial one, since
it started a very fecund branch of investigation
that delivered new results for the next eighty
years (this theory is now somewhat stalled).

H. Bohr & E. Landau studied the function
(1−ζ(s)PD(s))2 where P is a finite Euler prod-
uct: PD(s) =

∏
p≤D(1 − p−s)−1. This is one

∗By the way, Harald Bohr was the rising danish
star while V. Brun was the two years older norwegian
rising star. By the way again, Harald Bohr was also an
accomplished football player and is, together with his
teammates, responsible for the sharpest defeat of the
french national team (17 to 1!).

7



of the striking feature of analytic functions: it
is possible de bound from above their number
of zeroes by bounding from above some inte-
gral containing them. Here, H. Bohr & E. Lan-
dau integrated |1−ζ(s)PD(s)|2 on a square and
proved this quantity to be a multiplicative con-
stant times larger than the number of zeroes in
a smaller region, a process later improved upon
by John Edensor Littlewood.

The suedish mathematician Fritz Carlson in
1920 [8] simply replaced the product PD by
a sum MD(s) =

∑
d≤D µ(d)/ds and consid-

ered (1− ζMD)2. He obtained in this manner
much better bounds for the number of zeroes
with real parts > θ. Many authors continued
this line of work, J.E. Littlewood, Alan Titch-
marsh, Albert Ingham, Pál Turán, Atle Sel-
berg, Askold Vinogradov, Enrico Bombieri, to
name but a few! One uses since A.I. Vino-
gradov a zero detection method instead of the
method described above but this is not my sub-
ject here! It is still relevant to note that her-
mitian methods became more and more impor-
tant and the large inequality (see (13) below)
proved to be an essential tool. Yu Linnik is
the pioneer of line of investigation [39], that
became understood as the use of Bessel type in-
equalities for quasi-orthogonal systems... More
will be said on this subject later!

There are two main highpoints of the the-
ory of density estimates: Y. Linnik theorem
concerning primes in arithmetic progressions
in 1944 and the Bombieri-Vinogradov theorem
in 1965. In essence, these authors prove state-
ments concerning density of zeroes, and this
is the major part of their work. These state-
ments are then converted in results concern-
ing the prime numbers, via some adhoc explicit
formula.

The Linnik theorem [40], [41] says that there
exists two constants C0 and q0 so that, when q
is larger than q0, there exists for each residue
class a modulo q, a prime number congruent

to a modulo q and below qC0 .

The Bombieri-Vinogradov theorem [3], [57]∗

says that for each positive constant A, we have∑
q≤

√
x

(log x)A+4

max
1≤a≤q,

gcd(a,q)=1

∣∣∣∆(X; q, a)
∣∣∣� x

(log x)A
,

where ∆(X; q, a) =
∑
p≤X,
p≡a[q]

log p− x

ϕ(q)
. (6)

This theorem can be seen as a statistical
Generalized Rieman Hypothesis and serves in
many situation as a replacement. And we
should also recall the Guido Hoheisel theorem
from 1930 [33]†: there exists two constants
X0 ≥ 1 and δ2 ∈ (0, 1) such that every interval
[X,x + Xδ2 ] contains at least a prime num-
ber when X ≥ X0. This proof created some
turmoil (check) when it was published, as the
existence of such a δ2 < 1 was only known un-
der the hypothesis than no zero with real part
≥ δ2 existed (to be precise, a slightly stronger
hypothesis is needed) and seemed close to be
equivalent to it. Nowadays, we term a Ho-
heisel theorem any theorem that proves a sim-
ilar statement with some definite value of δ2.
The initial value provided by Hoheisel was very
close to 1‡.

7 The ’68 generation

Patrick Gallagher [19] remarked in 1968 that
the process is abnormaly convoluted: the proof
starts from the series

∑
1/ns, retrieves in some

fashion informations on its zeroes and deduces

∗The russian mathematician Askold Ivanovich
Vinogradov is not to be confused with the other rus-
sian mathematician, mathematical great-grandchild of
Pafnuty Lvovich Chebyshev, and whose work is at the
heart of this paper: Ivan Matveyevich Vinogradov

†G. Hoheisel was a mathematical grandchild of
David Hilbert.

‡Any δ2 > 1 − (1/33 000) would do. This is real
small!
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from that informations on the primes. Why
not use a shortcut and skip the zeroes? This
is easier said than done, but P.X. Gallagher
found such a shortcut. He simply multiplied
−ζ ′/ζ by the kernel used for density estimates!
This amounts to writing

ζ ′

ζ
= 2MDζ

′ −M2
Dζ
′ζ +

ζ ′

ζ
(1− ζMD)2 (7)

where MD is the Dirichlet polynomial we have
defined above. The difficult term is the last
one: it is the only one that still has a denomi-
nator. But this term is essentially of the shape
identified by I.M. Vinogradov! A short dictio-
nnary is called for here: one has to convert
operations on Dirichlet series on operations on
their coefficients. The main rule is that the
(arithmetic) convolution is trivialised when ex-
pressed in terms of Dirichlet series, i.e.:

γn =
∑
`m=n

a`bm ⇔
∑
n≥1

γn
ns

=
∑
`≥1

a`
`s

∑
m≥1

bm
ms

.

This equality is either formal, either valid in
the domain of absolute convergence of the
three series (lighter hypotheses are possible!).
I have to point out specifically that this implies
that

ζ(s)MD(s)− 1 =
∑
n>D

vn
ns
.

The coefficients vn are not important, as we
noted earlier; they are bounded by a divisor
function∗. What is really important is that the
variable d cannot be small.

The first two terms in (7) give rise to linear
sums while the last one gives rise to a bilinear
one. This transformation has been completed
by Robert Vaughan in 1975 [56] by removing
a finite polynomial to ζ ′/ζ; he introduced, for
some parameter y typically like X1/4, the finite

∗We have vn =
∑

d|n,
d≤D

µ(d) when n ≥ 2 and 0 oth-

erwise. And thus |vn| ≤ d(n).

Dirichlet polynomial

Fy(s) =
∑
n≤y

Λ(n)/ns

so that

ζ ′(s)

ζ(s)
+ Fy(s) =

∑
n>y

−Λ(n)

ns
.

Now, multiply together (ζ ′/ζ) + Fy and (1 −
ζMD) and expand as above. This product is
a Dirichlet series whose coefficients are a con-
volution product of two sequences that both
vanish when the variable is small: it is indeed
of the special shape highlighted by I.M. Vino-
gradov!

What has been gained in the process?

• The sieve part in I.M. Vinogradov pro-
cess was not in most cases the main term,
while the linear part is expected to carry
the main term. We will say more on this
point later.

• The method is simple and flexible: one
can change the kernel; it applies to other
functions instead of the Rieman zeta func-
tions, like the Dedekind zeta functions or
Hecke L-series. Note that the multiplica-
tivity is essential, but not the functional
equation. The method applies also the
Moebius function, but so did I.M. Vino-
gradov method as already noticed by Har-
ald Davenport [9]. However H. Davenport
reduced the problem to the case of primes
while the present proof is direct.

On using this approach, P.X. Gallagher ob-
tained in 1970 [20] a major theorem that unifies
the Linnik and the Bombieri-Vinogradov the-
orem: the Gallagher prime number theorem
which is still unsurpassed in strength.

Since there has been recently a flourish of
works on the Moebius function, and since many
people asked how this theory handles this case,

9



let me be more precise here. The identity I pro-
pose to use is a simplification of one I devised
recently, as explained later in this survey. It
relies on the simpler kernel (1 − ζMD). We
consider the identity

1

ζ
=
(1

ζ
−MD

)
(1− ζMD) + 2MD − ζM2

D.

There only remains to identify the coefficients!
It is best for applications to express the result
in functional form. For any function f and
provided D ≤ X, we have:∑

X<n≤2X

f(n)µ(n) =
∑
m≤D2

um
∑
`≥1,

X<`m≤2X

f(`m)

+
∑

`>D,m>D,
X<`m≤2X

µ(`)vmf(`m) (8)

where vm has been defined above and where

um = −
∑
hk=m,
h,k≤D

µ(h)µ(k).

In the first summation on the right-hand side
of (8), we hope to be able to evaluate the
summation over `. For instance, in the toy
lemma case, one selects f(x) = exp(2iπx/q)
and the sum over ` is bounded by q, giving rise
to a total contribution bounded by O(qD2).
Concerning the second sum, we first note that
the variable m ranges (D, 2X/D). We cover
this interval by at most (log(2X/D2)/ log 2 dis-
joint intervals of the shape (M,M ′] for some
M ′ ≤ 2M . Our toy lemma applies provided
that D ≥ q2. We note that

∑
m∈[M,M ′] |vm|2 �

M(logM)3. Collecting our estimates, we have
proved that∑
X<n≤2X

µ(n)e2iπ n/q � qD2 + (logX)5/2 X√
q

provided D ≥ q2 and D < X. On selecting
D = q2 and assuming that q ≤ X2/7, this gives

our case study result:∑
X<n≤2X

µ(n)e2iπ n/q � (logX)5/2 X√
q
. (9)

This simple result is way beyond the power of
the classical eulerian approach! But the proof
we gave requires not more than half a page!

There has been recently a renewed activity
around the Moebius function, as in [24] and
[25] and around a conjecture due to Peter Sar-
nak∗. This subject is somewhat off our main
road, though we have to specify that getting
to the Moebius function is done as above. Re-
cently Jean Bourgain, Peter Sarnak & Tamar
Ziegler have given [4] another way to handle
the Moebius function that follows a very com-
binatorial path closer to the I.M. Vinogradov
one.

In short, we have reached a point where
the eulerian approach derived sufficiently to
ressemble the combinatorial one! In both
cases, the idea is to represent the characteris-
tic function of the primes as a linear combina-
tion of linear forms and of bilinear forms. This
idea is one of the main ingrédient of Christian
Mauduit & Joël Rivat [43] in their proof of the
forty years old conjecture of Gelfand: there ex-
ists up to an error term as many prime numbers
whose sum of digits in base 2 is odd or even. It
is at the heart of the proof of Terence Tao [54]
that every odd integer 6= 1 is a sum of at most
five primes, and also at the heart of Harald
Helfgott’s proof that every odd integer 6= 1
[31], [32] is a sum of at most three primes.† The
second paper has a final result better than the
first one, of course, but T. Tao’s paper develops
ideas around small intervals containing sums of
two primes that are of independant interest.

∗See also [34, (13.7)]. P. Sarnak’s conjecture some-
how quantifies this statement. See also [23].

†Both papers have been submitted, there are good
reasons to believe in their solidity, but rules are rules
and the checking should be complete before the result
be fully accepted!
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H.A. Helfgott closes after about seventy-five
years the proof of I.M. Vinogradov: we knew
that the statement was true for large enough
integers, and large enough meant real large,
and bringing this bound down was no small
achievement.

8 Sad news: there are limita-
tions! The main term prob-
lem

Let us resume our general analysis. The prob-
lem addressed in this section: in the initial
Vinogradov method, the sieve part did not
yield the main term. To understand properly
why, here is a simplified presentation of the
Vinogradov method I developped some years
back. In the Brun sieve, the sequence A is the
sequence of integers that do not have any prime
factors less than some given bound z. This pa-
rameter is typically between a high power of
logX and X to a power that tends very slowly
to 0. To reach the primes from the interval
(X, 2X], we still need to remove all the inte-
gers that have a prime factor between z and√

2X. Say that p is such a prime. The bad
candidates have thus the form pm... and this
is bilinear! Well almost, but not quite: m has
to be required to have no prime factors below p
if we want the representation pm to be unique,
and this ties p and m together... Before con-
tinuing, let me precise that the process used is
known as the Buchstab iteration [7]. I learned
recently while reading the notes of [47] that,
in the late seventies, Hans-Egon Richert had
performed a similar analysis from the Selberg
sieve.

The problem encountered is well identified:
to get a proper bilinear form, one needs to sep-
arate both variables. This problem is serious
but often not deadly. One can introduce here
the number ωz,

√
2X(m) of prime factors of m

that lies within (z,
√

2X] and the representa-
tion pm has multiplicity ω∗(pm) say, so it is
enough to divide by this number. Though now
p and m are tied in ω∗(pm)! Well, yes, but less
so. For most m’s, i.e. for the ones that are not
divisible by p, we have ω∗(pm) = 1 + ω∗(m);
the other ones correspond to integers of the
shape p2k, and since p is large enough, they
are in a (usually) negligible quantity.

Since the sequence A that comes from the
Brun sieve is larger than the primes, it leads
to a larger main term! Hence what we treat like
an error term contains in fact part of the main
term. In the linear/bilinear approach, the lin-
ear part can in usual problems be shown to
have the proper size, at least if believed con-
jectures do hold. But the way the bilinear form
is treated induces a loss of precision that can
be deadly! On our toy problem for instance,
(9) is way less than what is expected, namely
at least:∑

X<n≤2X

µ(n)e2iπ n/q � (logX)100X

q
(10)

for q ≤ X2/7. But, if we were to prove such
a statement, we would prove that there are no
Siegel zero, or equivalently that the class num-
ber of the imaginary quadratic field Q(

√
−q) is

at least� q1/2/(log q)200. In fact “simply” im-
proving the power of q from 1/2 to (1/2)+δ for
any δ > 0 would be a major achievement. We
will see below more as to where this limitation
comes from. The best result to date [50, Corol-
lary 5]∗ reads∑
X<n≤2X

µ(n)e2iπ n/q � X
√
q

∏
p|q

(
1+

1
√
p

)
(11)

for q ≤ X1/9. The last product is just an an-
noying blemish. In the case of a prime modu-
lus q, proving that the implied constant is < 1
would prove that there are no Siegel zeroes!

∗As I said, rules are rules and the result I mention
now has only been submitted!
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John Friedlander & Henryk Iwaniec man-
aged in their awesome work [17], [18] to over-
come in some delicate cases this enormous dif-
ficulty.

There is another major limitation. I have
presented the toy lemma with an additive char-
acter e2iπ n/q, but what happens with a mul-
tiplicative character? The bilinear forms be-
comes trivial and nothing can be gained any-
more. A path could be to express these multi-
plicative characters, modulo q say, in terms of
additive ones modulo q. Such a process loses√
q due to the size of the Gauss sum, reducing

to nil the saving acquired!

9 Other identities and divi-
sors: the philosophy ex-
tends

I said several times that this method offers flex-
ibility, but the reader has seen only two identi-
ties so far. In his state thesis in 1980, Étienne
Fouvry used recursively Vaughan’s identity∗.
At the time of writing up the corresponding
paper [14], Roger Heath-Brown had published
in [29] and [28] a systematized version which E.
Fouvry prefered to use. This systematized ver-
sion consists in selecting the kernel (1−ζMD)k

for an integer parameter k to be chosen (É.
Fouvry’s took k = 12 for instance, later re-
duced to k = 7).

In 1961, Y. Linnik produced [42] another
kind of identity by considering log ζ = log(1−
(1− ζ)) together with the Taylor expansion of
log(1− z) around z = 1. We present the modi-
fication due to Heath-Brown in [29, Lemma 3]
in which the zeta function in multiplied by the
finite Euler product PD introduced above in F.
Carlson’s proof. The function log(ζPD) is also

the Dirichlet series
∑∗

n≥2
Λ(n)
logn

1
ns where the star

∗He iterated it twelve times! The formulas obtained
were so long that he printed them in landscape format...

means that n has only prime factors > D; it is
expedient here to introduce the product ΠD of
all the primes not more than D. The condition
on n is then simply that n and D are coprime.
On the other side the function (1− ζPD)k has
for any positive integer k the Dirichlet series
representation (−1)k

∑∗
n≥1 d

]
k(n)/ns where the

summation is again restricted to integers n
prime to ΠD and where d]k(n) is the number
of ways of writing the integer n as a product
of k integers, all strictly larger than 1. We get,
when n is prime to ΠD,

Λ(n)

log n
=
∑
k≥1

(−1)k+1

k
d]k(n). (12)

On restricting n to the range (X, 2X] and
assuming that DK+1 > 2X, the summation
above can be truncated at k ≤ K. Moreover, if
we abort the summation at an odd (resp. even)
number of steps, we get an upper (resp. lower)
bound, as in the inclusion-exclusion principle!

The reader will also find a family of identities
in [17, section 3].

But a closer look at Linnik’s identity is
called for: it transposes problems for primes
in problems for divisor functions. This is what
transpires from É. Fouvry’s work [14]: if one
knows well enough the divisor functions, up
to products of six divisors, then this implies
an improved Bombieri-Vinogradov theorem of
the primes: the inequality q ≤

√
x/(log x)A+4

could be replaced by q ≤ x
1
2

+δ for some pos-
itive δ. Such a theorem would be stronger
than the Generalized Rieman Hypothesis! The
reader can see rapidly how modular forms
come into play here: the distribution of the
divisor function is linked with the distribution
of Kloosterman sums, which are in turn coeffi-
cients of modular forms.

This feature of Y. Linnik’s identity can be
found again in R. Heath-Brown identity if one
forces k to be so large that Dk > X. In this
manner, the bilinear part does not come into
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play for integers below X! In functional form,
this reads:∑

n≤X
Λ(n)f(n) =

∑
1≤r≤k

(
k

r

)
(−1)r+1×

∑
n1,··· ,nr≤D,
nr+1,··· ,n2r,

n1···n2r≤X

µ(n1) · · ·µ(nr) log n2r f(n1 · · ·n2r).

Well and good, but we have already difficul-
ties to treat products of three divisors (see the
groundbreaking [35]) not to speak of products
of four of them, so it may be more efficient
to consider these divisor functions simply as
convolution products and resort to I.M. Vino-
gradov bilinear form approach. In the above,
one may tie some variables together, say d1

and d2, in a single m = d1d2 affected with the
coefficient um defined above!

The divisor angle can however be made to
bear with more efficiency if one aims at a result
weaker than a Bombieri-Vinogradov Theorem.
É. Fouvry put in [15] this philosophy in prac-
tice: the quantity considered is, for some fixed
a and some positive δ:∑

q≤x
1
2+δ

c(q)∆(X; q, a)

where the weights c(q) are fairly general and,
yet again, convolution products of special kinds
(∆ is defined in (6)). This is at the heart of
the recent breakthrough of Ytang Zhang [59]:
there exists infinitely many pairs of primes p
and p′ such that |p − p′| ≤ 7 · 107. The argu-
ment follows the pathway opened by in 2006 by
Daniel Goldston, Janós Pintz et Cem Yıldırım
[22], [21], but the main novelty comes from the
treatment of the error term. Or more precisely
in curbing the proof so that it produces an er-
ror term of a special form, as already noted
by A. Ingham in his assessment of I.M. Vino-
gradov’s work. Studying this error term is
also no small task! Let us note that this en-
tails controling bilinear terms of the form we

have already seen but also some convolution of
three divisors; Or a three-linear form; or, as Y.
Zhang puts it: a type III sum.

10 The combinatorial ap-
proach, revival time

While the work on identities has been going
strong, a different line continued from the I.M.
Vinogradov approach. We have seen that the
correcting term from the sieve part contained
part of the main term and that a coarse treat-
ment via Cauchy’s inequality was not enough.
Some authors however developped an gentler
treatment is some cases; such a line started
in [30] where the authors obtained a strong im-
provement on the Hoheisel theorem (any δ2 >
11/20 is accessible; compare with Hoheisel ini-
tial value!). Combinatorial ideas are put to ef-
fect and show their teeth! This has been ampli-
fied, developped and refined by Glyn Harman
in several papers [26], [27], [1] in what this au-
thor calls his adaptative sieve. This is surely a
very accomplished work in this direction and
it leads to the best results in many problems
(like δ2 = 0.525).

In this section I should mention the develop-
ment in [11, Section 6], and in particular The-
orem S thereof. This subtle theorem ensures
that the sequence of primes will be properly
distributed in some sequences, provided one
knows how to bound some linear sums as well
as some bilinear ones. This step is extremely
difficult in their case of application, as the ac-
cessible information is not enough for a usual
approach! A special combinatorial treatment is
required which is contained in the Theorem S I
mentioned, in particular for handling products
of three divisors of about the same size.∗ This
falls within the general philosophy we have de-

∗For the reader who would want to follow this proof
in a gentler manner, and who can read french, I recom-
mend the book [37].
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velopped so far. The novelty here is that the
bilinear form arising from I.M. Vinogradov ap-
proach is treated with more care, and the main
term extracted from it.

11 Treating the bilinear forms

I have told you at length that a bilinear struc-
ture was involved in all these representations,
whether directly via eulerian identities, or af-
ter more work via combinatorial means (and
now, both methods mix happily!), but the way
to treat this bilinear part has up to now re-
mained extremely coarse, essentially via the
toy lemma above. Even at this level of coarse-
ness, the method yields impressive results, but
a better understanding is called for. And it
will show again how the sieves ideas and the
eulerian approach mingle together. In most of
the problems on primes, the treatment of the
bilinear sum is the most difficult part, and in
return, what we are able to prove at this level
conditions the kind of identity one has to prove
or choose.

One way to start telling this part of the story
starts from the Bombieri-Vinogradov theorem.
In the initial proof, the one that dealt with
density estimates of zeroes, a major role was
played by an inequality that finds its origin in
the work of Y. Linnik: the large sieve inequal-
ity. It was later discovered by Hugh Mont-
gomery [44] that this inequality could be used
in sieve context and... led to results as strong
to the Selberg sieve! In some sense, this in-
equality is dual to the Selberg sieve [36] and
this notion of duality has to be understood in
the usual sense, i.e. when a bilinear coupling is
at stake. Let me state a special case of this in-
equality in the strong form given by H.L. Mont-
gomery & R.C. Vaughan [45], and at the same

time by A. Selberg with a different proof:∑
q≤Q

∑
1≤a≤q,

gcd(a,q)=1

∣∣∣∑
n≤X

bne
2iπ na/q

∣∣∣2
≤
∑
n≤X
|bn|2(X +Q2), (13)

valid for any sequence of complex numbers
(bn). Such an inequality is of course remi-
niscent of our toy lemma above. It should
be looked upon as a Bessel type inequal-
ity for a quasi-orthogonal system. From a
practical viewpoint, if we were given any
single sum above, say

∑
n≤X bne

2iπ na0/q0 ,
Cauchy’s inequality would give us the bound√∑

n≤X |bn|2X and it is best possible at this

level of generality. The above inequality tells
us that, for the same price, we can bound many
more sums! Provided Q2 be less than X, which
will be our case of use. So the idea is to put as
much as we can in the left hand side and use
this bound. The reader will not be surprised
to find an inequality of this type in H.A. Helf-
gott’s work.

When compared with our toy lemma re-
sult, the reader may worry about the missing
1/
√
q... And rightly so! But we above have a

summation of length about q over a modulo q:
in the toy lemma, simply split the variable `
according to its residue class modulo q. There
remains a slight difficulty, as ` is not guaranted
to be coprime with q, but this hurdle is easily
overcomed.

This principle can be pushed very far and
many more sums incorporated in the left-hand
side! To prove (11), and elaborating on unpub-
lished material by A. Selberg in 1972-73, and
of Yoishi Motohashi [46], I developped in [50]
an quasi-orthogonal family of identities for the
primes, where the polynomial MD is replaced

by a family M
(r)
D . One of the first lemma of the

proof is the following (version of an) inequal-
ity due to Y. Motohashi [46, Lemma 3], with
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R =
√
N/T :

∑
r≤R/q,

gcd(r,q)=1

1

ϕ(r)

∑
1≤a≤q,

gcd(a,q)=1

T∫
−T

∣∣∣∣∑
n≤N

bncr(n)

nit
e

2iπ na
q

∣∣∣∣2dt
� X

∑
n≤X
|bn|2

provided that bn vanishes as soon as n has a
factor in common with q. Here cr(n) is the Ra-
manujan sum. The reader should not be scared
by such an inequality, for it is a gentle monster!
If we take t = 0, a = 1 and r = 1, the inner sum
is simply

∑
n≤N bne

2iπ n/q as in the toy lemma
case. But for the same price, we have added
an integration over t in a large range (this part
is classical since P.X. Gallagher [20, Theorem
3]), as well as a summation over r which comes
from A. Selberg.

The inequality above says that the three
families of “characters” (cr(n))r, (nit)t and
(e2iπna/q)a are quasi orthogonal in themselves
but also when mixed one with the other.

How can one put that in practice? That’s
more easily said than done, but here are some
hints: when p is a prime number prime to r,
the Ramanujan function of order r takes value
−1 at p, i.e. cr(p) = −1. As a consequence,
when r ≤ X, and for any function f , we have∑

X<p≤2X

f(p) = −
∑

X<p≤2X

f(p)cr(p).

We can use this fact to introduce an average
over r, and for instance, for any non-negative
function g, we find that∣∣∣ ∑

X<p≤2X

f(p)
∣∣∣2

=

∑
r≤X

g(r)
∣∣∣ ∑
X<p≤2X

f(p)cr(p)
∣∣∣2∑

r≤X
g(r)

.

On using bilinear form representation, this
cr(p) will become a cr(`m) and if we can prove
a proper Bessel inequality, only one term on
the right hand side will contribute: we will
save the denominator! A similar process is
used in [13]. See also [12] and [38] for more
comments on amplification techniques.

The summation over r can be regained by
the process above, but a similar process does
not apply to the other “characters”, and this
is where the limitation comes from: we do not
know that the sequence (bn) does not conspire
with some eiπna0/q/nit0 for instance to give rise
to a large contribution. We would be sur-
prised if this were to happen, of course, but
at this level, we do not know how to eliminate
this possibility. We say in short that the di-
agonal contribution matters most. There has
been a good amount of work to try to dispense
with it. The general theme is to go back to
the proof of the large sieve type inequalities
we use: in these proofs, the Fourier transform
has a important role, very often in conjunction
with Poisson summation formula or spectral
theory (as for instance in [11]). So the idea
is to introduce such a Fourier transform where
a smooth variable occurs and use the Poisson
summation formula. This is for instance what
is used [16]. The Linnik dispersion method [42]
is another similar L2-mecanism that (see for in-
stance [14, Section 3]) eliminates the diagonal
contribution.

12 This is not the end!

I hope the reader has now a proper idea of
the flexible tool I praised so much in the in-
troduction! There remains large parts of un-
explored territory, as well as some peaks in
the distance... A.-M. Legendre asked long ago
whether every interval (N2, (N + 1)2) contains
a prime when N is a positive integer. This is
roughly equivalent to showing that an interval
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of length
√
x around x contains a prime: the

methods we have give x0.525 but, even after all
the plausible refinements, reaching x0.5 will re-
quire a novel input. The sum

∑
p≤X µ(p − 1)

is still a mysterious entity, and there are many
other problems on primes that are unsolved,
at present time just out of our grasp, but who
knows what will happen tomorrow!
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Vinogradov. II. Ann. Sci. École Norm. Sup.
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[49] O. Ramaré. On Snirel’man’s constant.
Ann. Scu. Norm. Pisa, 21:645–706, 1995.
http://math.univ-lille1.fr/~ramare/

Maths/Article.pdf.
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