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In stochastic frontier models, the regression function defines the production frontier and the regression errors are assumed to be composite. The actually observed outputs are assumed to be contaminated by a stochastic noise. The additive regression errors are composed from this noise term and the one-sided inefficiency term. The aim is to construct a robust nonparametric estimator for the production function. The main tool is a robust concept of partial, expected maximum production frontier, defined as a special probability-weighted moment. In contrast to the deterministic one-sided error model where robust partial frontier modeling is fruitful, the composite error problem requires a substantial different treatment based on deconvolution techniques. To ensure the identifiability of the model, it is sufficient to assume an independent Gaussian noise. In doing so, the frontier estimation necessitates the computation of a survival function estimator from an ill-posed equation. A Tikhonov regularized solution is constructed and nonparametric frontier estimation is performed. The asymptotic properties of the obtained survival function and frontier estimators are established. Practical guidelines to effect the necessary computations are described via a simulated example. The usefulness of the approach is discussed through two concrete data sets from the sector of Delivery Services.

Introduction

Deterministic frontier estimation

In deterministic nonparametric frontier models, the data Y j " ϕpX j q ´Uj , j " 1 . . . , n, are observed, where X j P R p `represents a vector of input factors (e.g., labor, energy, capital) used to produce an output Y j P R `in a certain firm j, with ϕp¨q being the production function and U j ě 0 being the inefficiency term. In contrast to standard regression models, the observation errors pU j q are assumed to be one-sided instead of centred, and hence the regression function ϕ describes some frontier or boundary curve.
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Email addresses: abdelaati.daouia@tse-fr.eu (Abdelaati Daouia), jean-pierre.florens@tse-fr.eu (Jean-Pierre Florens), leopold.simar@uclouvain.be (Léopold Simar) For a fixed level of inputs-usage x P R p `, the frontier point ϕpxq gives the achievable maximum output. A closed form expression of ϕpxq has been introduced by [START_REF] Cazals | Nonparametric frontier estimation: a robust approach[END_REF] in terms of the non-standard conditional distribution of Y given X ď x. If pΩ, A, Pq denotes the probability space on which the random vector pX, Y q P R p`1 `is defined and 

F Y |X py|xq " PpY ď y | X ď
This frontier function is isotonic nondecreasing in x. It is actually the lowest monotone function which envelops the upper extremity, say ϕ u pxq, of the support of pX, Y q at X " x. Generally speaking, ϕpxq equals sup x 1 ďx ϕ u px 1 q. Production econometrics leads to the natural assumption that the true upper support boundary ϕ u pxq is itself nondecreasing, and hence it coincides with ϕpxq. 

Y i . (2) 
Its full asymptotic theory has been elucidated in a general setting from the perspective of extreme value theory in [START_REF] Daouia | Frontier estimation and Extreme value theory[END_REF][START_REF] Daouia | A Γ-moment approach to monotonic boundary estimation[END_REF]. The major drawback of p ϕpxq is its lack of robustness to outliers. To remedy this vexing defect, [START_REF] Cazals | Nonparametric frontier estimation: a robust approach[END_REF] have proposed to first estimate a partial frontier well inside the joint support of pX, Y q and then to shift the obtained estimate to the true full support boundary. Their main tool is the partial production function of order m P t1, 2, . . .u defined as

ψ m pxq " E " maxpY 1 , . . . , Y m q|X ď x ‰ " ż 8 0 `1 ´rF Y |X py|xqs m ˘dy,
where pY 1 , . . . , Y m q are i.i.d. random variables generated by the conditional distribution of Y given X ď x.

The quantity ψ m pxq gives the expected maximum achievable output among a fixed number of m firms using appropriate large value of m, could help the practitioners to achieve their objective of 'robustification'. Yet, this device is not without disadvantages. One of the main criticisms on the partial frontier ψ m pxq and its estimate p ψ m pxq is their failure to fulfill the monotonicity property of the efficient full frontier ϕpxq. This property, referred to as non-negative marginal productivity, is a minimal requirement from the point of view of the axiomatic production theory. Another desirable property of any benchmark partial frontier, as argued by [START_REF] Wheelock | Non-parametric, Unconditional Quantile Estimation for Efficiency Analysis with an Application to Federal Reserve Check Processing Operations[END_REF], is to closely parallel the true production frontier. However, due to the conditioning by X ď x, both ψ m pxq and p ψ m pxq diverge from ϕpxq as the input level x increases. Also, for large values of m, the estimates p ψ m pxq coincide with the non-robust FDH frontier p ϕpxq for small values of

x. In all of these aspects, [START_REF] Daouia | Robustified expected maximum production frontiers[END_REF] have recently suggested a better alternative by transforming first the pp `1q-dimensional vector pX, Y q and its independent copies pX i , Y i q into the dimensionless random variables

Y x " Y 1 IpX ď xq and Y x i " Y i 1 I pX i ď xq , i " 1, . . . , n, (3) 
whose common unconditional distribution function F Y x p¨q is closely related to F Y |X p¨|xq:

F Y x pyq " 1 ´FX pxqr1 ´FY |X py|xqs ( 1 Ipy ě 0q. (4) 
A nice property of these transformed univariate random variables lies in the fact that ϕpxq " supty ě 0 | F Y x pyq ă 1u,

p ϕpxq " supty ě 0 | p F Y x pyq ă 1u " maxpY x 1 , . . . , Y x n q, (5) 
where p F Y x pyq " p1{nq ř n i"1 1 IpY x i ď yq. Then, Daouia et Furthermore, they do not suffer from border and divergence effects for small or large levels of inputs. Also, the selection problem of an appropriate trimming number m in p ϕ m pxq tends to be easier than in p ψ m pxq.

The asymptotic distributional properties of both partial and full frontier estimators have been derived as well under the deterministic frontier model Y j " ϕpX j q ´Uj , j " 1 . . . , n.

Stochastic frontier estimation

For a practitioner it would be more realistic to assume that the outputs are contaminated by an additive stochastic error. That is, the actually observed outputs are

Z j " Y j `εj , j " 1 . . . , n, (8) 
instead of Y j , where ε j denotes a stochastic noise. This results in the composite-error model Z j " ϕpX j q ´Uj `εj , j " 1 . . . , n.

The issue of frontier estimation in such a model goes back to the works of [START_REF] Aigner | Formulation and estimation of stochastic frontier models[END_REF] and Meeusen and van den Broeck (1977). Typically, it is assumed that ϕ has a parametric structure (like Cobb-Douglas or translog), ε j is normally distributed and U j is generated by some specified parametric one-sided distribution (often Half-normal, exponential, truncated normal or gamma). Parametric techniques of estimation include modified least-squares and maximum likelihood methods, see for instance [START_REF] Greene | The Econometric Approach to Efficiency Analysis[END_REF] for a survey. More recently some attempts have been proposed to relax the parametric restrictions. Of course, a fully nonparametric frontier model allowing convolution of inefficiency and a two-sided noise is not identifiable as shown by [START_REF] Hall | Estimating a Changepoint, Boundary or Frontier in the Presence of Observation Error[END_REF]. Some amount of structure is then required to allow identification. One approach is to leave only ϕ unspecified, while specifying a parametric density for inefficiency and an independent Gaussian noise, both being homoskedastic. This semi-parametric approach has been investigated by [START_REF] Fan | Semiparametric estimation of stochastic production frontier models[END_REF].

It is appealing but still very restrictive: both the homoskedasticity assumption and the choice of a parametric density for U may be problematic and could introduce misspecification and statistical inconsistency. for the local parameters. The main drawbacks of these approaches are the computational burden to select optimal bandwidths and the fact that they still rely on local parametric specifications for the distribution of

U j .
In this paper we adopt a different strategy based on deconvolution techniques. In the standard deconvolution problem [START_REF] Daouia | Frontier estimation and Extreme value theory[END_REF], the observed data Z j are used to estimate the unknown density of the latent signal Y j .

Most of the literature in this area supposes that the noise ε j has a known density (e.g., Gaussian with known variance) and presents kernel estimation methods such as, for instance, [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Stefanski | Deconvoluting kernel density estimators[END_REF], and Fan (1991a[START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF]. [START_REF] Meister | Density estimation with normal measurement error with unknown variance[END_REF] deals with the density estimation problem based on a normally distributed error ε j whose variance is unknown. These ideas have been applied by Horrace and Parmeter (2011) to the case of an unknown homoskedastic inefficiency term and independent Gaussian noise with unknown variance, but the frontier remains fully specified by a parametric model. More recently in [START_REF] Kneip | Frontier estimation in the presence of measurement error with unknown variance[END_REF], the unspecified inefficiency distribution is estimated by simple histograms, then a simultaneous estimation of the boundary and the variance of the Gaussian noise is performed via a penalized likelihood method. This procedure provides, however, estimators with disappointing rates of convergence.

The alternative approach that we propose to address the deconvolution problem is by applying a Tikhonov regularization technique [see, e.g., [START_REF] Engl | Regularization of Inverse Problems[END_REF]] in conjunction with the 'robustified' concept of unconditional expected maximum production frontiers tϕ m pxqu described in [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF]. For a prespecified predictor value of interest x, we only assume that the density of ε given X ď x is known (e.g., Gaussian with known variance). Before estimating the frontier point ϕpxq under the composite-error model [START_REF] Daouia | Regularization of non-parametric frontier estimators[END_REF], a main tool is to first estimate the regular partial frontier ϕ m pxq which tends to ϕpxq as the trimming order m Ñ 8. In doing so, this necessitates the computation of an estimator for the distribution function F Y x p¨q in (4) from an ill-posed equation. A Tikhonov regularized solution is constructed in Section 2 and its asymptotic properties are derived in Section 3, including the rate of convergence of quadratic risk and the asymptotic normality of scalar products. Section 4 describes how to estimate in a second stage both ϕ m pxq and ϕpxq. We establish the asymptotic normality for the ϕ m pxq estimator and the rate of convergence of quadratic risk for the ϕpxq estimator. In Section 5 we first indicate how to implement the procedure with a simulated example, then we estimate the production frontier from two concrete datasets in the sector of Delivery Services. Section 6 concludes and the Appendix collects the proofs.

Deconvolution and Tikhonov regularization

Throughout this paper we consider the stochastic model described in [START_REF] Daouia | Regularization of non-parametric frontier estimators[END_REF], namely

Y j " ϕpX j q ´Uj , j " 1 . . . , n,
where pX j , Y j q P R p `ˆR `are i.i.d. random vectors, with ϕp¨q being the unknown frontier function and U j ě 0 being the inefficiency term, but the actually observed outputs are Z j " Y j `εj instead of Y j , where ε j denotes a stochastic noise satisfying the condition that

(C.1) ε j is independent of Y j given X j ď x,
for a prespecified level of inputs x such that F X pxq ą 0. We also assume that (C.2) the density of ε j given X j ď x is fully known.

Our objective is to first estimate the distribution function F Y x p¨q of the dimensionless variable Y x defined in (3), or equivalently, its survival function S Y x :" 1 ´FY x from the noisy data tpX j , Z j q|j " 1, . . . , nu, and then to use the corresponding plug-in frontier estimators p ϕpxq and p ϕ m pxq described in ( 5) and (7).

Deconvolution problem

Let S Z x p¨q and S ε x p¨q denote the survival functions of the random variables

Z x " Z1 IpX ď xq and ε x " ε1 IpX ď xq.
It is easily seen that, for all z P R, Of course this remains an ill-posed inverse problem as described below, and so some regularization will be needed. Built on the ideas of [START_REF] Hall | A Ridge-Parameter Approach to Deconvolution[END_REF] and [START_REF] Carrasco | Spectral method for deconvolving a density[END_REF], we propose in the next section to pose the deconvolution problem in the usual Tikhonov regularization framework. The main advantage of this procedure is its computational expedience. We refer to Van Rooij and Ruymgaart (1999), and the references therein, for more thorough discussion of the rationale for this elegant device.

S

Tikhonov regularization

Our main objective here is to estimate the unconditional survivor function S Y x . Survivor functions are typically assumed to belong to some Hilbert space of square-integrable functions with respect to appropriate weight functions: 

(H.
Hence, the basic integral equation [START_REF] Daouia | Robustified expected maximum production frontiers[END_REF] involves the operator K : E Ñ F defined as

KS Y x " S Z x ´Sε x , (13) 
or equivalently

`KS Y x ˘pzq " ż 8 0 S Y x pyq ¨fε|X pz ´y|xq dy. (14) 
This is an integral operator with kernel f ε|X pz ´y|xq P L 2 `R ˆR, 1 Ipx ě 0qwpzq ˘, in view of [START_REF] Daouia | On Projection-Type Estimators of Multivariate Isotonic Functions[END_REF]. As such, K is a Hilbert-Schmidt integral operator allowing a discrete Singular Value Decomposition (SVD), which is also compact [see, e.g., [START_REF] Kreiss | Linear Integral Equations[END_REF] for mathematical details and Carrasco et al. (2007) for econometrics considerations]. We also note that this operator is injective, since φ P E such that Kφ " 0 implies φ " 0.

This follows immediately when looking to [START_REF] Deprins | Measuring labor inefficiency in post offices[END_REF].

Let now K ˚be the adjoint operator of K. By definition, for any g P E and ψ P F, the scalar products xKg, ψy F in F and xg, K ˚ψy E in E are equal, so we have

xKS Y x , ψy F " ż 8 ´8 ψpzq "ż 8 0 S Y x pyq ¨fε|X pz ´y|xq dy * wpzqdz " ż 8 0 S Y x pyq "ż 8 ´8 ψpzq f ε|X pz ´y|xq wpzqdz * dy " xS Y x , K ˚ψy E .
This allows to identify the adjoint operator as

`K˚ψ ˘pyq " ż 8 ´8 ψpzq f ε|X pz ´y|xq wpzqdz. (15) 
It is well known that the equation ( 13) is ill-posed in the sense that the problem

S Y x " argmin SPE,S:RÑr0,1s ||KS ´pS Z x ´Sε x q|| 2 (16) 
has not a well-defined solution. The rationale behind this ill-posedness can be explained by making use of the discrete SVD of K. We know that there exists a sequence pλ j , φ j , ζ j q jě1 , with λ j P R `and tφ j u j (resp.

tζ j u j ) being an orthonormal basis of E (resp. of F), such that for all j, Kφ j " λ j ζ j , K ˚ζj " λ j φ j .

Since K is compact, the sequence of λ j 's may be ranked so that λ 1 ě λ 2 ě . . . ą 0, with zero being an accumulation point of the λ j 's. Note that K ˚K φ j " λ 2 j φ j , which indicates that the inverse of the operator K ˚K will be unstable as many of the λ j are near zero. Accordingly, there is no hope to solve the normal equations K ˚K S Y x " K ˚pS Z x ´Sε x q [first order conditions] coming from the problem [START_REF] Engl | Regularization of Inverse Problems[END_REF]. This also appears when writing equivalently

S Z x ´Sε x " ÿ j xS Z x ´Sε x , ζ j yζ j , (17) 
S Y x " ÿ j xS Y x , φ j yφ j , (18) 
which leads to KS Y x " ř j λ j xS Y x , φ j yζ j . Solving ( 16) would yield the identification of S Y x via the equations

xS Y x , φ j y " xS Z x ´Sε x , ζ j y λ j ,
and then we would obtain S Y x by [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF]. Again, this is rather unstable when λ j are near zero. Instead, the Tikhonov regularization consists in replacing the ratios 1{λ j in the latter equation by λ j {pα `λ2 j q for some α ą 0. It is not hard to verify that this corresponds to replace the least squares problem ( 16) by the following regularized version

S α Y x " argmin SPE,S:RÑr0,1s ||KS ´pS Z x ´Sε x q|| 2 `α||S|| 2 ( ,
where the parameter α ą 0 is actually introduced in order to regularize the behavior of pK ˚K q ´1. The solution is given by the normal equations

αS α Y x `K˚K S α Y x " K ˚pS Z x ´Sε x q,
so that the regularized solution has the usual form

S α Y x " pαI `K˚K q ´1K ˚pS Z x ´Sε x q. ( 19 
)
This motivates us to estimate S Y x by the empirical version p S α Y x : R Ñ r0, 1s defined as

p S α Y x " argmin SPE,S:RÑr0,1s ! ||KS ´p p S n,Z x ´p S n,ε x q|| 2 `α||S|| 2 ) " pαI `K˚K q ´1K ˚p p S n,Z x ´p S n,ε x q. ( 20 
)
The practical computation of this estimator requires first the characterization of K ˚K . For any g P E, we 

ż 8 ´8 f ε|X pz ´y|xqf ε|X pz ´ξ|xqwpzqdz (21) 
defines the kernel of K ˚K , which is symmetric in both y and ξ. The normal equation to be solved can then be formulated, for any y ě 0, as

α p S α Y x pyq `ż 8 0 p S α Y x pξq cpy, ξq dξ " bpy|xq, (22) 
with bpy|xq "

ż 8 ´8p p S n,Z x pzq ´p S n,ε x pzqqf ε|X pz ´y|xqwpzqdz. (23) 
A numerical solution to this equation can be achieved in practice via discretization. Consider a regular grid of fixed values y j for j " 1, . . . , k, with constant spacing ∆ y , covering the range of Y . We shall need to choose a value of k sufficiently large so that the numerical error due to discretization has lower order than the statistical error. Equation ( 22) can then be formulated into the discrete version

αS i `∆y k ÿ j"1 S j C ij " b i , i " 1, . . . , k,
where S i " p S α Y x py i q, b i " bpy i |xq and C ij " cpy i , y j q. Equivalently, this translates in terms of simplified matrix notations to αS `∆y CS " b whose exact solution is

S " pαI k `∆y Cq ´1b, (24) 
with S " pS 1 , . . . , S k q T , b " pb 1 , . . . , b k q T , and C being the k ˆk matrix of coefficients C ij . Thus, the regularized estimator of the survivor function is very easy and fast to compute over the chosen grid of values for Y . Note that the evaluation of b and C only requires the calculation of univariate integrals. It should also be clear that the regularization comes from the Tikhonov step and not from the projection on the finite set of values for Y that we can choose as large as we want.

Properties of the estimated survival function

This section presents (i) an indicative rate of convergence of the quadratic risk for the regularized estimator p S α Y x , (ii) sufficient conditions for its asymptotic normality, and (iii) practical guidelines to select the regularization parameter α via an iterated Tikhonov technique.

3.1. Quadratic risk Ep|| p S α Y x ´SY x || 2 q
To derive the rate of convergence of the quadratic risk for the regularized estimator p S α Y x p¨q, we shall need the extra "source regularity assumption" on the signal S Y x p¨q, which is standard in the Tikhonov regularization framework:

(H.3) For some β P p0, 2s, S Y x P Range `K˚K ˘β{2 .
This means that S Y x " `K˚K ˘β{2 δ, for a certain function δ P E. This Hölder type condition is needed to control S α Y x ´SY x , the bias introduced by the regularization. We give in Appendix A.2 two examples illustrating (H.3). Theorem 1. Let x P R p `be fixed such that 0 ă F X pxq ă 1. Under Assumptions (H.1), (H.2)and (H.3),

as n Ñ 8 with α " O `n´1{pβ`1q ˘, E ´|| p S α Y x ´SY x || 2 ¯" O `n´β{pβ`1q ˘.
The key element in the proof is decomposing the quadratic risk into a squared bias term

||S α Y x ´SY x || 2 and a variance term E ´|| p S α Y x ´Sα Y x || 2 ¯.
Lemma 1. Under Assumptions (H.1), (H.2)and (H.3), we have for all α ą 0,

||S α Y x ´SY x || 2 " Opα β q.
Lemma 2. Under Assumptions (H.1)and (H.2), we have for all α ą 0,

E ´|| p S α Y x ´Sα Y x || 2 ¯" O ´1 αn ¯.
The analysis of the variance term does not require Assumption (H.3). This condition is only needed to control the bias term. If it is not satisfied, a different proof may show that the bias term goes to zero when α Ñ 0 [see, for instance, Kreiss (1999), Section 16.5]. It follows then that

E ´|| p S α Y x ´SY x || 2 ¯Ñ 0 if α Ñ 0 and αn Ñ 8.
Remark 1. The so-called source condition (H.3) eliminates pathological cases leading to very low rates of convergence such as, for instance, logpnq [see [START_REF] Carrasco | Spectral method for deconvolving a density[END_REF]]. Note that this assumption is not incompatible with normal errors as shown in Appendix A.2 through a simple example. In case of a normal error, it just requires that the signal be sufficiently regular. This source condition may be derived from a degree of ill-posedness (linked to the smoothness of the error distribution) and from a regularity of the unknown distribution [more details can be found in e.g. [START_REF] Carrasco | Asymptotic Normal Inference in Linera Inverse Problems[END_REF]]. Intuitively, the degree of ill-posedness depends on the rate of decline of ψ ε|X pt|xq, and the degree of regularity depends on the rate of decline of ψ Y |X pt|xq. Assumption (H.3) warrants a compatibility condition between these two rates.

Remark 2.

In what concerns the squared bias term, even if ||S α Y x ´SY x || 2 Ñ 0 as α Ñ 0, we need to restrict the family of S Y x in order to define a speed of convergence of this regularization bias. More generally, the theory of inverse problems characterizes families G of suitable functions g such that ||S α Y x ´SY x || 2 " Opgpαqq with gpαq Ñ 0 as α Ñ 0. Then, under the assumption that S Y x P G, we have

|| p S α Y x ´SY x || 2 " O ´1 αn `gpαq ¯.
An optimal α is obtained by solving 1{n " αgpαq, and hence the optimal rate of convergence can be derived.

To ease the presentation, we restrict to a Hölder condition S Y x P Range `K˚K ˘β{2 by Assumption (H.3).

This results in a family G of functions gpαq " α β which satisfies the condition ||S α Y x ´SY x || 2 " Opα β q. A weaker characterization of the family G may also be given in terms of Hilbert scale [see Carrasco et al. Remark 3. It should also be pointed out that, due to the qualification of the Tikhonov regularization, we restrict ourselves to the case β ď 2. Values of β ą 2 involve some mathematical difficulties that would require more complicated methods such as, for instance, iterated Tikhonov.

Asymptotic normality of

? n `p S α Y x ´SY x
By standard theory of empirical processes, it is not hard to verify that ? n " p p S n,Z x ´p S n,ε x q ´pS Z x ´Sε x q ‰ converges in the Hilbert space E to a zero mean Gaussian process with a variance operator Σ defined as pΣgqpzq "

ż 8 ´8 Γpy, zqgpyqdy, (25) 
where Γpy, zq " `SZ x pyq ´Sε x pyq ˘¨"

´`S Z x pzq ´Sε x pzq ˘´S ε|X pz|xq ‰ `FX pxq ¨"S Z|X py _ z|xq ´Sε|X py|xqS Z|X py|xq ‰ .

Then, we obtain from ( 19) and ( 20) that

? n `p S α Y x ´Sα Y x ˘L ÝÑ N p0, pαI `K˚K q ´1K ˚ΣK pαI `K˚K q ´1˘, n Ñ 8,
for any fixed α ą 0. Hence, we get for all δ P E,

A ? n `p S α Y x ´Sα Y x ˘, δ E L ÝÑ N `0, @ pαI `K˚K q ´1K ˚ΣK pαI `K˚K q ´1δ, δ D˘, or equivalently, A ? n `p S α Y x ´Sα Y x ˘, δ E xpαI `K˚K q ´1K ˚ΣK pαI `K˚K q ´1δ, δy 1{2 L ÝÑ N p0, 1q. (26) 
For these results to remain valid when the regularization parameter α " αpnq Ñ 0 as a function of the (K.1) There exists d ą 0 such that

E @ pαI `K˚K q ´1K ˚ηj , δ D 2`d || a Varpη j qpαI `K˚K q ´1δ|| 2`d " Op1q.
Of course, the denominator of ( 26) should be bounded in order to achieve the ? n speed of convergence. This is obtained under an additional regularity condition on δ by following the arguments of Carrasco et al. Under the same assumption (K.2), the asymptotic normality remains still valid when eliminating the bias due to regularization. Indeed, on one hand, the numerator of ( 26) can be written as

A ? n `p S α Y x ´SY x ´pS α Y x ´SY x q ˘, δ E
and, on the other hand, it can be shown under our regularity assumption on δ that @? n `Sα

Y x ´SY x ˘, δ D Ñ 0
when n Ñ 8. To verify this result we have

@? n `Sα Y x ´SY x ˘, δ D " A ? n `K˚K ˘1{2 `Sα Y x ´SY x ˘, µ E ,
for some µ P E. As it follows from Lemma 1 that

A ? n `K˚K ˘1{2 `Sα Y x ´SY x ˘, µ E 2 " O `nα pβ`1q^2 ˘,
we gain one unit in the exponent of α due to the factor K ˚K . Hence, to get the desired convergence

@? n `Sα Y x ´SY x ˘, δ D Ñ 0 as n Ñ 8
, we need a smaller order for α than the optimal size derived above in Theorem 1 to satisfy α Ñ 0, αn Ñ 8 and nα pβ`1q^2 Ñ 0. To summarize, we obtain the following result which will be particularly useful below to derive the asymptotic normality of our estimator of the robust order-m frontier.

Theorem 2. Under Assumptions (H.1), (H.2)and (H.3), we have for α Ñ 0 such that nα Ñ 8 and nα pβ`1q^2 Ñ 0, and for all δ P E satisfying (K.1)and (K.2),

A ? n `p S α Y x ´SY x ˘, δ E xpαI `K˚K q ´1K ˚ΣK pαI `K˚K q ´1δ, δy 1{2 L ÝÑ N p0, 1q, n Ñ 8,
where Σ is described in (25).

Selection of the regularization parameter

Several approaches were proposed in the literature on inverse problems to select the regularization parameter. Prominent among these approaches is the iterated Tikhonov technique described below. The solution will select an optimal α having the appropriate order n ´1{pβ`1q . By iterating the Tikhonov principle a second time, we can define

p S α,p2q Y x " arg min SPE ! ||KS ´p p S n,Z x ´p S n,ε x q|| 2 `α||S ´p S α Y x || 2 )
which leads, by solving the first order condition, to the following estimator of the unconditional survivor

function p S α,p2q Y x " pαI `K˚K q ´1`K ˚p p S n,Z x ´p S n,ε x q `α p S α Y x ˘.
By convoluting this estimator with the noise, we obtain an estimator of the survivor function of the noisy signal Z x , p S α,p2q Z x pzq ´p S n,ε x pzq "

ż 8 0 p S α,p2q
Y x pyq f ε|X pz ´y|xq dy.

Finally, the optimal value of α is given by the solution

p α " arg min αą0 || p S α Y x || 2 || p S α,p2q Z x ´p S n,Z x || 2 " arg min αą0 ż 8 0 `p S α Y x pyq ˘2dy ż 8 ´8 " p S α,p2q Z x pzq ´p S n,Z x pzq ‰ 2 wpzqdz.
It is not hard to verify that this solution satisfies p α " Opn ´1{pβ`1q q for β P p0, 2s. We refer to Engl et al.

(2000, Proposition 4.37) for a proof and to Fève and Florens (2014) for more thorough discussion.

Estimation of partial and full production frontiers

We can now use the estimator p S α Y x of S Y x defined in [START_REF] Fève | Nonparametric analysis of Panel Data models with endogenous variables[END_REF] to estimate the partial order-m production function ϕ m pxq as well as the true full frontier function ϕpxq.

Estimation of the expected maximum output frontier

By definition [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF] we have

ϕ m pxq " ż 8 0 1 ´r1 ´SY x pyqs m ( dy " ż τ 0 1 ´r1 ´SY x pyqs m ( dy, (27) 
for any arbitrary large positive number τ satisfying τ ě ϕpxq. Then, by substituting p S α Y x in place of S Y x , we get the trimmed estimator p ϕ α m pxq "

ż τ 0 1 ´r1 ´p S α Y x pyqs m ( dy. (28) 
In practice, it suffices to prespecify any trimming number τ larger than the maximum of the observed contaminated outputs Z 1 , . . . , Z n . Next we establish an indicative rate of convergence of the quadratic risk for the estimator p ϕ α m pxq.

Theorem 3. Under the conditions of Theorem 1, we have for any fixed m ě 1,

E | p ϕ α m pxq ´ϕm pxq| 2 " O `n´β{pβ`1q ˘. If m " mpnq Ñ 8 with m " O `nβ{p2pβ`1qq ˘, then E | p ϕ α m pxq ´ϕm pxq| 2 " m 2 O `n´β{pβ`1q ˘.
By making use of the results of Section 3.2, we can also derive the asymptotic normality of the m-frontier estimator p ϕ α m pxq. 

Estimation of the full production frontier

For estimating the true frontier function itself we need an extra regularity condition on the behavior of the unconditional survivor function S Y x pyq " F X pxqr1 ´FY |X py|xqs near the frontier point ϕpxq. This condition indicates the rate at which the survivor function reaches the value 0 when y Ò ϕpxq:

(K.
3) For some constants ℓ x ą 0 and ρ x ą 0, S Y x pyq " ℓ x `ϕpxq ´y˘ρ x `o`p ϕpxq ´yq ρx ˘as y Ò ϕpxq.

Remark 4.

[Hidden extreme-value condition] The rationale for Assumption (K.3) relies on an interesting connection between our class of expected maximum production functions tϕ m pxq : m ě 1u defined in [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF] and the popular FDH estimator p ϕpxq described in ( 2) and ( 5). It is immediate from ( 5) and ( 6) that

E " p ϕpxq ‰ " E " maxpY x 1 , . . . , Y x n q ‰ " ϕ n pxq, for all n ě 1. ( 29 
)
Equivalently, for any trimming number m ě 1, ϕ m pxq is identical to the expectation of the FDH estimator based on the m-tuple 

tY x i " Y i 1 I pX i ď xq , i " 1, . . . ,
where L x p¨q P RV 0 stands for a slowly varying function. As a matter of fact, Assumption (K.3) is hidden in Condition [START_REF] Kumbhakar | Nonparametric stochastic frontiers: a local likelihood approach[END_REF]. Both conditions are equivalent when L x `tϕpxq ´yu ϕpxqq ( k " Γp1 `kρ ´1 x q, for all integer k ě 1. In particular, it follows from (29) and for k " 1 that

ϕpxq ´ϕn pxq " ϕpxq ´E" p ϕpxq ‰ " b n Γp1 `ρ´1 x q `o`b n ˘, n Ñ 8.
We also know from Remark 4 that, under the sufficient condition (K.3), we have b n " pnℓ x q ´1{ρx as n Ñ 8.

Therefore, using m instead of n, we get ϕpxq ´ϕm pxq " pmℓ x q ´1{ρx Γp1 `ρ´1

x q `o`m ´1{ρx ˘, m Ñ 8.

This result will be crucial for our setup to derive the speed of convergence of the quadratic risk for the regularized estimator p ϕ α m pxq when it estimates ϕpxq itself, with m " mpnq Ñ 8 as n Ñ 8.

Remark 5.

[Connection with the joint density and intuitive meaning for the exponent ρ x ] In the econometrics and statistical literatures on frontier analysis, it is common to assume that the joint density f px, yq of pX, Y q is an algebraic function of the distance pϕpxq ´yq from the efficient frontier, that is f px, yq " c x tϕpxq ´yu γx `optϕpxq ´yu γx q as y Ò ϕpxq,

for some constants c x ą 0 and γ x ą ´1. For nonparametric approaches to frontier estimation, we refer to When ρ x ą p `1, the joint density decays to zero at a speed of power ρ x ´pp `1q of the distance from the frontier point ϕpxq. When ρ x " p `1, the density has a sudden jump at the frontier. Finally, when ρ x ă p `1, the density rises up to infinity at a speed of power ρ x ´pp `1q of the distance from the frontier.

Next, we establish the rate of convergence of the quadratic risk E " p p ϕ α m pxq ´ϕpxqq 2 ‰ by applying Theorem 3 in conjunction with [START_REF] Kreiss | Linear Integral Equations[END_REF].

Theorem 5. Under (K.3) and the conditions of Theorem 1, if m " `ρ´1

x n

β β`1 ˘ρx 2p1`ρx q , then E " p p ϕ α m pxq ´ϕpxqq 2 ‰ " O `n´β pβ`1q 1 p1`ρx q ˘.
Under the conditions of this theorem we have that

r n | p ϕ α m pxq ´ϕpxq| " O p p1q,
where r n " n κ with κ ě β 2pβ`1qp1`ρxq . Under the common assumption in most nonparametric frontier estimation approaches that the joint density of pX, Y q has a jump at its efficient support boundary, we have p1 `ρx q " p `2 (see Remark 5). Hence, if for instance β " 2, we get the rate r n ě n This can easily be checked by applying Lemma 3.1 of [START_REF] Daouia | Robust Nonparametric Estimators of Monotone Boundaries[END_REF]. A deeper study of the properties of such a projection-type technique of isotonization can be found in [START_REF] Daouia | On Projection-Type Estimators of Multivariate Isotonic Functions[END_REF].

In particular, it follows from their generic Theorem 1 that the monotonized estimator q S α Y x pyq inherits the same asymptotic first-order properties of the unrestricted estimator p S α Y x pyq if the latter is asymptotically equicontinuous as a process indexed by y. Establishing the asymptotic equicontinuity of this process will lead to further investigations that are outside the scope of the present paper. Remark 8. [Case of a Gaussian noise with unknown variance] The concern was raised by a referee that the noise distribution is fully known (i.e. ε j given X j ď x is Gaussian with known variance). Let us comment briefly the case where ε j given X j ď x has a normal distribution with zero mean and unknown variance σ 2 pxq. The identification follows from e.g. Theorem 2.1 in Schwarz and Van Bellegem (2010), because the support of Y given X ď x is a subset of R `. We do not enter here into the important issue of simultaneous estimation of the frontier function ϕpxq and the variance parameter σ 2 pxq. We only describe a way to estimate σ 2 pxq in a first stage before applying our estimation procedure of ϕpxq in a second stage. Very few estimators have been proposed in the literature to address the problem of simultaneous estimation, but they tend to be either much more computationally expensive and/or very disappointing in terms of rates of convergence [see e.g. [START_REF] Kneip | Frontier estimation in the presence of measurement error with unknown variance[END_REF]].

Attempts to estimate σ 2 pxq have been proposed, for instance, by [START_REF] Meister | Density estimation with normal measurement error with unknown variance[END_REF] and [START_REF] Butucea | Adaptativity in convolution models with partially known noise distribution[END_REF]. The identification in these works comes from the assumption that the tails of the characteristic function of Y given X ď x decay at a slower rate than the tails of the characteristic function of the normal distribution, which seems unsuitable for our framework. In addition, these approaches are very difficult to implement in practice.

Instead, we follow in our experiments with simulated and real data an alternative heuristic path based on a sensitivity analysis with several choices of σ 2 pxq. The basic idea is to first compute the estimate p S α Y x by selecting a value for σ 2 pxq, potentially different from the true variance, and then evaluate the L 2 pR, wq distance in F between the re-convoluted estimator of S Z x pzq, obtained by plugging in (10) our regularized estimate p S α Y x , and the observed empirical p S n,Z x :

∇ L 2 pxq " ż 8 ´8 ´p S α Z x pzq ´p S n,Z x pzq ¯2 wpzqdz. (33) 
A small value of this distance should indicate a better fit of the observed data, and hence an appropriate estimate of σ 2 pxq would be obtained by minimizing the criterion ∇ L 2 pxq. The merits of this approach are not justified theoretically here, but our experience with simulated data below indicates that the resulting estimates of σ 2 pxq are quite reasonable. We shall also discuss this idea on a concrete application to two real datasets in Section 5.2.

Numerical illustrations

Section 5.1 comments on some implementation details and reports some simulation illustrations. Section 5.2 explores the new unconditional m-frontier estimates for two datasets in the sector of Delivery Services.

Simulated example

We simulate the data pX i , Y i q following a uniform distribution on the region D " tpx, yq | 0 ď x ď 1, 0 ď y ď ϕpxqu, where ϕpxq " 2 `x and x P r0, 1s. Then we introduce the noise ε i " N p0, σ 2 q producing the observed production levels Z i " Y i `εi . We use in all our simulations the sample size n " 200 and the two values σ " 0.20, 0.40.

In the Hilbert space F " L 2 pR, wq, we choose a uniform weight function w on the interval rτ 1 " ´20, τ 2 "

20s. With this choice and the Gaussian noise, it is not hard to verify that the kernel function defining K ˚K and given in ( 21) has the form cpy, ξq " 1 τ 2 ´τ1 φ N py ´ξ; 0, ? 2σq

" Φ N ´τ2 ; y `ξ 2 , σ ? 2 ¯´Φ N ´τ1 ; y `ξ 2 , σ ? 2 ¯ ,
where φ N p¨; a, bq and Φ N p¨; a, bq denote, respectively, the pdf and cdf of N pa, b 2 q. The one-dimensional integrals involving z, e.g. for computing bpy|xq in [START_REF] Hall | A Ridge-Parameter Approach to Deconvolution[END_REF], are performed by a trapezoidal rule over a grid of 801 equi-spaced values in rτ 1 , τ 2 s. The solution of the linear system in ( 24) was done for a grid of k " 801 points y j in r0, maxpZ i |X i ď xq `3σs. The estimators of the survivor and frontier functions have to be evaluated at fixed values of x: we selected here a grid of 91 equidistant values in r0.1, 1s. When σ " 0.20, the 91 optimal values of α obtained by the iterative Tikhonov method are ranging form 0.0184 ˚10 ´3 upto 0.4914 ˚10 ´3 with an average of 0.2081 ˚10 ´3. We then computed the m-frontier estimates over various values of the trimming order m ranging from 1 up to 5000, and for each value we computed the percentage of points left above the m-frontier. We selected an appropriate high value of m by looking to the place where an "elbow" effect appears in the curve of the percentage of points above the m-frontier as a function of m.

The evolution of this percentage, graphed in Figure 1, indicates that the curve becomes almost horizontal from m " 600. Figure 2 shows the resulting frontier estimates for various trimming orders m around the selected value 600, namely 400 ď m ď 900. We can see that the results are rather stable with respect to the choice of m in the displayed range. The final frontier estimate p ϕ α m of order m " 600 is graphed in Figure 3 along with its isotonized version q ϕ α m .

Values of m The calculation above has been done with the noise distribution being fully known. It is clear that a misspecified value of the variance σ 2 would have an impact on the frontier estimation: if we select a value σ mis ‰ σ, the corresponding estimated frontier is expected to lie above the estimate obtained with the well-specified variance if σ mis ă σ (little or almost no noise in this case, so the estimate tends to envelop more data points). The opposite is expected if σ mis ą σ. This is illustrated, when σ " 0.20, in Figure 7 for σ mis " 0.5σ and in Figure 8 for σ mis " 2σ (note that the new values of m have been selected here according to the same rule as above). The correct frontier estimate, obtained by using the well-specified variance σ " 0.20, can be visualised in Figure 3. By comparing Figures 3 and7, it may be seen that the choice of a too small σ results in a frontier estimate slightly above the correct one. By contrast, as visualised more clearly from Figures 3 and8, the choice of a too large σ results in a frontier estimate below the correct one. When the variance is unknown, it is then crucial to have a rule for selecting the value of σ in order to avoid the misspecification effects. As described above in Remark 8, we propose to use a heuristic method based on the evaluation of the quality of the fit via the criterion ∇ L 2 pxq defined in [START_REF] Meeusen | Efficiency estimation from Cobb-Douglas production function with composed error[END_REF]. We calculate this distance at each point of the chosen grid of values of x, before computing the average ∇ L 2 of ∇ L 2 pxq over the 91 values of the grid. A small value of ∇ L 2 should indicate a better fit of the observed data. Table 1 displays the averaged estimates ∇ L 2 for several values of the misspecified σ mis (in the first column), for the sample sizes n " 200, 400 and 800 (in columns 2-4), and for the true values σ " 0.20 (in the top part of the table) and σ " 0.40 (in the bottom part of the table). We see clearly in both cases that the procedure provides reasonable estimates of σ. Of course, this tentative conclusion follows from only one sample, and this does not prove the consistency of the procedure. Still the results are promising, which merits to be fully explored from a theoretical point of view in a separate research. 

Real data examples

We consider the same datasets from the sector of Delivery Services as in the study of [START_REF] Daouia | Robustified expected maximum production frontiers[END_REF].

The first dataset involves 2,326 European post offices observed in 2013, and the second dataset comprises 4,000 French post offices observed in 1994. For each post office j, the input X j is the labor cost measured by the quantity of labor, and the output Y j is the volume of delivered mail in number of objects. The scatterplots are displayed in the bottom of Figures 9 and10.

In contrast to [START_REF] Daouia | Robustified expected maximum production frontiers[END_REF], here we consider that some noise may perturb the data of delivery post offices. We assume that the noise ε j given X j ď x has a normal distribution with zero mean and unknown variance σ 2 ε x . As above we estimate the various m-frontiers at fixed values of x over a grid of 100 equidistant values covering most of the range of X. For selecting the values of σ 2 ε x , we apply the device described in Remark 8 and tested in the two simulated examples above. We perform here the sensitivity analysis at different levels of the noise-to-signal ratio ρ nts P t0.01, 0.05, 0.10, 0.20, 0.40, 0.80u, so that σ ε x " ρ nts ˆstdpZ i |X i ď xq at each given value of x, allowing thus for a heteroskedastic noise (though we assume ρ nts to be constant over the values of x). We first estimate the survivor function S Y x pyq for each x over a grid of k " 1000 values of y. In each case, the optimal regularization parameter is computed by the iterated technique described above. The one-dimensional integrals involving z are performed by a trapezoidal rule over a grid of 1000 equidistant values in rτ x 1 , τ x 2 s, where τ x 1 " min i pZ i |X i ď xq ´2σ ε x and similarly, τ x 2 " max i pZ i |X i ď xq `2σ ε x . Table 2 reports the main results. First, it indicates that the obtained values of α slightly vary when changing the level of the noise. The table gives also the average ∇ L 2 of the 100 values of ∇ L 2 pxq evaluated at each grid point. As small values of ∇ L 2 should indicate a better fit of the observed data, the analysis of ∇ L 2 as a function of ρ nts can then be utilized to select a reasonable value of ρ nts , and hence an appropriate value of σ ε x at each point x. In Case I of n " 2326, where the data seems more reliable (less hectic and extreme data points), this empirical rule determines a small value of the noise-to-signal ratio around ρ nts " 0.05. In Case II of n " 4000, the empirical rule suggests ρ nts " 0.10.

The selected values of m, displayed in columns 6, are quite stable. Unsurprisingly, we see a great difference between the two cases due to the obvious spread and over-dispersion of the data points in Case II. The choice of ρ nts " 0.05 in Case I leads to m opt " 650, while ρ nts " 0. The final results are graphed in Figure 9 for Case I and in Figure 10 for Case II. In each figure we represent the percentage curve (top), some frontier estimates of trimming orders around the selected value m opt (middle), and the m opt -frontier estimate itself along with its isotonized version (bottom). In the top figures, the flatness of the percentage curves from the values m opt might confirm the relevance of our choice of the noise-to-signal ratio ρ nts in each case. The cloud of data points in case I is more concentrated than in case II, resulting in larger percentage of observations above the final estimate. This data concentration in case I generates an isotonized frontier estimator almost confounded with the unrestricted version in the bottom of Figure 9. Also, it may be seen from the figures in the middle that the results in both cases are rather stable to the choice of the trimming parameter in the selected range of values near m opt . Values of Input X 

Conclusions

A new approach is suggested to estimate nonparametrically and in a robust way stochastic frontier functions. We suppose that the noise has a given density (e.g. Gaussian) to ensure the identification of the model. For a prespecified level of inputs of interest x, the basic idea is to first transform the pp 1q-dimensional random vector pX, Y q into a dimensionless variable Y x , and then employ deconvolution techniques in conjunction with a Tikhonov regularization to estimate the underlying unconditional survivor function S Y x . By integrating powers of the latter, we get robust estimators of the partial m-frontier functions as well as the true full production function (corresponding to the limiting case m Ñ 8). As in most studies on deconvolution, we suppose in this first work that the variance of the noise is known, and derive under some regularity conditions the rate of convergence of quadratic risk for the proposed estimators as well as their asymptotic distributions. The practical implementation of the presented procedure is first described through a simulated example. Then we analyze the expected maximum production and the optimal production function itself in the sector of postal services by exploring two concrete datasets on delivery offices. Through this application we highlight the usefulness and the flexibility of our device even if the variance of the noise is unknown.

The difficult question of estimating simultaneously the frontier function and the variance parameter of the noise is a topic of interest for future research. The difficulty of this more general problem comes from the heavy dependence of the operator K, defining the integral equation, on the unknown variance. Yet, at this stage of our research, we suggest to apply a heuristic method, based on the evaluation of the quality of the fit of the observed data, in order to select in practice a reasonable estimate for σ 2 pxq. The simulated data examples and the application to the two real datasets provide very promising results, but further theoretical research remains to be done for this idea to receive due appreciation.

Appendix

The proofs of all theoretical results are provided in Section A.1. Some examples illustrating the source condition (H.3) are presented in Section A.2.

A.1. Proofs

Proof of Theorem 1. The risk of our estimator can be decomposed into two terms:

E ´|| p S α Y x ´SY x || 2 ¯" ||S α Y x ´SY x || 2 `E ´|| p S α Y x ´Sα Y x || 2 ¯,
where the first element is the square of a bias term introduced by the regularization and the second element is a variance term.

(i) Analysis of the bias term (Proof of Lemma 1): by making use of ( 13) we obtain

S α Y x ´SY x " pαI `K˚K q ´1K ˚K S Y x ´SY x " pαI `K˚K q ´1`K ˚K ´pαI `K˚K q ˘SY x " ´αpαI `K˚K q ´1S Y x .
Therefore, by using the SVD and the notations introduced above, we have pαI `K˚K qφ j " pα `λ2 j qφ j , so that the eigenvalues of pαI `K˚K q ´1 are pα `λ2 j q ´1. Since for any δ P E, ||δ|| 2 "

ř j xδ, φ j y 2 , it is easy to show that ||S α Y x ´SY x || 2 " α 2 ÿ j xS Y x , φ j y 2 pα `λ2 j q 2 .
By Assumption (H.3), and using the fact that @ pK ˚K q β{2 δ, φ j D " @ δ, pK ˚K q β{2 φ j D (because K ˚K is autoadjoint), we obtain

||S α Y x ´SY x || 2 " α 2 ÿ j λ 2β j pα `λ2 j q 2 xδ, φ j y 2 ď α β ÿ j xδ, φ j y 2 " Opα β q.
(ii) Analysis of the variance term (Proof of Lemma 2): We have

p S α Y x ´Sα Y x " pαI `K˚K q ´1K ˚"p p S n,Z x ´p S n,ε x q ´pS Z x ´Sε x q ‰ .
First note that ? n " p p S n,Z x ´p S n,ε x q ´pS Z x ´Sε x q ‰ converges in the Hilbert space E to a zero mean Gaussian process with a variance operator Σ described in [START_REF] Hall | Estimating a Changepoint, Boundary or Frontier in the Presence of Observation Error[END_REF] [see [START_REF] Cazals | Nonparametric frontier estimation: a robust approach[END_REF]]. This variance is "trace class", i.e., its trace is finite, or for any basis of E, ř j xΣφ j , φ j y " trΣ ă 8. Second, we have

E ´|| p S α Y x ´Sα Y x || 2 ¯" trVar `p S α Y x ´Sα Y x " O ´1 n tr " pαI `K˚K q ´1K ˚ΣK pαI `K˚K q ´1‰ " O ´1 n ÿ j @ pαI `K˚K q ´1K ˚ΣK pαI `K˚K q ´1φ j , φ j D " O ´1 n ÿ j λ 2 j pα `λ2 j q 2 xφ j , φ j y ¯. Since λ 2 j {pα `λ2 j q 2 " Op1{αq, we get E ´|| p S α Y x ´Sα Y x || 2 ¯" O ´1 αn ¯.
(iii) Bound for the risk: Finally, we obtain the following order of the risk for our estimator

E ´|| p S α Y x ´SY x || 2 ¯" O ´αβ `1 nα ¯.
We see indeed that when α Ñ 0, the contribution of the variance term increases but the contribution of the bias term decreases, so we need α Ñ 0 and αn Ñ 8 to get consistency. As usual, an optimal value for α will be found in this situation by balancing the squared bias and the variance. n r m,n m ă pαI `K˚K q ´1K ˚ΣK pαI `K˚K q ´1δ, δ ą 1{2 L ÝÑ N p0, 1q, n Ñ 8.

Therefore, if

? n r m,n m ă pαI `K˚K q ´1K ˚ΣK pαI `K˚K q ´1δ, δ ą 1{2 " o p p1q, n Ñ 8, (A.4)

we get immediately the asymptotic normality of ? n `p ϕ α m pxq ´ϕm pxq ˘. Since m ě 1 is fixed and α Ñ 0 as n Ñ 8, then (A.4) holds as long as ? nr m,n " o p p1q, which in turn happens if β ą 1 in view of (A.3).

Proof of Theorem 5. We have Under Assumption (K.3), we have seen in ( 31) that ϕpxq ´ϕm pxq " pmℓ x q ´1{ρx Γp1 `ρ´1

x q `o`m ´1{ρx ˘, m Ñ 8.

Then `ϕm pxq ´ϕpxq ˘2 " O `m´2{ρx ˘, as m Ñ 8. On the other hand, we have by Theorem 3 that E " `p ϕ α m pxq ´ϕm pxq ˘2ı " O `m2 n ´β{pβ`1q ˘, for any sequence m " mpnq Ñ 8 such that m " Opn β{p2pβ`1qq q.

Thus E " `p ϕ α m pxq ´ϕpxq ˘2ı " O ´m2 n ´β{pβ`1q `m´2{ρx ¯, n Ñ 8.

While the variance term m 2 n ´β{pβ`1q increases with m, the squared bias term m ´2{ρx (introduced by using a partial m-frontier to estimate the full frontier) decreases with m. Balancing both terms gives the following optimal order for m, as a function of n, m " mpnq " `ρ´1

x n β β`1 ˘ρx 2p1`ρx q .

The corresponding risk is given by O n ´β β`1 1 1`ρx ( .

A.2. Illustrating examples of Assumption (H.3)

We give here two examples illustrating our Assumption (H.3). The first one provides a full analytical treatment, and the second one involves a complex expression that can easily be treated numerically. We choose ε given X ď x to be uniform on r´1, 1s, and the weight function in F to be uniform on r´1, 1s.

It is not hard to check that this survival function belongs to RangepK ˚K q β{2 with β " 1. For this, one has to prove that S Y x P RangepK ˚q or, equivalently, that S Y x " K ˚ψ for some ψ P F. Indeed, an elementary calculus shows that if the function ψ is defined as ψpzq "

$ & % 0 for z ď 0 3z 2 for z ą 0, then the survivor function can be written, for any y ě 0, as S Y x pyq " ż 8 ´8 ψpzq1 I pz ´x P r´1, 1sq 1 I pz P r´1, 1sq dz.

Example 2. Here we consider a sophisticated analytical framework, where the distribution of ε given X ď x is N p0, σ 2 q and the weight function in F is given by a normal density with mean 0 and variance τ 2 . We assume that the frontier point is ϕpxq " 0, so that the survivor function starts from zero. By analytical developments using [START_REF] Gijbels | Estimation of a Support Curve via Order Statistics[END_REF] we then arrive at cpy, ξq " p2πq ´1 1 aστ exp " ´1 2σ 2 ˆy2 `ξ2 ´y2 `ξ2

a 2 ˙* ,
where a 2 " 2 `σ2 {τ 2 ą 2. Now we have to show that there exists a function φ P E such that K ˚K φ is a survivor function S Y x . If such is the case, we would have by construction S Y x P RangepK ˚K q β{2 with β " 2. It can be shown after some analytical manipulations that K ˚K φpyq " p2πq ´1 1 aστ e ´by 2 σΦpμ{σq ? 2πE " φpW q ‰ , where b " pa 2 ´2q 2σ 2 pa 2 ´1q ą 0, Φp¨q is the standard normal distribution function and W " N `p μ, σ2 q is a truncated normal (ě 0) random variable, with μ " y{pa 2 ´1q and σ " aσ{ ? a 2 ´1. By choosing, for instance, φpuq " c 0 e ´tu for some constants t, c 0 ą 0, the expectation in the last equation is c 0 m W p´tq, where m W p¨q is the moment generating function of W . Thus, we find after some calculations that K ˚K φpyq " Cpt, c 0 q exp ´by 2 ´t a 2 ´1 y ( Φ ˆy aσ ? a 2 ´1 ´aσ ?

a 2 ´1 t ˙,
where Cpt, c 0 q " c 0 1 τ ? 2πpa 2 ´1q e pσatq 2 {p2pa 2 ´1qq is a positive constant. Now, we have to prove that S Y x pyq :" K ˚K φpyq is a survivor function on R `. For any t, the constant c 0 can be tuned to get S Y x p0q " 1. Clearly, S Y x pyq ą 0 and lim yÑ8 S Y x pyq " 0. It remains to show that for an appropriate choice of t, we have gpyq :" S 1 Y x pyq ă 0 for all y ą 0. Without loss of generality, we can fix σ " 1 and easily check that gpyq " Cpt, c 0 qe where Φ 1 p¨q is the standard normal density function. For instance, with a " 4 and t " 0.9, we find that gp0q " ´0.1376 and the function gpyq is non-positive for all y ě 0, as shown on the left panel of Figure .11.

´by
In this case, the function S Y x pyq is well decreasing and can be evaluated numerically. Its plot is displayed on the right panel of Figure .11.

  xq with F X pxq :" PpX ď xq ą 0, then ϕpxq can be characterized as the conditional right endpoint ϕpxq " supty ě 0 | F Y |X py|xq ă 1u.

ψ m pxq " ż 8 0` 1

 81 less inputs than x. It converges to the true production function ϕpxq as m Ñ 8. Likewise, its empirical counterpart p ´r p F Y |X py|xqs m ˘dy " p ϕpxq ´ż p ϕpxq 0 r p F Y |X py|xqs m dy achieves the envelopment FDH frontier p ϕpxq as m Ñ 8. Then, the use of p ψ m pxq instead of p ϕpxq, for an

8 0` 1 8 0` 1 ϕpxq ´ż p ϕpxq 0 r p F Y x pyqs m dy ( 7 ) converges to the FDH frontier p ϕpxq as m Ñ 8 .

 818178 al. (2018) define the new concept of partial m-frontier ϕ m pxq " E " ´rF Y x pyqs m ˘dy, (6) as the expected maximum of m independent copies of Y x . This anchor production function is identical to the expectation of the FDH estimator based on the m-tuple of observations Y x 1 , . . . , Y x m . It achieves the optimal frontier ϕpxq when m Ñ 8. Its empirical version p ϕ m pxq " ż ´r p F Y x pyqs m ˘dy " p Both the unconditional expected maximum output frontiers ϕ m pxq and their estimators p ϕ m pxq share the fundamental property of monotonicity. Their superiority over the conditional versions ψ m pxq and p ψ m pxq was also established from a robustness theory point of view.

Alternatively,

  Kumbhakar et al. (2007), Simar and Zelenyuk (2011) and Simar et al. (2017) suggest the use of local maximum likelihood or least-squares techniques, allowing heteroskasticity and functional forms

have pKgqpzq " ż 8 0 8 ´8 f ε|X pz ´y|xq "ż 8 0gpξqf ε|X pz ´ξ|xq dξ * wpzqdz " ż 8 0

 8888 gpξqf ε|X pz ´ξ|xq dξ, and hence pK ˚K gqpyq " ż gpξq cpy, ξq dξ, where cpy, ξq :"

(

  2014)]. Other types of functions gp¨q have been suggested in the literature as can be seen from Dunker et al. (2014) and the references therein.

(

  2014). We need that (K.2) δ P Range `K˚K ˘1{2 , or equivalently that δ " `K˚K ˘1{2 µ for some element µ P E [see Proposition 3.2 in Carrasco et al. (2014) for more details].

Theorem 4 .

 4 Let m ě 1 be a fixed integer. Under the conditions of Theorem 2 with β ą 1, if δ :" 1 Ip¨ď τ qF m´1 Y x satisfies (K.1)and (K.2), then ? n `p ϕ α m pxq ´ϕm pxq m xpαI `K˚K q ´1K ˚ΣK pαI `K˚K q ´1δ, δy 1{2 L ÝÑ N p0, 1q, n Ñ 8.

  op1q, as y Ò ϕpxq. While the necessary and sufficient condition (30) is sometimes difficult to verify, the sufficient von Mises assumption (K.3) may be more helpful. Under this sufficient condition, it is shown in Daouia et al. (2010, Corollary 2.1) that b n " pnℓ x q ´1{ρx as n Ñ 8. We know by Theorem 2.1(iii) in Daouia et al. (2010) that the convergence in distribution of the FDH estimator p ϕpxq implies the convergence of moments. More precisely, given (30), lim nÑ8 E b ´1 n pϕpxq ṕ

Hardle

  et al. (1995), Hall et al. (1998), Gijbels and Peng (2000), Park et al. (2000), Hwang et al. (2002)and[START_REF] Daouia | Frontier estimation and Extreme value theory[END_REF][START_REF] Daouia | Regularization of non-parametric frontier estimators[END_REF], to cite a few. In all parametric approaches, the shape parameter γ x of the joint density as well as c x are assumed to be known. The traditional assumption (32) is actually hidden in Condition[START_REF] Kumbhakar | Nonparametric stochastic frontiers: a local likelihood approach[END_REF] and is more stringent than Condition (K.3). It is obtained by considering the class of slowly varying functions L x p¨q satisfying L x `tϕpxq ´yu ´1˘" ℓ x as y Ò ϕpxq. Then, if ℓ x ą 0, ρ x ą p and ϕpxq are differentiable as functions of x with first partial derivatives of ϕpxq being strictly positive, one can easily recover the usual assumption[START_REF] Lukacs | Characteristic Functions[END_REF], with γ x " ρ x ´pp `1q, by simply differentiating both sides of[START_REF] Kumbhakar | Nonparametric stochastic frontiers: a local likelihood approach[END_REF] [see alsoDaouia et al. (2010, Corollary 2.2)]. Accordingly, the joint density has an interesting connection with the regular variation exponent ρ x and the dimension pp `1q:

1 3pp`

 1 2q , which is still polynomial in n. Remark 6. [Tuning parameters selection] Critical to the quality of the stochastic frontier approximation is the selection of the trimming number m. We propose to choose m by an analogy to the method motivated in the deterministic frontier model, in Section 2.4 of Daouia et al. (2018), by substituting the stochastic frontier estimator p ϕ α m in place of p ϕ m and using the observed contaminated outputs Z j instead of Y j . This method is applied below in Section 5 through simulated and real data sets. The regularization parameter α " p α is obtained following the guidelines described in Section 3.3. As shown in the examples below, these selection techniques aim to balance the robustness of the estimate to outliers (not too large m) with the desire of reaching the full sample frontier (sufficiently large m).

2 Figure 1 :Figure 2 :

 212 Figure 1: Simulated example with σ " 0.20. The evolution of the percentage of observations left outside the m-frontier.

Figure 3 : 4 Figure 4 :Figure 5 :Figure 6 :

 34456 Figure 3: Simulated example with σ " 0.20. Final m-frontier estimate along with its isotonized version and the true frontier.

Figure 7 :Figure 8 :

 78 Figure7: The final m-frontier estimate (dashed blue) and its isotonized version (solid red), when the true σ " 0.20 and the misspecified σ mis " 0.5σ " 0.10. Here m " 350 with 8% of data points above the frontier.

  10 in Case II leads to m opt " 450. Compared to the results obtained in the deterministic setting in Section 2.4 of Daouia et al. (2018), we get here lower trimming numbers m since a part of extreme data points is handled by the noise.

Figure 9 :Figure 10 :

 910 Figure 9: Final results for Case I: n " 2326 and ρnts " 0.05.

Example 1 .1

 1 Consider for a fixed value of x the survivor function S Y x pyq " ´py ´1q 3 for y P r1, 2s 0 for y P r2, 8q.

  Z|X pz|xq :" PpZ ą z|X ď xq and S ε|X pz|xq :" Ppε ą z|X ď xq. On the other hand, since S Y |X py|xq " 1 for all y ď 0, simple calculations lead to the following equation defining the convoluted conditional survivor function of Z, for any z P R, |X py|xq :" 1 ´FY |X py|xq and f ε|X p¨|xq being the density function of ε given X ď x. It follows that, that the density f ε|X p¨|xq is fully known, the problem reduces to solving the integral equation[START_REF] Daouia | Robustified expected maximum production frontiers[END_REF] in S Y x p¨q in terms of S Z x pzq ´Sε x pzq. Given that ity dS Y x pyq " F X pxq ¨ψY |X pt|xq, where i 2 " ´1. If ψ Y x ptq would be known, then by Fourier inversion [see, e.g.,[START_REF] Lukacs | Characteristic Functions[END_REF]], S Y x pyq could Z|X p¨|xq and ψ ε|X p¨|xq are the characteristic functions of Z and ε given X ď x, respectively. This with ψ ε|X p¨|xq being known. Therefore good estimates of ψ Y x ptq could be obtained from accurate estimates of ψ Z|X pt|xq and the empirical marginal distribution function p F X pxq of X. However, for large values of |t|, ψ ε|X pt|xq converges to zero making the estimation of ψ Y x ptq notoriously difficult even if good estimates of ψ Z|X pt|xq are available.

	ż z ´8 S Y |X pz ´ǫ|xq ¨fε|X pǫ|xq dǫ, In order to regularize this ill-posed problem, we can use for instance truncation methods or deconvoluted where S S Z|X pz|xq ´Sε|X pz|xq "
	ż 8 kernel methods [see, e.g., Fan (1991a) for details]. Yet, given that the support of S Y x p¨q is bounded with with S Y for all z P R, upper endpoint ϕpxq, it is more natural to solve the equation (10) by staying in the space of survivor functions.
		S Z x pzq ´Sε x pzq "	0 ż 8	S Y |X py|xq ¨FX pxq ¨fε|X pz ´y|xq dy
					"	0	S Y x pyq ¨fε|X pz ´y|xq dy.	(10)
	By the assumption (C.2) S ε x pzq "	$ & %	S ε|X pz|xq F X pxq S ε|X pz|xq F X pxq `1 ´FX pxq if if	z ě 0 z ă 0,
	our estimator would then be obtained by plugging the empirical p S n,Z x p¨q and p S n,ε x p¨q survivors given by
	p S n,Z x pzq "	1 n	n ÿ j"1	1 IpZ x j ą zq, where Z x j :" Z j 1 IpX j ď xq, for each j " 1, . . . , n,
	p S n,ε x pzq " S ε|X pz|xq p F X pxq `r1 ´p F X pxqs1 Ipz ă 0q, with p F X pxq "	1 n	n ÿ j"1	1 IpX j ď xq.
	Technically we have actually to solve the integral equation (10) in S Y x p¨q in terms of p S n,Z x p¨q and p S n,ε x p¨q.
	This is a deconvolution problem which is well known to be an ill-posed inverse problem. One way to see
	this is by trying to solve (10) via characteristic functions. Denote by ψ Y x p¨q and ψ Y |X p¨|xq the characteristic functions for Y x and Y given X ď x, respectively. We have
	ψ Y x ptq " ´8 e be computed as ´ż 8
				S Y x pyq " 1	´1 2π	ż 8 ´8 1 ´e´ity it	ψ Y x ptq dt.
	Thus what we need is to determine ψ Y x ptq. Since Y is independent of ε given X ď x, we directly get
					ψ Y |X pt|xq "	ψ Z|X pt|xq ψ ε|X pt|xq	,
	where ψ leads to			
				Z x pzq ´Sε x pzq " ψ Y x ptq " F X pxq " S Z|X pz|xq ´Sε|X pz|xq ‰ ¨ψZ|X pt|xq ψ ε|X pt|xq ,	F X pxq,

  Remark 7. [Isotonized estimators] The regularized estimator p S α Y x may not automatically inherit the monotonicity property of the true survival function S Y x . One way to monotonize this unconstrained estimator is

	by using the isotonic version		
					q S α Y x " rS	α Y x `Sα Y x s{2,
	with			
		S	α Y x pyq " sup y 1 ěy	p S α Y α Y x .
	While S	α Y x is the smallest monotone function that lies above the unconstrained estimator p S α Y x , S α Y x is
	the largest monotone function that lies below p S α Y x . As a matter of fact, any convex combination of these
	envelope estimators would have sufficed as a definition of q S α Y x , but we do not see any reason to bias the
	restricted estimator one way or the other. By substituting in (28) the monotone estimator q S α Y x in place of
	the unconstrained version p S α Y x , we get the refined frontier estimator
				q ϕ α m pxq "	ż τ 0	1 ´r1 ´q S α Y x pyqs m (	dy.
	The isotonic estimator q S α Y x reduces the sup-norm error in the following sense
			sup yě0	ˇˇq S α Y

x py 1 q and S α Y x pyq " inf

y 1 ďy p S α Y x py 1 q,

where y and y 1 run over R `. Both S α Y x and S α Y x are monotone non-increasing such that S α Y x ď p S α Y x ď S x pyq ´SY x pyq ˇˇď sup yě0 ˇˇp S α Y x pyq ´SY x pyq ˇˇ.

Table 1 :

 1 Simulated examples-the table give the values of ∇ L 2 , an average measure of the quality of the fit of p S n,Z x for various sample sizes n and various misspecified values σ mis . In bold the minimum of the averaged values within the same column (for a fixed sample size n).

	Case I: true σ " 0.20		
	σ mis 0.10 0.15 0.20 0.25 5.0618 ˆ10 ´6 n " 200 2.9841 ˆ10 ´5 1.1826 ˆ10 ´5 7.2351 ˆ10 ´6 0.30 7.2159 ˆ10 ´6	n " 400 4.9058 ˆ10 ´6 1.3532 ˆ10 ´6 2.6118 ˆ10 ´6 5.2855 ˆ10 ´6 8.7844 ˆ10 ´6	n " 800 1.0818 ˆ10 ´4 ´6 4.4450 ˆ10 ´6 2.5367 ˆ10 ´6 2.9511 ˆ10 3.8063 ˆ10
	σ mis	n " 200	n " 400	n " 800
	0.20 0.30 0.40 1.0380 ˆ10 ´5 5.8825 ˆ10 ´5 1.8649 ˆ10 ´5 0.50 1.2041 ˆ10 ´5 0.60 2.3734 ˆ10 ´5	3.0659 ˆ10 ´5 7.0668 ˆ10 ´6 6.8141 ˆ10 ´6 5.1337 ˆ10 ´6 7.1865 ˆ10 ´6	´4 2.9828 ˆ10 ´5 1.1967 ˆ10 ´6 3.3817 ˆ10 ´6 6.2561 ˆ10 1.3726 ˆ10 ´5

´6

Case II: true σ " 0.40

Table 2 :

 2 Examples with the Delivery post offices-Estimates computed over 100 equi-spaced values of the input x. ρnts is the chosen global noise to signal ratio, ∇ L 2 is an average measure of the quality of the fit of p S n,Z x , mopt is the selected value of m and %out is the percentage of observations left above a smoothed version of the resulting p ϕ α m opt pxq.

	Case I: n " 2326				
	ρ nts	α min	ᾱ	α max	∇ L 2	m opt %out
	0.01 2.124 ˆ10 ´3 1.582 ˆ10 ´2 5.387 ˆ10 ´2 6.644 ˆ10 ´4 0.05 2.194 ˆ10 ´4 7.267 ˆ10 ´4 5.181 ˆ10 ´3 1.421 ˆ10 ´5 0.10 5.801 ˆ10 ´5 7.720 ˆ10 ´4 8.729 ˆ10 ´3 2.963 ˆ10 ´5 0.20 1.452 ˆ10 ´5 9.763 ˆ10 ´4 1.047 ˆ10 ´2 4.392 ˆ10 ´5 0.40 8.644 ˆ10 ´7 1.634 ˆ10 ´3 1.909 ˆ10 ´2 1.837 ˆ10 ´4 0.80 1.210 ˆ10 ´4 3.892 ˆ10 ´3 2.125 ˆ10 ´2 1.451 ˆ10 ´4	600 31.40 650 31.32 700 33.35 800 35.85 800 42.76 900 51.31
	Case II: n " 4000				
	ρ nts	α min	ᾱ	α max	∇ L 2	m opt %out
	0.01 3.729 ˆ10 ´6 5.340 ˆ10 ´6 8.969 ˆ10 ´6 2.711 ˆ10 ´4 0.05 1.559 ˆ10 ´9 1.684 ˆ10 ´7 3.280 ˆ10 ´6 6.786 ˆ10 ´6 0.10 7.101 ˆ10 ´10 4.774 ˆ10 ´7 1.086 ˆ10 ´5 6.687 ˆ10 ´6 0.20 1.479 ˆ10 ´9 7.166 ˆ10 ´6 1.875 ˆ10 ´5 1.397 ˆ10 ´5 0.40 6.640 ˆ10 ´9 3.483 ˆ10 ´7 7.977 ˆ10 ´7 4.317 ˆ10 ´5 0.80 9.438 ˆ10 ´8 3.528 ˆ10 ´6 2.827 ˆ10 ´5 1.027 ˆ10 ´3	400 600 450 450 500 450	1.33 1.31 1.94 1.48 1.94 2.29

  pyq ´SY x pyq ( 2 rb x pyqs m´2 dy,with r1 ´p S α Y x pyqs ^r1 ´SY x pyqs ď b x pyq ď r1 ´p S α Y x pyqs _ r1 ´SY x pyqs. Since 0 ď b x pyq ď 1, we have |r m,n | ď 1 2 m 2 || p S α Y x ´SY x || 2, and hence ´SY x || 2 . S α Y x ´SY x ˘, δ ą m ă pαI `K˚K q ´1K ˚ΣK pαI `K˚K q ´1δ, δ ą 1{2

	Proof of Theorem 3. We have or equivalently		
		p ϕ α m pxq ´ϕm pxq " ? n `p ϕ α m pxq ´ϕm pxq ż τ 0 ˘´? r1 ´SY x pyqs m ´r1 ´p S α Y x pyqs m (	dy.
	A Taylor expansion of r1 ´SY x pyqs m ´r1 ´p S α Y x pyqs m leads to p ϕ α m pxq ´ϕm pxq " m ż τ 0 r1 ´SY x pyqs m´1 p S α Y x pyq ´SY x pyq (	dy `rm,n ,	(A.1)
	where	r m,n "	´1 2	mpm ´1q Y x r m,n " m 2 O p ż τ 0 p S α `n´β{pβ`1q ˘(A.2)
	in view of Theorem 1. On the other hand, we have
	ˇˇˇm Y x Therefore ż τ 0 r1 ´SY x pyqs m´1 p S α Y x pyq ´SY x pyq ( dy ˇˇˇ2 ď m 2 τ || p S α
		| p ϕ α m pxq ´ϕm pxq| ď ˇˇˇm	ż τ 0	r1 ´SY x pyqs m´1 p S α Y x pyq ´SY x pyq ( dy ˇˇˇ`| r m,n |
				ď m τ 1{2 || p S α Y x ´SY x || ď m τ 1{2 O p `n´β{2pβ`1q ˘`m 2 O p `1 2 m 2 || p S α Y x ´SY x || 2 `n´β{pβ`1q ˘.
	Then for fixed m, we have E | p ϕ α m pxq ´ϕm pxq| Opn β{p2pβ`1qq q, then E | p ϕ α m pxq ´ϕm pxq| 2 " m 2 O `n´β{pβ`1q	˘.
	Proof of Theorem 4. By (A.1) we have
	?	n `p ϕ α m pxq ´ϕm pxq ˘" m ?	n	ż τ 0	r1 ´SY x pyqs m´1 p S α Y x pyq ´SY x pyq (	dy `?nr m,n ,
	where it follows from (A.2) that		
		?	n r m,n " m 2 ?	n O p	`n´β{pβ`1q ˘" m 2 O p	`np1´βq{2pβ`1q ˘.	(A.3)
	On the other hand, the leading term in the decomposition can be written as
			m ? " m ă n ż 8 0 ? 1 Ipy ď τ qF m´1 Y x pyq p S α Y x pyq ´SY x pyq ( n `p S α Y x ´SY x ˘, 1 Ip¨ď τ qF m´1 Y x ą .	dy

This results in α " O `n´1{pβ`1q giving a risk bounded by O `n´β{pβ`1q ˘. This completes the proof of the theorem. 2 " O `n´β{pβ`1q ˘. If m " mpnq Ñ 8 such that m " Putting δpyq :" 1 Ipy ď τ qF m´1 Y x pyq, we have δ P E. Under the conditions of Theorem 2, if δ satisfies (K.1)and (K.2), then m ă ? n `p L ÝÑ N p0, 1q, n Ñ 8,

  2 ´t a 2 ´1 y

	" `t a 2 ´1 ¯Φ 1 a ? a 2 ´1 Φ 1 ˆy aσ ˆy a ? a 2 ´1 ´a ? a 2 ´1 t ? a 2 ´1 ´aσ ? a 2 ´1 t ˙ , 2by
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