
HAL Id: hal-02573826
https://hal.science/hal-02573826v1

Submitted on 14 May 2020 (v1), last revised 18 Dec 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic Skeletons Using Template
Metaprogramming

Alexis Pereda, David R.C. Hill, Claude Mazel, Bruno Bachelet

To cite this version:
Alexis Pereda, David R.C. Hill, Claude Mazel, Bruno Bachelet. Algorithmic Skeletons Using Tem-
plate Metaprogramming. 14th International Student Conference on Advanced Science and Technology
(ICAST), Nov 2019, Kumamoto, Japan. pp.204-205. �hal-02573826v1�

https://hal.science/hal-02573826v1
https://hal.archives-ouvertes.fr

Fig. 1. GRASP structure

Alexis Pereda*, David R.C. Hill, Claude Mazel and Bruno Bachelet

Université Clermont Auvergne, CNRS, LIMOS, Clermont-Ferrand, France

Abstract- Algorithmic skeletons, introduced by Cole, were de-

signed to ease the development of parallel software. This article

presents a way to represent and implement algorithmic skeletons

using bones − atomic elements − to build structures, and data flow

graphs to link the structures.

We design and implement a library relying on Template Met-

aprogramming (TMP) to describe and use both skeletons and links

to produce automatically either a sequential or a parallel implemen-

tation of the algorithm, aiming slight to no run-time overhead com-

pared to handwritten implementations.

Performance results of this library, applied to metaheuristics in

Operations Research (OR), are presented to show that this approach

induces negligible run-time overhead.

Index Terms- algorithmic skeletons, parallelization, template

metaprogramming.

I. INTRODUCTION

OST computers having multiple cores, developing par-

allel software has become necessary in order to make

full use of the available hardware. This has led to the devel-

opment of numerous tools to ease the implementation of par-

allel programs, from low level techniques (e.g. specific com-

pilers) to more high level abstractions (e.g. generic libraries).

Our objective is to propose a new parallelization tool that is

usable in existing projects (i.e. no new language or specific

compiler is needed) and yet not inducing an avoidable run-

time overhead when compared to a handwritten implementa-

tion. Additionally, we want this tool to provide a clean inter-

face, not requiring to pollute the domain code with parallel-

ization details. This last point oriented our solution towards

algorithmic skeletons which enable separation of domain

code and parallelization implementation.

The advantage of libraries over most low level techniques

is their portability. However, this usually comes with a cost:

an abstraction layer producing a less efficient binary than the

equivalent handwritten code, which a compiler would be able

to produce. Metaprogramming can be seen as an intermediary

approach because it makes it possible to produce code without

rewriting a full-fledged compiler. Specifically, the C++ lan-

guage offers Template Metaprogramming (TMP), allowing

metaprogramming at library level.

This paper presents our proposal for a new algorithmic skele-

ton library in C++, using an example application from Opera-

tions Research (OR), a Greedy Random Adaptive Search Pro-

cedure (GRASP) described in Alg. 1. Its goal is to find the

best solution S*, given a problem P. It is done by generating

and improving multiple independent solutions, making it

suitable for parallelization.

II. ALGORITHMIC SKELETONS

Algorithmic skeletons were designed by Cole [1] to ease

the development of parallel software by providing patterns to

be used to describe an algorithm so that it will then be auto-

matically parallelized. Numerous tools based on this concept

exist, Skandium [2] in Java, working at run-time, Quaff [3]

and Muesli [4] in C++, based on TMP, and SkePU 2 [5]

which also makes use of TMP but relies on a pre-compilation

step. None of these implementations permit the complete rep-

resentation of an algorithm, including its sequential parts.

This effectively reduces the possible code coverage of these

algorithmic skeleton tools. Being able to get all this infor-

mation in a single skeleton enables better results when mak-

ing decisions about how tasks must be orchestrated.

A. Structure

An algorithmic skeleton represents an algorithm whose

overall structure is known, but some details can be defined in

a later step. This structure must be de-

scribed by the developer. For this pur-

pose, we provide atomic elements,

called bones, each one implementing a

specific sequential or parallel pattern

such as a sequence of tasks or a

farm [6]. Both bones and compound

structures can be used to build new

structures.

Alg. 1 presents an algorithm,

GRASP, whose structure is composed of

a loop, repeating a sequence of 2 tasks

(a constructive heuristic (CH), to build a

random solution, followed by a local

search (LS) that improves the solution),

then a sequential instruction that selects

(Sel) the best solution. Fig. 1 is a repre-

sentation of this GRASP structure.

Algorithmic Skeletons Using Template Metaprogramming

Alg. 1. GRASP

M

B. Muscles

The circles in Fig. 1 are slots for tasks yet to be defined.

These are called muscles in algorithmic skeleton terminology

and are comparable to functions. For our library, these are

implemented by regular C++ functions. This demonstrates the

separation between domain code, written in muscles, and the

parallelization details, written in bones and used through

skeletons (i.e. structure and links). It also allows existing code

to be easily used with our library.

C. Links

Apart from structure, our library requires the developer to

define the data flow graph, that we named links, which de-

scribe how data is transferred between all tasks executions.

This part is usually automatically done by the libraries, how-

ever this implies less flexibility and add constraints when

defining tasks. In addition, having links explicitly defined

enables potential optimizations through TMP and helps pro-

ducing better implementations (e.g. by avoiding copies).

A task to execute can be either a muscle or a skeleton, in

both cases it behaves as a callable. For that reason, links are

described using function signatures, which contain the return

type and the parameter list. Our library provides placeholder

types to make the links. For example, it is possible to write

that a muscle accepts as first parameter the return value of its

predecessor, or the second argument of its caller. This type is

then replaced by the corresponding actual type.

III. ACKNOWLEDGMENT

We used Template Metaprogramming (TMP) in order to

avoid inducing run-time overhead when compared to a hand-

written implementation. To validate that objective, we ran

performance measures on two versions of an algorithm to

solve Travelling Salesman Problem (TSP) instances: a hand-

written one and another generated by our library. The algo-

rithm is a GRASP whose local search is implemented by an

Evolutionary Local Search (ELS), named GRASPxELS. It

offers two distinct parallelizable levels. These tests have been

performed on an Intel Xeon CPU E5-2670 v2 at 2.50GHz,

with 20 physical cores and compiled using g++ 8.2.0 with the

O2 optimization flag activated. All figures result of means of

20 runs, where seeds for the random number generation were

controlled to ensure repeatability (i.e. that every run, inde-

pendently of the number of threads allocated, performs the

same amount of operations and provides the same result).

Fig. 2 shows the comparison between handwritten and au-

tomatically generated GRASPxELS for a sequential imple-

mentation, with a varying number of iterations from 5 to 30

for the outer GRASP loop. No significant run-time overhead

is noticeable. Fig. 3 also results of the comparison between

handwritten and automatically generated GRASPxELS but

for a parallel implementation, with a fixed number of itera-

tions and a varying number of allotted cores. Similarly, no

significant run-time overhead was measured.

Fig. 2. Execution time depending on the number of iterations

Fig. 3. Execution time depending on the number of cores

Based on these measures, we conclude that we achieved an

implementation of algorithmic skeletons that performs as well

as a handwritten solution. It enables developers to describe

their algorithms entirely, sequential as well as parallelizable

parts, and to define how the data is transferred between tasks.

The described skeletons can then be completed by providing

simple functions whose signatures correspond to the slot they

try to fill. The knowledge the library has got, thanks to these

algorithmic skeletons, enables compile-time algorithm analy-

sis and more suited implementations.

IV. REFERENCES

[1] M. Cole, ‘Bringing skeletons out of the closet: a pragmatic manifesto for

skeletal parallel programming’, Parallel Comput., vol. 30, no. 3, pp. 389–

406, Mar. 2004.

[2] M. Leyton and J. M. Piquer, ‘Skandium: multi-core programming with

algorithmic skeletons’, in 2010 18th Euromicro Conference on Parallel,

Distributed and Network-based Processing, Pisa, 2010, pp. 289–296.

[3] J. Falcou, J. Sérot, T. Chateau, and J. T. Lapresté, ‘Quaff: efficient C++

design for parallel skeletons’, Parallel Comput., vol. 32, no. 7, pp. 604–

615, Sep. 2006.

[4] P. Ciechanowicz, M. Poldner, and H. Kuchen, ‘The Münster skeleton

library Muesli - a comprehensive overview’, 2009.

[5] A. Ernstsson, L. Li, and C. Kessler, ‘SkePU 2: flexible and type-safe skele-

ton programming for heterogeneous parallel systems’, Int. J. Parallel Pro-

gram., vol. 46, no. 1, pp. 62–80, Feb. 2018.

[6] D. K. G. Campbell, ‘Towards the classification of algorithmic skeletons’,

1996.

