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Abstract
We prove that the sum Z{ d<z, P(d)/d"¢ is bounded by 1 + ¢,
(d,r)=1
uniformly in z > 1, » and € > 0. We prove a similar estimate for the
quantity Z{ i<z, P(d)log(x/d)/d" . When e = 0, r varies between
(d,r)=1

1 and a hundred, and x is below a million, this sum is non-negative and
this raises the question as to whether it is non-negative for every z.

1 Introduction and results

Our first result is the following:
Theorem 1.1. When r > 1 and € > 0, we have
Z p(d)
dl-i—e
d<z,
(d,r)=1

<l+e

This Lemma generalizes the estimate of [5, Lemme 10.2] which corre-
sponds to the case ¢ = 0. This generalization is not straightforward at all
and requires a change of proof. The case ¢ = 0 and r = 1 is classical.
The parameter € that is being introduced induces some flexibility useful
when applying Rankin’s method (devised in [8]). As it turns out, we can do
somewhat better concerning the lower bound, and we prove that

1+€ Z 'u1+e

d<z,
(d.r)=1

We ran computations covering the range 1 < z < 10% and 1 < r < 100 with
e = 0 ; we found that the lowest lower bound was met at x = 13 and r = 1.
This raises the following question:
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Question 1. It is true that

d
S D) osa3/30030 7

d
d<z,
(d,r)=1

See section 2 for a very preliminary result in this direction.
We proceed by proving the following more involved form:

Theorem 1.2. Whenr > 1 and 1.38 > ¢ > 0, we have

pd) 2 rite |
—Zlog—|<14+47¢+33c"+(1+e¢ T
d<z dre % ( )¢1+5(T)
(dr)=1
where 1+4¢ 1+e
r p
= . 1

plr

The dependence in r is optimal as seen by taking for r the product of
every primes not more than /x. The proof is again unbalanced with respect
to the upper and the lower bound, and we prove a somewhat better lower

bound:
p(d) ,

log —.

2
—(1.434 + 4.992¢ + 3.558¢2) < Jive 08

d<z,
(d,r)=1
I expect the factor zf in the upper bound to be a blemish; however, the
(limited) numerical verifications we ran suggest that the factor r'*¢ /g1, .(r)
cannot be omitted even if the condition r < z is added (this condition often
appears in practice). It should be added that it is not difficult to prove that

p(d)
d<x

which means that one cannot expect an arbitary small constant in the right
hand side of the inequality given in Theorem 1.2. We have checked that

d
0< 3 “El)log2§€)+o.oo7 (x < 105,1 < r < 100)
T
d<z,
(d,r)=1

(where z is a real number and not especially an integer) and all these maxima
were in fact very close to 7/¢(r). These computations raise two questions:

Question 2. Is it true that

pd)
—~log — > >1 >1 ?
S Mgt a0 @)

d<z,
(d,r)=1



Question 3. Is it true that

u x T
> S<——+1, (z>1,r>1) ?
d<z, d d)(r)

(dvr):

In both these questions, x is only assumed to be a positive real number.
On recalling what happens in the case of Turan’s conjecture on the sum-
matory function of the Liouville function divided by its argument, see [2],
we believe that the answer to the first question is no. The sum is however
less likely to be very erratical because of the smoothing factor, a factor that
is absent in Turan’s problem. In direction of these conjecture, we note the
following formula

/ Z ,u, :): de  rlts 1
= St~ d145(1r) s2¢(1 + )
(d,r)=1

from which we easily deduce (on taking s = € > 0 and letting € go to infinity)
that

hmsup Z 2 ¢( 5

d<z,
(d,r)=1

We discuss some related points in the last section.

Notation

We use here the notation h = O*(k) to mean that |h| < k. We denote by
7(m) the number of (positive) divisors of m, and by (a, b) the ged of a and b.
For ¢ > 0 and r > 1 any natural squarefree number, we define two functions.
The first one is alternatively defined by

fre(n “ 2)
ln,
,r)=1

or, in multiplicative form, by:
v
fretm) = ] (1/4—1—]?) I]w+u. (3)
p"|n, p"|n,

pir plr

We easily determine its Dirichlet series: >, <, fre(n)/n® = ((s)?/((s + €).
We shall further write -

fre(n) =1 x gre(n) (4)



where the function g, . has the essential property of being non-negative and
is being defined by:

w(l
gre(n) = Z éa) > 0. (5)
lIn,
(z,J«):1

Thanks

Sincere thanks are due to the careful referee who has checked our computa-
tions and indeed has rooted out several mistakes.

2  Verifying Theorem 1.1 for small values

We study what happens for small values here. The proof is pedestrian and
painful, but I have not seen any way to avoid it, or to present it in a more
general frame.

We study the following quantity:

mo(r,z) = Z

d<z,
(dsr)=1

p(d)
dl+a :

Lemma 2.1. When x < 10 and € > 0, we have —1/30 < mq(r,z) <1

Proof. The sum we consider reads

h2)  h(3) h(5)  h(6) A7)

1 - 9l+e 31+e 5lte Gl+e Tlte

where h is the characteristic function of the integers < x that are coprime
with . The minimum is clearly

1 1 1
- 21+5 B 31+s B 51+s

1

which is minimal when € = 0. This is the —1/30. The maximum contains
the summand 1. If the summand 1/6'*¢ is present, then so is the summand
—1/2'*¢. This concludes the proof. O

3 Auxiliaries

Lemma 3.1. When ¢ > 0, we have

1+e
Zhsz? + O (HF).
oy +e

H1+E

. . 1+ . .
This is also < H 7¢. When H is an integer, we have Zth h® > e
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Proof. Indeed, when £ > 0, a summation by parts gives us directly

doh = N e /dt/tlf—e/ > vdijtte

h<H h<H t<h<H
= 5/ (H —t)dt/t'=¢ + O*(H®).
0
We proceed by continuity to cover the case ¢ = 0. When H is an integer, a
comparison to an integral gives the result. O

Lemma 3.2. For L > 1, we have

> fren) LY gre(t)/e. (7)

n<L (<L

Proof. We recall (4) and write, since g, > 0

Zfr,s(n) = Z grs Z
n<L km<L m<L

The Lemma follows readily. O

Lemma 3.3. For every integer n and any € > 0, we have

g1e(¢ Z 91./2(m)g1./2(n).

mn=/{

Proof. We check that, when « > 1 is an integer and p a prime number,

o1 11 1
g1(p )—1—*—1—@+@(1—@)
<< G1,2(0%)91,02(1) + 912219122 (PY)

Z 91 5/2 B 91 5/2( 6)

0<,6’<a
We conclude by invoking the multiplicativity of g; ./o. O

Lemma 3.4. We have when L > 7.2,

Zl;gli<logL

p<L
Proof. We cite [9, (2.8)]:
S 08P _ 1og 1 — Z logp - (L > 319)
T —1)  2logL’ -
p<L p>2



from which we deduce, for L > 319,

1
Z Og}i <logL —~v+
p<L®

2log L’
A simple GP script shows that
lo
Z i]; <logL
p<L B
when 1000 > L > 7.2, and the reader will conclude readily. ]

Lemma 3.5. We have, when L > 1 and e > 0,

Y g0/ <L (8)

<L

Proof. Verifying the stated inequality for 1 < L < 8 is (tedious but) easy,
hence we can now assume that L > 8. We readily find that the sum in
question is not more than

T = H —exp210g<1+1_p€>.
p—1

We apply log(1 + z) < z for non-negative x and 1 — p~¢ < elogp to get,
when L > 8,

log p
T < < Lf
expe Z _ 1 -
p<L

by invoking Lemma 3.4. O
Lemma 3.6. We have, when L >1,r>1 and e > 0,

1+£

Zgra( )/ <

2 TR )

Proof. We use the notation d|r® to say that each prime factor of d divides
r. We write

gr,ew) _ gr,a(e)
¢ Z Z ld

(<L d|r>, ¢<L/d,
d<L (¢, r):
1+e
ry
1+
dfroe d ° ¢1+6( )
by Lemma 3.5. The Lemma follows readily. O



Lemma 3.7.

Ml-‘re 1 1
Z mr(m) = <logM +2y - ) + 0" <0.961(1 + 2€)M2+5)
= 1+¢ 1+¢

Proof. We recall part of [1, Theorem 1.1]:

> r(m) =tlogt+ (2y — 1)t + O*(0.961V%), (t > 1).

m<t

Since (tlogt+ (2y—1)t)/+/t is seen to vary between —0.681 and 0.155 when
t varies between 0 and 1, this estimate is also valid for ¢ > 0. We use
summation by parts and find that

Z meT(m) = M‘E —6/ Z m)dt/t' ¢

m<M m<M m<t

_ 1+¢ o * l+5
=M " (logM + 2y —1)+ O*(0.961M 2

M M
- e/ (logt + 2y — 1)t°dt + O* <0.9615/ t€—1/2dt>
0 0

M1+s

1 1
= log M + 2y — —— O* (0.961(1 +2e)M21e ) .
1_i_5<og + 2y 1+>—|— < (14 2¢) )

O
Lemma 3.8. We have, when n > 2,

ﬂ(n T):l:u2 (n)

gre(n) <1— Y=

Proof. Indeed, we verify that (1 —a)(1 —b) < (1 —ab) when 0 < a,b < 1.
The Lemma readily follows by recursion on the number of prime factors
of n. O

4 Some lemmas on squarefree numbers

Here is a Lemma from [4]:
Lemma 4.1. We have, for D > 1664
D
> pP(d) = 6—2 +07(0.1333VD).
T

d<D

In particular, this is not more than 0.62D when D > 1700.



Lemma 4.2. We have

> T pAd)/Vd<133VE, (x> 1)

d<z

If we are ready to assume larger, we would not save much since the best
constant one can get is 12/72 = 1.215 + 0*(0.001).

Proof. We use PARI/GP see [7] and the following script:

{check(borne) =
my(res = 0.0, coef = 0);
for(d = 1, borne,
res += moebius(d)"2/sqrt(d);
coef = max(coef, res/sqrt(d)));
return(coef)}

It is then almost immediate to check our result when z < 107, despite
the lack of refinement of the script proposed. For larger values, we use a
summation by parts together with Lemma 4.1. O

Lemma 4.3. We have

S < e, (@29)
d<zx

We note that 11/15 = 0.7333... while the asymptotically best constant
is rather lower, namely 6/72 = 0.607927 . ... Reaching 73/115 = 0.63478.. ..
already requires to take x > 75, and this means we would have to handle
the possible divisibility by 21 primes in section 2. This is out of reach of the
simple-minded method we have at our disposal.

Proof. We use PARI/GP see [7] and the following script:

{check(borneinf, bornesup) =
my(res = 0.0, coef = 0);
res = sum(d = 1, borneinf-1, moebius(d)"2);
for(d = borneinf, bornesup,
res += moebius(d)"2;
coef = max(coef, res/d));
return(coef)}

It is then almost immediate to check our result when x < 107, despite the
lack of refinement of the script proposed. For larger values, the result is an
immediate consequence of Lemma 4.1. O



5 Proof of Theorem 1.1

Lemma 2.1 establishes Theorem 1.1 when z < 10, so we may assume x > 10.
We further may restrict our attention to integer values of x. We start with

So = Zn gre(n Z Z d)(n/d)*.
n<zx n<z d|n,

(d,r)=1

Using the first expression yields 0 < Sy as well as

So/a <1 3 (gneln) + =ty g 20

ne ne
2<n<zx 2<n<z,
(n,r)=1

Each summand in the second sum is bounded above by 1 by Lemma 3.8.
We get

2
n
0<Sp/z* <ux-— Z Nn(a )
2<n<z,
(n,r)=1

Let us write the second expression for Sp:

So= Y pu(d) Y m.

d<uz, m<z/d
(d,r)=1

We employ Lemma 3.1; we treat the case d = 1 separately for the lower
bound to reach

$1+6 d c —e
1te Zl(Jrz_x D, Hd)dT <5
d<z, 2<d<xz,
(dyr)=1 (d,r)=1
x1+s d .
< i gl(+2+x5 3 WAd)d
d<z, d<z,
(d,r)=1 (d,r)=1

The lower bound requires x to be an integer, but not the upper bound. We
rewite the above as

e _ alte pu(d) ~

So—a° > pPd)d " < T Ti7e < So+a° > pi(d)d
d<z, d<z, 2<d<z,
(d,r)=1 (d,r)=1 (d,r)=1

By conjugating both estimates, we get,

1+e
2 —e T p(d) 1+
—zf E p(d)yd < T piEe < gtte,
d<z, d<wz,
(d,r)=1 (d,r)=1



The right hand side is easily handled. We use Lemma 4.3 for the left hand
side via, when = > 9:

> pAd)d T <Y pPd) < 4

d<z, d<x
(d,r)=1

By conjugating both estimates, we get

u(d

df+z <l+4e (v>9) (10)
d<z,
(dr)=1

—%(1 +e) <

Theorem 1.1 is proved.

6 Proof of Theorem 1.2

The proof relies on two ways of writing the sum

Zn fre(n Z Z d)(n/d)*T(n/d).

n<x n<z dn,
(d,r)=1

The first form shows that 0 < S; < 21+26r1%¢ /¢, (r) by combining Lemma 3.2
together with Lemma 3.6. Let us write this sum differently:

Si= Y uld) Y mr(m)
d<z, m<z/d
(d.r)=1

and we use Lemma 3.7 to reach

plte u(d) 1 . 1+€
(d,r)=1

since ) <, p2(d)/vd < 1.33y/x by Lemma 4.2. We set

a—2’y—1_:il_€[0 1]. (11)

All of that amounts to:

. plte ,u,(d) x . e
Si=1 ; TiTe (loga +a) + 0" (1279(1 + 2¢)a' )

(d,r)=1
= S} + aSy + 0*(1.279(1 + 2¢)z'*9)

10



say. We thus have

1+¢
—1.279(1 + 2¢)z < SF + Sy < 1.279(1 + 2e)zt e 4 2t —
¢1+6(T)
We use (10) and Lemma 2.1, and reach
,rl—i-a
—1.279(1 + 2¢) —a < 2717557 < 1.279(1 + 2¢) + fha + 2 ——.
¢1+5(r)
We use a« < 2y — 1+ €. This gives
434 — 4. < () 15
— 1434 - 4.992¢ - 35582 < Y & i log S
d<z,
(d,r)=1
:CETH_E
< 1.393 + 4.684¢ + 3.292¢ + (1 + ¢) :
P14£(r)

Since 71 /¢y .(r) > 1, we check that the right hand side is larger than
minus times the left hand side. Theorem 1.2 follows.

7 A generalization and a remark

It is not difficult to get along these lines the following Lemma:

Lemma 7.1. Whenr > 1 and k > 1, we have

p(d) T \k ke
2 e log" E<< <%> (log z)*~1L.

(d,r)=1

Such quantities appear for instance in [10] where cases k =0 and k = 1
are used, while case k = 2 is evaluated (there is a main term), but all with
no coprimality conditions (i.e. 7 = 1) and no . The reader will find in |3,
Chapter 1] the evaluation of case k = 3, r = 1 and ¢ = 0. [6] also pertains
to these quantities.

Proof. Indeed, we first prove that

S S uld)nfd)ri(n/d) < ( (bz;))kx(log .

n<x d|n

We then continue as in section 6. O

Here is a surprising elementary consequence.

11



Lemma 7.2. For any ¢ > 0, we have

pld) . p(d) r
E —t -z L E——
d<z d d<z, di+e QS(T)
(d,r)=1 (d,r)=1

provided that 0 < ¢ < c(logx)~!.

Proof. 1t is enough to consider

/ Z d1+ log(x/d)dn < E%.

d<x
(d,r)
]
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