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Abstract 23 

Leatherback turtles (Dermochelys coriacea) are the largest extant marine turtle, with some 24 

individuals measuring more than 1.80 m carapace length. Given the exceptional size of this 25 

species and that females only return to land every few years to nest, it is difficult to 26 

investigate its ontogeny from hatchling to adulthood. Distinct chondro-osseous (cartilage 27 

and bone) tissue morphology has led to some speculation that sexual maturity may be 28 

reached as early as 3 years, while other studies suggest this could take as long as 25 years. 29 

Using a combination of longitudinal measurements obtained from nesting females in French 30 

Guiana as well as a reanalysis of the growth trajectories of juveniles maintained in captivity 31 

and the age-size relationship of individuals in the wild, we demonstrated that leatherback 32 

turtles exhibit a biphasic indeterminate growth pattern and continue to grow as adults. 33 

Using the fitted model, we showed that some individuals can reach maturity at 7 years in 34 

natural conditions, while others require 28 years or more. This extreme plasticity in age at 35 

sexual maturity was already demonstrated in loggerheads in natural conditions and in green 36 

turtles in captivity. This could be a general feature of marine turtles. 37 

 38 

Keywords: Dermochelys coriacea, biphasic indeterminate growth, Gompertz, maturity, 39 

leatherback, marine turtles 40 

 41 

  42 
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Introduction 43 

Growth strategies are central to our understanding of life-history theory as they determine 44 

body size and influence key life-history traits including survival, development, and 45 

reproduction (Roff, 2002; Stearns, 1992). As all organisms only have access to finite 46 

resources, they must balance their energy resources between growth and reproduction 47 

(Stearns, 1992). This also has an effect on an individuals' longevity (Roff, 2002; Stearns, 48 

1992). The timing of the shift in resource allocation more or less corresponds to age at 49 

maturity, while the cessation of growth when reproduction begins (i.e., determinate 50 

strategy) appears to optimize fitness (Kozłowski, 1992). However, the selection of a 51 

determinate strategy may be too weak to overwhelm random processes such as 52 

environmental stochasticity and genetic drift under low mortality conditions (Cichoń, 1999). 53 

Because indeterminate growth was not consistently defined in the literature and had a lack 54 

of consensus surrounding its definition, species that have been previously considered to 55 

exhibit in determinate growth may have been labelled erroneously or vice versa (Mumby et 56 

al., 2015). Reptiles are particularly affected by this issue (Congdon et al., 2013), caused 57 

partly by inadequate data. Even with a conservative definition of indeterminate growth, a 58 

too-small sample size in studies on growth can show spurious trends (Congdon et al., 2013). 59 

As such, relatively few reptile species can be definitively classified as indeterminate (Nafus, 60 

2015; Shine and Charnov, 1982). 61 

Many models exist to estimate animal growth patterns (Bernstein et al., 2018; Kaufmann, 62 

1981), but the most frequently used are the logistic (Verhulst, 1838), von Bertalanffy (1938), 63 

and Gompertz (1825) models. Several variations based on these models have explicitly 64 

incorporated the cost of reproduction (Minte-Vera et al., 2016) or implemented a biphasic 65 

model into the von Bertalanffy model (Armstrong and Brooks, 2013; Day and Taylor, 1997; 66 
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Eaton and Link, 2011; Quince et al., 2008a; Quince et al., 2008b) or a polyphasic model into 67 

the logistic model (Peil and Helwin, 1981). Environmental factors such as temperature were 68 

incorporated into the Gompertz growth model applied to bacterial growth (Zwietering et al., 69 

1991; Zwietering et al., 1994) and the von Bertalanffy model applied to fish growth 70 

(Kielbassa et al., 2010).  Attempts to generalise these models often produce models that are 71 

too complex to be practical (Savageau, 1980).  72 

To date, among the parametric models, only asymptotic growth models (Gompertz, von 73 

Bertalanffy, and logistic) have been applied to marine turtles, and more specifically, to 74 

leatherbacks (Avens et al., 2009; Jones et al., 2011). Data from a longitudinal field survey in 75 

East Pacific leatherbacks indicate that leatherbacks show growth while individuals are 76 

already at adult stages (Price et al., 2004). The pattern described for leatherback turtles is 77 

similar to what was found using 26 years of individual measurement data for green and 78 

loggerhead females nesting in Cyprus. Post-maturity growth persists in both species, with 79 

growth decreasing for approximately 14 years before plateauing around zero for a further 80 

decade in green turtles alone (Omeyer et al., 2018). 81 

Age at maturity is often deduced from the growth pattern of marine turtles. At maturity, 82 

resource allocation shifts from growth to reproductive output, regardless of the nutrient 83 

availability or size at maturity (Bjorndal et al., 2013). Extremely rapid growth rates observed 84 

in captive leatherbacks have led to the speculation that these animals could reach sexual 85 

maturity within 2-3 years (Witham, 1977). A predicted age at maturity of 3-6 years was also 86 

inferred from chondro-osseous (cartilage and bone) morphology (Rhodin, 1985). However, 87 

skeletochronological analysis suggests that leatherbacks could take as long as 13-14 years to 88 

sexually mature (Zug and Parham, 1996). Dutton et al. (2005) suggested that leatherbacks 89 

reach maturity at 12-14 years based on increased returns at a nesting beach (St. Croix, US 90 
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Virgin Islands) after intensive beach protection and nest relocation, which increased 91 

hatchling production by an order of magnitude in the following decade. Genetic analysis 92 

from the same site suggested that first-time nesters are related, possibly being the genetic 93 

offspring of leatherbacks nesting in the 1980s, which points to an estimated age at maturity 94 

of <20 years (Dutton et al., 2005). Avens et al. (2009) suggested that Northwest Atlantic 95 

leatherbacks reach sexual maturity in 25-29 years based on skeletochronological analysis of 96 

the scleral ossicles as well as the use of a non-parametric smoothing spline model and the 97 

Von Bertalanffy growth function to determine growth rates and age at maturity. In the most 98 

recent study on leatherback growth and age at maturity, several leatherback turtles were 99 

maintained in captivity for nearly 2 years, ranging from hatchlings (6.31 cm SD 0.13 cm SCCL 100 

and 46.0 g SD 1 g) to juveniles (largest, 72.0 cm SCCL and 42.65 kg) (Jones et al., 2011). 101 

Curved carapace length (CCL) sensu Bolten (1999) is identical to the CCLridge sensu Robinson 102 

et al. (2017) and to the standard curvilinear carapace length (SCCL) sensu Georges and 103 

Fossette (2006). Using a global analysis of the relationship between absolute age and SCCL, 104 

Jones et al. (2011) fitted von Bertalanffy, Gompertz, and logistic growth functions to predict 105 

age at maturity for leatherbacks aged 16.1, 8.7, and 6.8 years, respectively. All these 106 

equations behave in a similar way, showing a quasi-exponential growth for very young 107 

individuals and an asymptote L∞ reached at adult stages. 108 

However, we identified several potential biases in this procedure. First, adult females 109 

continue to show growth, which could decline for larger sizes but could still persist, thus 110 

producing a biphasic growth (Price et al., 2004). The three functions used in Jones et al. 111 

(2011) to model size versus age impose an asymptote �� at adult stage, but then �� is a 112 

biased estimate of size when resources are transferred from growth to reproduction. 113 

Second, nearly all the data for juveniles derive from individuals reared in captivity and fed ad 114 
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libitum, whereas all the data for adults relate to individuals captured in the wild. 115 

Consequently, the growth of juveniles in captivity can be suspected to be scaled differently 116 

as compared to the growth of adults in the wild due to differences in food availability and 117 

temperature. This point is important, as the expected age at maturity falls precisely between 118 

these two categories of data, and thus no data are available to support the estimation. 119 

Different methods described in the literature yield different sizes at maturity for 120 

leatherbacks. For example, Avens et al. (2009) used ages when individuals reached 125, 145, 121 

and 155 cm SCCL as the potential size at maturity. In other studies, the threshold carapace 122 

length for adult classification in leatherbacks was chosen to be 145 cm SCCL (Eckert, 2002; 123 

National Marine Fisheries Service, 2001). It should be noted, however, that females as small 124 

as 105 cm SCCL have already been seen nesting in Gandoca, Caribbean Coast of Costa Rica 125 

(Chaverri, 1999), 106 cm SCCL in Gabon, Africa (in Stewart et al., 2007), and 106 cm SCCL in 126 

French Guiana (this study). Jones et al. (2011) defined size at maturity when 97.5% of the 127 

asymptote size �� was obtained, with �� being the asymptote of the von Bertalanffy, 128 

Gompertz, and logistic growth functions. Nevertheless, the value of 97.5% is not consistent 129 

among studies, with a range of 95.0 to 99.9% of the asymptote being used by different 130 

authors (Cailliet et al., 2006). Furthermore, most turtles mature at around 70% of maximum 131 

size, similarly to other reptiles (Shine and Iverson, 1995). 132 

Our objective was to determine the growth patterns of leatherback turtles over their entire 133 

life-cycle. Longitudinal measurements from nesting females in French Guiana in the 134 

Northwest Atlantic regional management unit (RMU) (Wallace et al., 2010) are used to study 135 

growth at adult stage. First, size distribution of new nesters (neophytes) is compared to size 136 

distribution of females tagged in previous nesting season to detect a potential size increase 137 

at adult stage. Annual SCCL change was then estimated and modelled for females measured 138 
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at several nesting season. These data are compared with those already published data for 139 

East Pacific RMU (Price et al., 2004). Finally, we develop a biphasic indeterminate growth 140 

model to describe the growth of leatherback turtles. The requirements to model marine 141 

turtle growth, which may be used in a much wider context such as population modelling, are 142 

as follows: 143 

- Initial rapid growth similar to von Bertalanffy, Gompertz, and logistic growth 144 

functions;  145 

- A slowdown when size reaches a particular threshold; 146 

- Non-null growth at adult stage that can gradually slow down when size increases or is 147 

maintained; 148 

- Habitat quality that acts on both the initial rapid growth and the growth at adult 149 

stage; 150 

- Habitat quality that can change at any time during the growth process of an 151 

individual; 152 

- A conversion into determinate growth using a simple parameter change. 153 

As no current model met all our requirements, we decided to build a new one. The 154 

mathematical properties of the model are studied using Sobol sensitivity analysis. This 155 

model is then described in a context of varying habitat quality. The parameters of this model 156 

are fitted using observed captivity and field data in view of the origin of these individuals 157 

using the maximum likelihood and Bayesian Markov Chain Monte Carlo (MCMC) proposal 158 

methodology.  159 

 160 

Materials and methods 161 

Measurements of nesting leatherbacks 162 
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Field data for this study were obtained between 2011 and 2018 during the nesting seasons 163 

at Awala-Yalimapo beach (5.7°N, 53.9°W), French Guiana, South America. Awala-Yalimapo 164 

beach is situated on the French side of the Maroni River, separating French Guiana and 165 

Suriname. Monitoring programmes at this beach have been in place since the late 1970s 166 

(Girondot and Fretey, 1996). A 4 km stretch of the beach where most nesting events occur 167 

(Girondot, 2010) was continuously patrolled every night from 6:00pm to 7:00am between 168 

April and July. All tagged turtles encountered during these patrols were identified using 169 

internal passive integrated transponder (PIT) tags (Trovan Euroid). Nesting females were 170 

measured during oviposition. Different measurements were obtained, but only standard 171 

curvilinear carapace length (SCCL) was used in this study to ensure consistency across 172 

studies. Straight carapace length (SCL) measures were converted into SCCL where necessary 173 

using the relationship ���� = ���� + 2.04� × 1.04 (Tucker and Frazer, 1991). When a 174 

measured female was seen without a PIT, it was considered as a potential neophyte. 175 

Comparison of size distribution between neophyte nesters and experienced nesters could 176 

indicate if growth still occurred at adult stage. When a female was repeatedly measured 177 

during or between nesting seasons, only its first (SCCLfirst) and last (SCCLlast) records were 178 

used to avoid pseudo-replication. The annual growth rate was then estimated using 179 

�365.25 ��������� − ���������� �. ��� ⁄ � with n.days being the number of days between 180 

the first and last observations. 181 

  182 



9 
 

Biphasic indeterminate growth models 183 

We concur with Day and Taylor (1997) that growth trajectory should be specified by two 184 

separate equations: a prematurity equation in which no surplus energy is devoted to 185 

reproduction and a post-maturity equation in which all (determinate growth) or some 186 

(indeterminate growth) surplus energy is devoted to reproduction. The new model was built 187 

as a modification of the Gompertz (Gompertz, 1825) and von Bertalanffy (von Bertalanffy, 188 

1938) models for growth by including a new differential equation for adult growth. 189 

The differential of the Gompertz model is (x as size and t as time) (Laird, 1964): 190 

"#"� = $ &� '(#)  * Eqn 1 191 

And the integrated form is * = +,�-'./0 )123 4
. 192 

With K being the asymptote (i.e., maximum size that can be reached with the available 193 

nutrients) and α being a constant related to the proliferative ability of the cells. A simple 194 

solution to convert the model for the indeterminate growth rate was to change K during 195 

growth. To ensure that indeterminate growth decreases as x increases, a coupled system of 196 

differential equations was used: 197 

5"#"� = $ ℎ &� '(#)  *"("� = 7 ℎ ' 8891�: ;⁄ ��<2.�)  Eqn 2 198 

No integrated form of the equation 2 exists. The parameters used for this model are: 199 

- α is a constant related to the proliferative ability of cells that makes the individual 200 

grow; 201 

- M is the size at which the transition between exponential juvenile growth and adult 202 

linear growth occurs; 203 
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- S controls the rate of transition between exponential juvenile growth and adult linear 204 

growth; 205 

- β is the linear adult growth rate; 206 

- h is the habitat quality, and it acts on both α and β. Habitat quality, h, acts as the 207 

proportion of growth that is maintained in the corresponding habitat as compared to 208 

maximum growth when h = 1. When h = 0, no growth occurs.  209 

The change in h can be time-dependent or represent individual variations. Particularly in this 210 

case, h will be used to distinguish individuals raised in captivity and fed ad libitum (then 211 

h = 1) and wild individuals with fitted h. If β = 0, this system of differential equations was 212 

similar to a Gompertz model as modified by Laird (1964). 213 

The typical von Bertalanffy model (1938): 214 

"#"� = = ��� − *�  Eqn 3 215 

can be modified to a biphasic indeterminate von Bertalanffy model using: 216 

5"#"� = = ℎ ��� − *�">?"� = 7 ℎ ' 8891�: ;⁄ ��<2.�)  Eqn 4 217 

Uniqueness of the solution of the biphasic indeterminate Gompertz model 218 

The theorem of Cauchy-Lipschitz (also known as the theorem of Picard-Lindelöf) gives a set 219 

of conditions under which an initial value problem (also named Cauchy problem) has a 220 

unique solution. If we assumed a system of equations defined as: 221 

@�*A�B�, +A�B�� =  D�*, +��*�0�, +�0�� = �*E, +E�  222 

It was necessary to demonstrate that D was locally Lipschitz continuous: for � in ℝI a 223 

neighbourhood U of � exists in which:  224 

∃ = > 0 | ∀� �8, �I � ∈  O × O, ‖D��8� − D��I�‖ ≤ = ‖�8 − �I‖,  225 
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D R� ℝI → ℝI was defined by:  226 

D�*, +� = T D8�*, +� = $ℎ ln V+* W *
DI�*, +� = 7ℎ 11 + ,X2:�YZ#�

[ 227 

Both x and K were positive as *E > 0, +E > 0. So, by definition +A�B� ≥ 0 ⟹ +�B� ≥ +E >228 

0. 229 

Furthermore, *A�B� > 0 when 0 < * < +E < + then *�B� > 0.  230 

In ℝ9∗ × ℝ9∗, the partial derivatives were: 231 

`D8`* = $ℎ�ln V+* W − 1� 232 

`D8`+ = $ℎ *+ 233 

`DI`* = −7ℎ ,X2:�YZ#���1 + ,X2:�YZ#��I 234 

`DI`+ = 0 235 

f was then �8 in ℝ9∗ × ℝ9∗ because its partial derivatives existed and were continuous. 236 

According to mean value theorem, f was a locally Lipschitz function. Using the local Cauchy-237 

Lipschitz theorem, a unique solution exists for this Cauchy problem for *E > 0 and +E > 0. 238 

This implied that for a given set of parameters and habitat quality, there was only one 239 

growth curve for the individual. 240 

Biphasic indeterminate Gompertz growth model when h varies 241 

We already proved that the solutions *�B� and +�B� of the biphasic indeterminate Gompertz 242 

growth model on an interval a0, B�b were unique (see previous demonstration). 243 
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If we assumed that *E <  +E and that there existed a first time B∗ such that *�B∗ � = +�B∗�, 244 

thus, this point verified: *′�B∗� = 0 and +′�B∗� > 0. *�B� and +�B� being continuous, so f >245 

0 existed such that ∀ B ∈  gB∗ − f,  B∗ h , 0 < *A�B� < +′�B� 246 

When t < B∗, then *�B� < +�B� : 247 

*�B∗� = i *A�B��∗
�∗Zj �B + *�B∗ − f� < i +A�B��∗

�∗Zj �B + +�B∗ − f� = +�B∗� 248 

A contradiction occurs: the point B∗ such that *�B∗� = +�B∗� can never be reached. 249 

Thus, *A�B� > 0 and *�B� was a continuous function, and as a consequence, * was a bijective 250 

function on the given interval a0, B�b. 251 

It followed that +A�B� > 0 and that +�B� was also a continuous function. As a consequence, 252 

+ was also a bijection on t. 253 

+ can be written as a function of * : + = + ∘ *Z8�*�B�� = l�*� 254 

With l being a continuous, positive, and strictly monotonic function. 255 

An equivalent one-dimension problem to the initial differential problem was then: 256 

*A�B� = ℎ m�*� =  ℎ $ ln 'n�#�# ) * and *�0� = *E 257 

We already proved that ∀ B ∈ a0, B�b, *A�B� > 0. Let G be the primitive function of 
8o, then: 258 

�*�B = ℎm�*� ⟹ �*m�*� = ℎ�B ⟹ p�*�B�� − p�*E� = ℎB 259 

G was a continuous and strictly increasing function, being the primitive function of a strictly 260 

positive function. Thus, G was a bijective function, and pZ8 was its inverse function. Then 261 

*�B� can be rewritten as *�B� = pZ8�ℎB + p�*E��. 262 

If we assumed that an individual was in a habitat of quality ℎ8 during a time B8 and then in a 263 

habitat of quality ℎI during a time BI − B8: 264 

*�B8� = pZ8�ℎ8B8 + p�*E�� 265 
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*�BI� = pZ8�ℎI�BI − B8� + p�*�B8��� 266 

*�BI� = pZ8�ℎI�BI − B8� +  ℎ8B8 + p�*E�� 267 

The mean value of habitat encountered by this individual is: ℎ = q:�:9 qr��rZ�:��r . Now 268 

consider another individual living in this mean habitat during a time BI. Its final size will be:  269 

*�BI� = pZ8�ℎBI + p�*E�� 270 

The final sizes are identical for both individuals. This conclusion can be expanded by 271 

recurrence to any situation s�ℎ8, B8�, �ℎI, BI�, ⋯ , �ℎu , Bu�v with  272 

ℎw = ℎ8B8 +  ℎI�BI − B8� + ⋯ + ℎu�Bu − BuZ8�Bu  273 

Thus, when constant h was fitted for an individual, it can be interpreted as the average 274 

habitat quality (ℎw) experienced by this individual during its lifetime. 275 

Numerical solution of the biphasic indeterminate Gompertz growth model 276 

This system of differential equations was numerically solved using the Runge-Kutta method 277 

of order 4 (Kutta, 1901; Runge, 1895). The Runge-Kutta methods are a family of implicit and 278 

explicit iterative methods used in temporal discretisation for the approximate solutions of 279 

ordinary differential equations implemented in deSolve R package version 1.24 (Soetaert et 280 

al., 2010). The initial value was x0 = 6.3 cm for SCL at the hatchling stage (Jones et al., 2011), 281 

while the initial value for K, named K0, was fitted to best adjust the observed data. 282 

Sobol’s method for parameter sensitivity (Sobol, 1993) 283 

Sensitivity analysis aims to determine how much the variability in the model output is 284 

dependent on each of the input parameters, either a single parameter or an interaction 285 

between different parameters. Sobol’s method (2001) is based on the decomposition of the 286 

model output variance into summands of variances using the same principal as the classical 287 

analysis of variance (ANOVA) in a factorial design. However, Sobol sensitivity analysis is not 288 
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intended to identify the cause of input variability. It simply indicates its impact and extent on 289 

the model output. Sobol sensitivity analysis has the following features: 290 

- No assumption between model input and output; 291 

- Evaluation of the full range of each input parameter variation and interactions 292 

between parameters; 293 

- High computation intensity as the main drawback. 294 

We simultaneously implemented the Monte Carlo estimation of the Sobol indices for both 295 

first-order and total indices, which had the advantage of stabilising the variance (Jansen, 296 

1999; Saltelli et al., 2010). Sobol indices were calculated using 10,000 combinations of the 297 

values obtained from uniform distribution for α in [0.001, 0.02], β in [0.01, 0.1], M in [90, 298 

140], S in [-20, 0], h in [0.1, 1], K0 in [10, 50], and x0 in [4, 10]. These ranges were obtained 299 

from a plausible range of values for each parameter, which were determined by manually 300 

changing the parameters and visually observing the dynamic changes. Parameter sensitivity 301 

for age was studied at SCCL 20, 50, 105, 130, and 150 cm and for size at 2, 5, 10, 20, and 40 302 

years. This arbitrary choice of values covered a wide range of possible ages and SCCLs. 303 

Fit of parameters using leatherback data 304 

Data on the relationship between the size and age of Atlantic leatherback turtles were 305 

retrieved from Table 1 in Jones et al. (2011) as well as from the printed figures in Zug and 306 

Parham (1996) and Avens et al. (2009). We chose not to use the growth in captivity data 307 

published by Bels et al. (1988), as the individuals were probably in suboptimal conditions 308 

(Jones et al., 2011). 309 

The h value was 1 for the data on leatherbacks reared in captivity and fed ad libitum, 310 

whereas a fitted value was used for field-captured leatherbacks. The logit of h value was 311 

used for fitting to ensure that h was always comprised between 0 and 1. We fitted or used a 312 
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common h for all the field data (hAZP),or a separate h for the data of Zug and Parham (1996) 313 

(hZP) and Avens et al. (2009) (hA).  314 

A Gaussian distribution of SCCL was used to estimate the likelihood of data within the model 315 

with the standard deviation being a fitted first-order function of size to model 316 

heteroskedasticity: SD = a SCCL + b, with a and b being positive. 317 

Weekly average and standard deviation values for SCCL were available for leatherbacks 318 

reared in captivity but not for their individual trajectories (Jones et al., 2011). Standard 319 

deviations of weekly measures were combined with the global heteroskedastic standard 320 

deviation (a SCL + b) using: 321 

 � = x∑  ��I  Eqn 5 322 

A comparison of fit statistics for the Gompertz or von Bertalanffy (Eqns 1 and 3) and 323 

indeterminate Gompertz or von Bertalanffy models (Eqns 2 and 4) was based on the Akaike 324 

information criterion (AIC), which is a measure of the quality of fit (L, for likelihood) 325 

penalised by the number of parameters: AIC = -2 ln L + 2 k. The number of parameters, k, 326 

was equal to 5 for Eqn 1 with α, h, K, a, and b being fitted, and equal to 8 for Eqn 2, with α, 327 

β, h, M, S, K0, a, and b being fitted; one parameter must be added if hZP and hA were used 328 

instead of a single h parameter. The model with the lowest AIC has the stronger support 329 

(Akaike, 1974). The Akaike weight measures the probability that a given model is the best 330 

among the tested models (Burnham and Anderson, 2002). 331 

Maximum likelihood and Bayesian MCMC parameter proposals were used to search for the 332 

parameters that best described the data. 333 

The values of parameters that maximised the likelihood of observed sizes within the model 334 

were searched using the Nedler-Mead non-linear fitting algorithm (Nelder and Mead, 1965). 335 
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The standard error for outputs was estimated using the delta method with the Hessian 336 

matrix as an approximation of the variance-covariance matrix. The delta method is a general 337 

method for approximating the moments of functions of asymptotically normal random 338 

variables with known variance (Oehlert, 1992). Alternatively, Bayesian posterior distribution 339 

for each parameter was estimated using iterations of MCMC parameter proposals. The initial 340 

values for the parameters were determined using maximum likelihood; no burn-in 341 

adaptation was used. Priors were all obtained from a uniform distribution with limits being 342 

very wide to ensure that a large range of parameter values could be checked (see 343 

Supplementary Material). Standard deviations for new proposals were chosen based on 344 

adaptive MCMC methodology (Rosenthal, 2011) as implemented in R package HelpersMG, 345 

version 4.0 (Girondot, 2020). The number of iterations required to estimate the quantile 346 

0.025 to within an accuracy of ±0.005 with probability 0.95 was calculated using an initial 347 

pilot 50,000 run (Raftery and Lewis, 1992). From this diagnostic, a run with 100,000 348 

iterations was chosen. Convergence was first visually examined to ensure that the time 349 

series of the parameters were stationary, and then tested using the Heidelberger and Welch 350 

(1983) diagnostic. The standard error of the parameters was estimated after correction for 351 

autocorrelation (Roberts, 1996). Results from the MCMC were analysed using the R package 352 

Coda, version 0.19-1 (Plummer et al., 2011) and HelpersMG, version 4.0 (Girondot, 2020). 353 

From growth pattern to age at maturity 354 

Female age at maturity at the population scale can be obtained as the age at which the 355 

smallest females are seen nesting on the beach. The smallest nesting female was around 356 

105 cm SCCL (this study, Chaverri, 1999; Stewart et al., 2007), but excluding this exceptional 357 

value, the SCCL distribution generally shows a lower value of around 130 cm (Fig. 1A). On the 358 
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other hand, SCCL distribution of potential neophyte females is Gaussian with a mean of 359 

158.10 cm and standard deviation of 8.23 cm (Fig. 1A). 360 

Results 361 

Biometry of nesting leatherbacks in Awala-Yalimapo, French Guiana 362 

A total of 1061 different females were measured from 2011 to 2018: 622 females were 363 

observed for the first time based on the absence of a PIT or monel tag, while 439 had 364 

already been tagged in the previous nesting seasons. Among these 1061 females, 187 were 365 

measured in several nesting seasons. The untagged females were not necessarily true 366 

neophytes, although tagged females were obviously true non-neophytes. The average SCCL 367 

was 159.43 cm (SD 7.84 cm), and the minimum and maximum sizes were 106 and 181 cm, 368 

respectively. When splitting the data into two groups based on whether the female was 369 

observed for the first time on the beach during a nesting season (Fig. 1A) or had already 370 

been tagged during a previous season (Fig. 1B), the size distributions strongly differed 371 

(difference 3.79 cm; BIC [Bayesian Information Criterion] weight= 6.10-8). The BIC weight is 372 

the posterior probability that a single size distribution was sufficient to model the SCCL for 373 

the two groups (Girondot and Guillon, 2018). BIC was used instead of AIC because the true 374 

model was obviously among the tested models (i.e., size of two groups either differs or not). 375 

When the same female was seen during different seasons, the model for average SCCL 376 

annual growth upon SCCL was an exponential decay for both West Atlantic leatherbacks 377 

nesting in French Guiana (Akaike weight=0.991, Fig. 2A, Table 1) and the Pacific East 378 

leatherbacks nesting in Parque Nacional Marino Las Baulas, Costa Rica (Akaike weight=0.884, 379 

Fig. 2B, Table 1) (data retrieved from Price et al., 2004). In both situations, the lower end of 380 

95% confidence interval was different from 0 indicating a non-null growth even at larger 381 

size. The 95% confidence interval of the measures can be approximated by four times the 382 



18 
 

fitted standard deviation: 3 cm for French Guiana, West Atlantic data and 2.5 cm for Costa 383 

Rica, Pacific East data. 384 

Example of growth dynamics and parameter sensitivity 385 

An example of the growth dynamic produced by the system of differential equation 2 is 386 

shown in Figure 3 for α=0.007, β=0.067, M=115.52, S=-7.55, h=0.45, x0=6.3, and K0=28.88. 387 

Sensitivity analysis highlights the relative influence of variables on the dynamics. In Figure 388 

3A, the contribution of variables to size for known age is shown. In Figure 3B, the 389 

contribution of variables to age for known size is shown. As expected from Eqn 2, parameter 390 

α acts mostly during very early growth, while β acts later (Fig. 3A). Habitat quality (h) has a 391 

special interest for ecologists, as it is a measure of the influence of ocean productivity. 392 

Habitat quality (h) influences size for a given age regardless of the age (Fig. 3A), but it has 393 

almost no influence when age was inferred from size and size was large (Fig. 3B). From an 394 

ecological point of view, this result is important: if age is known, SCCL can be used as an 395 

indicator of ocean productivity experienced by an individual during its life. 396 

A typical example of dynamic SCCL growth when h (habitat quality) changes during the life of 397 

an individual is shown in Figure 4. Note that the final size using the exact h dynamics 398 

(171.698 cm) or the mean of h values (171.706 cm) were very close as demonstrated in the 399 

Materials and Methods section, with this difference being due to numerical approximations. 400 

Thus, it is possible to summarize the growth of an individual using the average h value 401 

experienced by this individual during its all lifetime. 402 

Parameter fitting 403 

The biphasic indeterminate Gompertz model with fitted hZP and hA (Eqn 2) strongly out-404 

performed all other models (∆AIC > 200, Table 1): the Gompertz model (Eqn 1) can be 405 

excluded as a representation of leatherback growth with ∆AIC > 1000, Akaike weight=0. The 406 
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biphasic indeterminate Gompertz was also a highly supported model compared to the 407 

biphasic indeterminate von Bertalanffy model regardless of the number of habitat models. 408 

The model with fitted hZP (0.504) and hA (0.275) strongly out-performed the model with a 409 

single fitted h (0.458) (∆AIC=253, Akaike weight=0) and the model with fixed h = 1 parameter 410 

(∆AIC=888, Akaike weight=0). Habitat quality was therefore an important parameter to take 411 

into account. 412 

The fitted value for b = 0.0119 was lower than its standard error SE b=0.0478, and as b had 413 

to be positive, the hypothesis of Gaussian distribution for parameters required for the delta 414 

method was violated (Oehlert, 1992). For this reason, the distributions of parameters were 415 

better estimated using the posteriors of Bayesian MCMC. Raftery and Lewis (1992) 416 

diagnostics indicate that around 100,000 iterations were necessary to estimate the posterior 417 

of hZP and hA with ±0.005 accuracy. Tests for stationary distributions (Heidelberger and 418 

Welch, 1983) for hZP and hA were successfully passed with 100,000 iterations. The plot of the 419 

observed size-age data and fitted models for h = 1 and fitted hZP and hA is shown in Figure 5. 420 

Posterior distributions of hZP and hA are shown in Figure 6. 421 

Age at maturity 422 

The size of the smallest leatherback females seen nesting on the beach was around 105 cm 423 

SCCL (Chaverri, 1999; Stewart et al., 2007) and 106 cm SCCL in our French Guiana dataset. 424 

This size can be reached between 6.2 to 7.5 years in natural conditions when h = 0.504 and 425 

between 11.3 to 13.6 years when h = 0.275. In the model, the age at which females reached 426 

the size of 130 cm is between 9.6 and 14.9 years when h = 0.504 and between 17.5 and 27.1 427 

years when h = 0.275. The mean SCCL for potential neophyte females (see the discussion 428 

below on capture probability and non-fidelity to nesting beaches) in French Guiana was 429 
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between 157 to 158 cm (Fig. 1). This size can be reached between 24.7 to 61.7 years for 430 

h = 0.504 and 45.2 to 112.8 years for h = 0.275 (Fig. 7). 431 

 432 

Discussion 433 

We developed a new biphasic indeterminate growth model based on the Gompertz 434 

equation to investigate growth pattern of leatherback turtles. Furthermore, we showed that 435 

the model was improved by integrating habitat quality measured by the h parameter. Two 436 

groups of data provided two different estimates for h: 95% confidence interval for average 437 

habitat quality is between 0.250 and 0.304 for Avens et al. (2009) and between 0.465 and 438 

0.555 for Zug and Parham (1996). It is difficult to determine is these differences are due to 439 

temporal, spatial, or methodological effects. We have no cues to choose among these 440 

hypotheses. It should be noted that the parameter h describing habitat quality has the same 441 

definition as the h parameter in Gaspar and Lalire (2017) for oceanic dispersion modelling. 442 

The distribution of the size of non-neophytes and females seen nesting on the beach for the 443 

first time was significantly different from the size of non-neophytes (Fig. 1), but the average 444 

difference was only 3.79 cm, with the potential neophyte being smaller. Of course, we 445 

cannot ascertain that individuals seen for the first time were true neophytes: they could 446 

have nested at another beach in a previous season or on this beach without being captured. 447 

It should be noted that Yalimapo-Awala beach has been patrolled for 10 hours per night on 448 

all nights during the nesting season for more than 10 years. Taking into account their high 449 

fidelity to the nesting beach (Girondot et al., 2007), at least a fraction of these females seen 450 

for the first time are probably true neophytes. The small size difference observed between 451 

neophyte and non-neophyte females was also noted in loggerheads (Tucek et al., 2014), 452 

indicating that growth at adult stage is very low. Data from the longitudinal field survey in 453 
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French Guiana (Fig. 2A) as well as growth modelling (Fig. 5A) allowed us to clearly 454 

demonstrate that leatherbacks show indeterminate growth and thus confirm and extend 455 

previous findings on East Pacific leatherbacks (Price et al., 2004). The pattern described here 456 

for leatherback turtles could be general for marine turtles (Omeyer et al., 2018). 457 

As no general life-history pattern linked growth to age at maturity (Wenk and Falster, 2015), 458 

there was no justification for using any proxy (e.g., x% of L∞) from the growth function to 459 

estimate age at maturity. Furthermore, age at maturity is a concept with a clear meaning for 460 

an individual, but at the scale of a group of individuals, only a range of ages at maturity 461 

should be proposed. We show here that in natural conditions (h=0.275 or 0.504), the 462 

smallest females seen nesting on a beach (105 cm SCCL) could be aged between 6.2 and 463 

13.6 years. However, nesting females of this size are quite exceptional, and the more typical 464 

size of the smallest nesting females is around 130 cm. Such a size can be reached by females 465 

between 9.6 and 27.1 years in natural conditions. This large age range does not necessarily 466 

reflect the confidence interval of the estimate but may rather indicate large phenotypic 467 

plasticity.  468 

The lowest age at maturity for females at the population scale can be obtained as the lowest 469 

age at which females are seen nesting on a beach. It is more difficult or even impossible to 470 

obtain an average, median, or highest age at maturity. Based on comparisons with 471 

loggerhead marine turtles in South Africa (Tucek et al., 2014), it is even possible that the 472 

concept of the highest age at maturity does not exist: if an individual grows very slowly due 473 

to an insufficiently rich environment, then it is possible that it may never attain an adequate 474 

size to reach sexual maturity. In such a situation, even the average or median age at 475 

maturity cannot be defined. Only the distribution of age at maturity among the nesting 476 

females can be estimated, but it is a biased measure of the distribution of age at maturity at 477 
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the scale of the population, because the slowest growing females could die before reaching 478 

sexual maturity. Indeed, the average annual adult survival probability 0.789 ± 0.009 is low 479 

for leatherbacks in French Guiana (Chevallier et al., 2020). 480 

The pivotal trade-off between growth and reproduction resource allocation occurs against a 481 

background of increasing mortality rates with age after maturity (Sgrò and Partridge, 1999). 482 

In this scenario, investing resources in reproduction rather than growth represents the most 483 

efficient strategy to improve individual fitness. However, the view that this scenario is 484 

universal has been challenged by relatively recent concepts such as negative senescence, in 485 

which the mortality rate declines after reproductive maturity similarly to how it declines 486 

during growth (Vaupel et al., 2004). In this case, investing in continued growth as well as 487 

reproduction is the optimal strategy, as the organism can experience the benefits of both a 488 

larger body size and improved fitness (Charnov, 1993). This pattern has been demonstrated 489 

in a longitudinal study on a freshwater turtle (Armstrong et al., 2018). Further fieldwork 490 

studies are nevertheless needed to show whether such a life-history strategy is relevant for 491 

marine turtles. 492 
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Table 1: Model selection based on AICc for pattern of annual growth rate upon SCCL for 699 

French Guiana (West Atlantic) and Costa Rica (East Pacific) leatherbacks. The selected 700 

models are in bold. 701 

West Atlantic AICc ∆AICc Akaike weight 

Exponential decay 434.12 0.00 0.991 

Constant 443.50 9.37 0.009 

Zero 533.53 99.40 0.000 

East Pacific AICc ∆AICc Akaike weight 

Exponential decay 261.68 0.00 0.884 

Constant 265.74 4.06 0.116 

Zero 281.60 19.92 0.000 

 702 

  703 
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Table 2: Model selection based on AIC and Akaike weight. hal is the habitat quality when 704 

individuals are fed ad libitum (h=1), while hA is the fitted value for Avens et al. (2009) data 705 

and hZP for Zug and Parham (1996) data. hAZP is the fitted value when a single habitat model 706 

is used for both datasets. The Gompertz and von Bertalanffy models are based on Eqn 2 and 707 

Eqn 4, respectively, with β = 0. Selected model is in bold. 708 

Model Habitat AIC ∆AIC Akaike weight 

Gompertz hal, hA, hZP 3262.22 1063.54 0.000 

Gompertz hal, hAZP 3274.50 1075.83 0.000 

Gompertz - 3477.50 1278.83 0.000 

Indeterminate Gompertz hal, hA, hZP 2198.67 0.0000 1.000 

Indeterminate Gompertz hal, hAZP 2452.43 253.76 0.000 

Indeterminate Gompertz - 3086.99 888.30 0.000 

von Bertalanffy hal, hA, hZP 2605.45 406.78 0.000 

von Bertalanffy hal, hAZP 2866.50 667.83 0.000 

von Bertalanffy - 3028.06 829.39 0.000 

Indeterminate von Bertalanffy hal, hA, hZP 2611.45 412.78 0.000 

Indeterminate von Bertalanffy hal, hAZP 2870.50 671.83 0.000 

Indeterminate von Bertalanffy - 3034.06 835.39 0.000 
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Figure 1: Standard curvilinear carapace length (SCCL) distribution for nesting females on 710 

Awala-Yalimapo nesting beach (French Guiana) for (A) females seen nesting for the first time 711 

and being potential neophytes and (B) last observation for females seen nesting during 712 

previous nesting seasons.  713 
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Figure 2: Change in standard curvilinear carapace length (SCCL) in cm yr-1 for nesting females 715 

in the Northwest Atlantic (French Guiana, this study) and Pacific East (Costa Rica, Price et al., 716 

2004) regional management units (as per Wallace et al., 2010). Solid lines represent the 717 

relation between SCCL and year change modelled as exponential decay (selected model 718 

based on AICc), and dashed lines are the 95% confidence interval. Dotted line represents the 719 

expected SCCL change if no growth occurs at adult stage.  720 
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Figure 3: An example of standard curvilinear carapace length (SCCL) growth with the total 722 

relative contribution of each variable (total contribution, including interaction, standardised 723 

to 1) for (A) SCCL at 20, 50, 105, 130, and 150 cm and (B) age at 2, 3, 10, 20, and 40 years. 724 

The contribution of x0 is always too low to be visible. 725 
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Figure 4: Example of standard curvilinear carapace length (SCCL) growth when habitat 728 

quality h varies. Dotted lines represent the average habitat quality h and the corresponding 729 

growth dynamics. Note that the growth dynamics is different, but final size is the same. 730 
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Figure 5: Observed data of standard curvilinear carapace length (SCCL)-age for Northwest 733 

Atlantic leatherbacks and indeterminate Gompertz model of growth using h = 1 for 734 

leatherbacks in captivity and fitted h for leatherbacks captured in the wild (h is relative 735 

habitat quality). 736 
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Figure 6: Posterior distribution for 100,000 iterations of habitat quality (h) for data from 739 

Avens et al. (2009) (hA), Zug and Parham (1996) (hZP), and Jones et al. (2011) (h in captivity). 740 
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Figure 7: Model of Northwest Atlantic leatherback growth in natural conditions (A: h = 0.505; 743 

B: h = 0.275) fitted using the indeterminate Gompertz model (Eqn 2). The correspondence 744 

between standard curvilinear carapace length (SCCL) and range of possible ages (95% 745 

confidence interval) is shown for SCCL = 105, 130, and 158 cm.  746 
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